Developing a Practical Programming by Demonstration Tool

Gordon W. Paynter and Ian H. Witten

Department of Computer Science
The University of Waikato
Private Bag 3105,
Hamilton,
New Zealand

Email: gwp@cs.waikato.ac.nz, ihw@cs.waikato.ac.nz

Fax: +64 7 838 4155

Principal contact: Gordon W. Paynter

Category: full paper



Developing a Practical Programming by Demonstration Tool

Gordon W. Paynter and Ian H. Witten
Department of Computer Science
The University of Waikato
New Zealand
{gwp,ihw}@cs.waikato.ac.nz

Abstract

Many iterative tasks in direct manipulation interfaces
cannot be automated with standard application tools,
forcing users to repeat the same interface actions again
and again. We describe a domain-independent
programming by demonstration system that learns
iterative tasks in a range of widely-used applications on
a popular computer platform. An evaluation showed that
users are capable of using the agent to automate
iterative tasks, and will choose to do so in many
circumstances. It also found many shortcomings, which
were corrected in a new version of the interface. This
paper recounts the design process, the first interface, the
evaluation, and consequent revisions.

1. Introduction

Computers excel at performing repetitive tasks, and can
spare us hours of mindless drudgery. But it is not always
possible to make an interactive computer application
repeat a particular task. Some applications provide
aggregation techniques like multiple selection, but these
are only suitable for certain tasks. An experienced
programmer might write a program or script to automate
iteration, but this lies beyond the abilities of most end-
users, who are often forced to perform the same interface
actions over and over again.

Programming by demonstration (PBD) is a technique
that allows end users to solve iteration problems [1]. The
user can teach the system to perform a task by
demonstrating what they want done. PBD systems can
learn programs from users who have no programming
knowledge—they need to know nothing more than how
to perform the task.

Demonstrational techniques have been used for a
wide range of purposes: teaching; generating code;
building applications; scheduling; creating macros,
scripts and commands [1]. Most systems for automating
repetition are implemented in research environments and
are not amenable to evaluation by real users. Those that
do use existing software are either tied to specific
applications [3,4] or operate at a very low level.

Our work is motivated by several questions that
previous projects have left unanswered. Can PBD be
added to commercial applications (like Microsoft Word
or Excel)? If users are presented with a PBD system in a
familiar environment, can they use it? Will they choose
to? Will they choose it over alternative techniques?

To answer these questions, we have designed and
implemented Familiar, an application-independent PBD
system for the Macintosh computer, and evaluated it by
asking users to automate iterative tasks. We found that
end-users, including non-programmers, can use the
interface to automate iteration, though they often prefer
alternative techniques when they are available [5].

This paper focuses on another outcome of the
evaluation: the subjects discovered several problems that
led to a redesign of the interface with the aim of making
it easier to understand and control. The new interface
predicts more aggressively, but its predictions can be
explained and corrected through the enhanced interface.

2. Iteration and demonstration

Iterative tasks are those that the user completes by
repeating a series of interface actions without
interleaving actions from other tasks. For example, a
user who works through the records in a database,
entering a value in a field of each and immediately
moving to the next, is manually performing an iterative
task. Our aim is to help end users automate these tasks in
direct-manipulation graphical user interfaces.

PBD is an end—user programming technique that can
help solve iteration problems. A PBD interface allows
the wuser to “program” the computer by giving
demonstrations. The process can be likened to teaching:
the user presents specific examples of what they want
done, and the computer learns a general strategy for
performing the task that it can apply to new examples.
To create a conventional program, the user must describe
the entire task in advance, in flawless detail, in an
abstract form, in a foreign environment. To create a
program by demonstration, a user simply needs to
perform the task within a conventional user interface.



% B= File Edit Yiew Special Familiar Help

arange breadfruit

[=0 I L
4B Filr N B>
o o ¥

apple pear banana

[=
B>
o

nectaring fruit salad

hon 1:23:43 PM 5|

o Familiar history

: activate -- Finder

: selectfile "plum® of folder “fruit™
: setposition of selection to {16, 29}
: selectfile "peach” of folder “fruit™
: setposition of selection to {80, 29}

' Familiar predictions

Docurnents

Familiar found a cycle of 2commands

@6: select file "apple” of folder “fruit"
7: set position of selection to {144, 29}

Repeat the cycle: (BO(ZOE0d00)[20 | Gimes )

7o Portaie P ile| W Copier room |

| mfmiliar 1.3 | ::':;: k '5:_;: kT [ Familiar || j Training 20000210Fam... ';-;:__ :::55.. £l Copier room || £ Entropy Lab

Figure 1 Using Familiar 1.3 to arrange icons

Familiar is a PBD system for solving iterative tasks. It
is unique in that it works with a range of existing,
unmodified applications on a commercial platform—the
Apple Macintosh—rather than with specially-designed
research prototypes. It is neither tied to specific
applications, nor restricted to one application at a time. It
works out-of-the-box with new scriptable applications,
relieving the developer of any need to compile domain
knowledge. Familiar is thus a practical PBD system.

Figure 1 shows the screen of a user who is completing
a simple task. Familiar has been invoked from the
Familiar menu, which is present in the menubar of every
application (next to the ubiquitous Help menu). A
flashing tape-recorder icon in the top left corner of the
screen indicates that the user’s actions are being
observed. This user is arranging the icons in a folder into
a row. Two files, named p/um and pear, have been
moved to their new positions and are visible in the
window to the left of the screen. Two other windows
appear to the right. The first, titled Familiar history,
contains a textual description of the actions the user has
recently taken. The second, Familiar predictions, shows
what Familiar thinks the user will do next. Familiar is a
stand-alone application, and its windows remain in the
background until the user selects one, bringing it to the

foreground. The agent can then be interrogated and
instructed, as described below.

Figure 1 shows the most recent form of the interface,
Familiar 1.3. This paper explains how it was developed.

3. Designing the Familiar 1.0 interface

Many PBD systems can best be described as “feature-
oriented”: they are created to exhibit and evaluate some
unique interaction or inferencing technique, a purpose
they usually fulfil. Unfortunately, these systems are ill-
suited to real users: they are unpolished, unfamiliar, and
lack many essential application features.

In contrast, Familiar is designed for end users. We
considered their motivations, abilities, and attitudes, and
formulated four guidelines for constructing user-centric
PBD systems: (a) the use of existing applications, (b)
simplicity, (¢) minimising user actions, and (d) educating
the user [5]. The extent to which these goals can be
satisfied is bounded by their contradictory nature and by
the platform. Nevertheless, the resulting system,
Familiar 1.0, is more accessible than other PBD tools
because it works in standard application programs.



i —iv—"r—3U)

Familiar history

activate -- Finder

Foo o =] 0

selectfile "a" of folder "“tutorial example™
set position of selection to {1, 0}

A il

© | d=——mme DO

Familiar history

o

selectfile "b" of folder “tutorial example™ -
set position of selection to {33, 0}

; |
Iy I

a 1]

(©) |[] ==——————"—"—————ramiiliar predictions "a0F"—0"=—————85

[ell] activate -- Finder

(ellv] select file "c" of folder “tutorial example™

(D |0 ======———————ramiliar predictions

(2

(h)

(@)

@ set position of selection to {65, 0}

i

[0 ==—————————"Famiiliar predictions

@ select file "d” of folder "“tutorial example™

1M

[[] =————————"Famiiliar predictions

[

(c)A cycle of length 2 (L2 I 5x ][II]x]|2I]: [ times |
EI: select file "d" of folder "tutorial example"

[+ 19: set position of selection to {97, O}

[clA cycle of length 2 (D 2 ) S J10xk]| 20 | _times |

EI: select file “d” of folder "tutorial example™
[ 19: set position of selection to {97, 0}

l =———— Familiar predictions

(@A cycle of length 2 (x)(2(S)d0x)|20 [ fimes )
10: select file "e™ of folder “tutorial example™
11: set position of selection to {129, 0}

Figure 2 Arranging files with Familiar 1.0

3.1. Teaching a simple task

Users are trained to use Familiar with a tutorial that asks
them to perform a simple task: open a folder of 26 files,
and arrange them in a row. Familiar is capable of
considerably more sophisticated inferencing [5]: the
point of this example is to explain the user interface.

To begin any task, the user asks the agent to start
observing their demonstration by selecting Begin
recording from the Familiar menu, which is available in
every application (and visible in Figure 1). They then
proceed to demonstrate the task in the standard user
interface of the appropriate application—or applications,
for Familiar spans applications.

Next, the user selects the tutorial example folder in
the Finder and puts the file named « in the top left corner
of the window, as shown in Figure 2a. As users work, a

window labelled Familiar history appears and logs each
action. Actions are described in AppleScript, an English-
like scripting language built into the Macintosh
operating system and applications. At this point the
history window contains three commands (Figure 2b)
corresponding to the high-level events the user has
performed: activating the Finder, selecting file @, and
positioning that selection.

Continuing the demonstration, the user places file b
beside file a (Figure 2¢). Again, the commands are
recorded in the history window (Figure 2d).

3.2. Familiar performs the task

At this point in the demonstration, Familiar has recorded
two iterations of a task and begins making predictions. A
new window, titled Familiar predictions, is created: it
displays two predictions of the next event (Figure 2e).



(a)

Familiarhismvnaoaics s S ],bS———e——

activate -- Finder
select file "downloads™
open selection

open selection
activate -- GIFConverter

activate -- Finder
delete selection

TR =

select file "tile1.jpeg” of folder "Internet downloads™ of startup disk

save graphic document “tilel jpeg” in file "Montana:internet downloads:tile1.pict” as PICT

T | m

S Kl

(b) |0

Fapllar histary

I open selpctinm
12! adifeane -- GIFODRVE FOEF

I4; gothvate == Finder

Il delete selection

10 sedectfile e 2 jpeg” of folder *intsrnet dowendoads® of startup disk

13 sawe graphic document "tile2jeen” infile "Montanadntesned dovwenloadsaile 2 pict™ as PICT

15 sefpositon ol container window offdder "Internet downloads™ of strtup disk to {95,407

(©|O

Familiar predictions =—"~—————H

[ell¥] activate -- Finder

[B selectfile "tile3.jpeqg” of folder "Internet downloads™ of startup disk

(d)|3

18: open selection
19: activate -- GIFConverter

[~ __J21:activate -- Finder
[__v__122:delete selection

18: open selection
19: activate -- GIFConverter

[__«__121: activate -~ Finder

[+ 12% delete selection

[clA cycle of length 6 (DO 2510 |20 |_times |

17:selectfile "tile3jpeqg” of folder "Internet downloads™ of startup disk

[+ _120: save graphic document “tile3jpeg™in file "Montana:Internet downloads:tile2.pict” as PIC

(clA cycle of length 7 ()2 ) 5 J(10x]

17:selectfile "tile3.jpeq” of folder "Internet downloads"” of startup disk

[+ _120: save graphic document "tile3,jpeg” in file "Montana:Internet downloads:tile3.pict” as PIC

[__«___122:set position of container window of folder "Internet downloads” of startup disk to {93,

Figure 3 Changing image formats with Familiar 1.0

The first is correct—the next action the user intends to
take is select file “c”. The second is incorrect; it was
generated by assuming that the activate command is a
necessary step, but that the user, through oversight,
forgot to include it in the second demonstration. In fact,
the activate command does nothing in this context, but
Familiar knows only the syntax of the commands, not
their effect.

Familiar can be asked to execute a prediction by
clicking either the text of the command or the tick button
beside it. When the user clicks the first command in
Figure 2e, four things happen. First, the text of the
command changes colour, indicating that it has been sent
to the application. Second, the application carries out the
command, and the user sees file ¢ being selected in the
Finder. Third, the command is recorded by Familiar and
added to the history window, just as any user command
would be. Finally, the prediction window is updated with
a prediction of the next command.

The next prediction suggests that the user sets the
position of the selection (Figure 2f). The user accepts
this prediction by clicking on it, and watches as the file
is moved in the folder window. A new prediction
appears: that the user will select file “d” (Figure 2g).

The user does want to select d, and could easily tell
Familiar to carry out this command, but it is inefficient
to ask the agent to execute one step at a time—it would
probably be faster for the user to move the files by hand!
Instead of accepting this prediction, the user clicks on
the expand button (labelled “e”), and Familiar attempts
to predict complete iterations of the task.

Familiar predicts two cycles (Figure 2h). Both appear
to be the same—a select command followed by a set
command—so the user ignores the second cycle. The
topmost cycle correctly anticipates that the user’s next
action (step 8) will be to select file “d” and that the one
after that will be to set the position of the selection to
{97, 0} (step 9). There are two ways to make Familiar
perform a complete cycle of the task. One is to click on



Familiar found a cycle of 2 commands

ﬁ: select file "apple” of folder "fruit™
?: set position of selection to {144, 29}

(@ EH=— b |H Familiar history =]
1. activate -- Finder -
2. selectfile "plum™ of folder "fruit™ -
g 3. setposition of selection to {16, 29} 7
©H-r-— (D|H Familiar history =]
4 selectfile "peach” of folder "“fruit™ o~
B L. 2 setposition of selection to {80, 29} -

plum
(e |O Familiar predictions B

Repeatthe cycle: (D (S ) 5x J(100x]| 20 times |

Figure 4 Arranging files with Familiar 1.3

the last command in the cycle (in this case, step 9).
Clicking on any command will execute the commands
up to and including that one. The other is to click on the
one times button (labelled “1x”).

In this example, the user executes the cycle by
clicking the one times button, and the commands are
executed in sequence. Each command is recoloured
before it is sent to the application so that the user can see
the agent’s progress, and the other Familiar windows are
updated as usual. When the two commands have been
executed, Familiar predicts the next iteration of the cycle
(Figure 21i).

The user is now confident that Familiar has learned
the task, and can use the controls in the prediction
window to make Familiar perform more than one
iteration at a time. The user can press the two times
(“2x”), five times (“5x”), or ten times (“10x”) buttons to
execute the corresponding number of iterations; or type
an arbitrary number of repetitions in the field provided
and press the button marked times. When the user asks
for more than one iteration, this field is dynamically
updated to display the number of cycles that remain.

The user must consider the termination conditions of
the task. Familiar will run for the specified number of
iterations, or until it cannot predict the next event, or
until an error is generated by one of the commands it
executes. Many tasks have a natural limit—in this case
the number of files in the folder—that, when exceeded,
automatically trigger an error. In some situations
Familiar does not stop where the user might expect it
to—for example, when Familiar has filled the top row of
the window with files, it keeps placing them on the same
row outside the visible area of the window.

3.3. Another example

Complex tasks may involve many applications and
imperfect demonstrations. Figure 3 shows a user

changing the format of a set of image files. The history
window is shown after the first (Figure 3a) and second
(Figure 3b) iterations have been demonstrated. The first
three events of Figure 3a initialise the environment and
are not part of the iterative loop. Event 15 is a singular
noise event generated when the user shifted a window to
get a better view, and should not be repeated in future
iterations. Figure 3c shows that Familiar correctly
predicts the next event. When it is expanded in Figure 3d
we see a cycle of six events that correctly predicts the
next iteration, and another of seven events that includes
an extra step (event 22) corresponding to event 15 of
Figure 3b.

4. Evaluating Familiar 1.0

The Familiar 1.0 interface was evaluated by a group of
ten end users. The evaluation had three objectives. The
first was to test the hypothesis that users are capable of
automating iterative tasks with PBD. The second was to
find out whether users will choose to use Familiar when
other automation tools are available. The third was to
gather feedback from end users about the interface.

The ten subjects were asked to solve two iterative
tasks, then introduced to Familiar and asked to complete
much larger variants of the tasks. The tasks were
performed in four applications: the Finder, the Excel
spreadsheet, the Fetch FTP client, and the GIFConverter
image manipulation program. Subjects’ ability to use
PBD was tested by observing their use of Familiar. All
were able to do so with little training. Tool choice was
assessed by observing whether the subjects chose to
invoke Familiar or existing automation facilities based
on multiple selection. Most subjects elected to use the
existing tools when they were available. These aspects of
the evaluation are discussed in [5].

All subjects were observed using Familiar, and were
asked to comment on it. The subject’s opinions and their



(a)

(b)

O

Familiar predictions

Familiar found a cycle of 2 commands

ﬁ: selectfile “peach” of folder “fruit™
?: set position of selection to {144, 29;

=
|

Repeatthe cycle: [ J[_Zx [ Sx J[10x]| 20 t !

-

Click here to turn balloon help

on and off.

Familiar uses balloon help to
explain how its predictions
are made, and to explain how
the user interface works.

T,

O

Familiar predictions

lwl7: setposition of s
Repeat the cycle: [ A

wl6: selectfile "peac&%(
e

Familiar found a cycle of 2 commands

el ol

AL, AT

Constant value.

The parameter 'select’ is alwayws

predicted using the walue file

prediction

"peach” of folder "fruit™’

Option-click to change this

© O

Familiar predictions

Familiar found a cycle of 2 commands

Repeat the cycle: [T 2

prediction

T,

wl6: selectfile "applrkw
[wl7: setposition of SESEY Set iteration.

The parameter "select’ was
predicted by choosing the next

file from “folder "fruit™'.

Option-click to change this

11

r

Figure 5 Using ballon help to get explanations of predictions in Familiar 1.3

observed behaviour identified several problems with the

interface. These problems are described below, with

potential solutions to each.

Problem 1 The most common complaint was that
Familiar is slow. Its speed is restricted by
AppleScript, which is a slow language, and by the
user’s hardware.

Solution  Although beyond Familiar’s control, this
problem is ameliorated by faster hardware and later
software versions. The evaluation was performed
on a 200MHz Power Macintosh running
AppleScript 1.1.2 (based on 68000 machine code).
A newer 400MHz G3 Power Macintosh using
AppleScript 1.2 (native PowerPC code) is
dramatically faster.

Problem 2 Familiar makes predictions that do not
match the user’s mental intent.

Solution  The interface must explain its predictions.

Problem 3 Familiar  occasionally = makes  poor
predictions in the face of multiple counterexamples,
or takes too long to make predictions. In many

cases the correct behaviour is obvious to the
subject, and Familiar is able to make the correct
prediction but lacks data.

Solution  The user should be able to explicitly reject
incorrect predictions and request new ones.

Problem 4 Some users had difficulty recognising and
changing between “step” mode and “cycle” mode.

Solution  Eliminate “step” mode.

Problem 5 Having two cycles shown at the same time
is confusing, particularly if they appear the same.

Solution  Display a single cycle and allow the user to
change it.

Problem 6 Some subjects identified problems with
Familiar’s handling of termination conditions. It
can be difficult to calculate the required number of
iterations.

Solution The interface should suggest termination
conditions based on the current data (e.g. number
of files in a folder).



(@O

Familiar predictions VDFc0FFfFf————7—

m

Familiar found a cycle of 3 commands
i6: activate -- Finder

Repeat the cycle: [_De ) 2x J[ Sx J(10x]

?: select file "apple” of folder “fruit"
EI: set position of selection to {144, 29}

* iciclel
Click here if Familiar has

learned the wiang
pattern and you want it
to zuggest a different

ane.
_help ]

(b) |

Familiar predictions

m

Familiar found a cycle of 2 commands

ﬁ: select file "apple” of folder “fruit"
?: set position of selection to {144, 29

Repeat the cycle: [ ) j S J(10] | 20 times |

|

Figure 6 Using the change cycle button to correct a prediction in Familiar 1.3

Problem 7 Some subjects commented that Familiar was
unsuitable for short iterations because it was too
slow to learn changes in patterns.

Solution  Reimplement the parameter extrapolation
algorithm.

Problem 8 The subjects were asked whether they felt
they understood AppleScript. Eight claimed they
did. The other two were inexperienced computer
users, and one thought he would learn in time. Four
of the subjects had queried the terminology used by
Excel, and later acknowledged it had initially
caused them difficulties.

Solution  AppleScript is beyond our control because
each application’s developer defines its termin-
ology. Elsewhere we have suggested guidelines for
creating “PBD-friendly” implementations [5].

5. The Familiar 1.3 interface

The solutions recommended above, except for Problem
6, are incorporated into Familiar 1.3. To illustrate the
differences between the two interfaces, we describe
example tasks like those of Section 3.

5.1. Arranging files

To open a folder and arrange its files as in the first
example above, the wuser, having invoked Begin
recording from the Familiar menu, selects the
appropriate folder and moves a convenient file, plum, to
the top left of the folder window (Figure 4a). These
actions are recorded and displayed in the history window
(Figure 4b). The user continues the demonstration by
moving file peach (Figure 4c); again their actions are
recorded and displayed (Figure 4d). So far, the interface
is unchanged from version 1.0.

In the earlier interface, Familiar would now predict
the next step in the cycle (Figure 2e). However, the new
interface does not predict single steps; instead it displays
its best prediction of the entire next cycle. In this case, it
predicts both step 6 and step 7 correctly (Figure 4e).

Figure 1 shows the entire screen as it appears after the
user has demonstrated the first two examples. The
controls at the base of the predictions window operate
just like those in the version 1.0 interface, and the user
can complete the task by requesting the appropriate
number of iterations.

5.2. When Familiar makes errors

In the original interface, the only way to correct one of
Familiar’s predictions was to demonstrate another
example in the application interface. This option is still
available in the new interface, but several new features
for communicating with Familiar have been added.

The help button gives feedback explaining how
predictions are made. The iterative pattern predicted in
Figure 5a is consistent with the two demonstrations of
the task above (Figure 4a—d), but the parameter of the
select command (event 6) has not been extrapolated
correctly: Familiar has predicted that the user will select
peach, but the user already moved this file (events 4 and
5) and wants to move a new one. To find out why the
agent made the erroneous prediction, the user clicks
help, which activates the Macintosh Balloon Help
feature (Figure 5a). The user is concerned that the select
parameter is incorrect, so moves the mouse pointer over
that prediction. A help balloon explains that Familiar has
reasoned that the user is selecting the same file in every
iteration, and that the prediction can be changed with
option-click (Figure 5b). The user tells Familiar to
change the prediction, and peach is immediately
replaced by apple (Figure 5c). The help balloon explains
that the new prediction is made by assuming that the user
is iterating over all the file objects in folder “fruit”. The
agent’s reasoning—and thus its prediction—is correct,
and the task can now be completed.

The change cycle button is used to reject the current
iterative pattern and display another. Suppose that after
the user demonstrated the first two examples of the task
(Figure 4a—d), Familiar deemed the activate command to
be important and predicted that each cycle was
composed of three events, activate, set, and select, as



(a)

Familiar history

i}

activate == Finder
select file "downloads™
open selection

open selection
activate == GIFConverter

activate == Finder
delete selection

commomEwh |0

select file "tilel jpeg™ of folder "Internet downloads" of startup disk

save graphic document “tile 1 jpeqg" in file "Montana:internet downloads]

(b)

O

Familiar history

11: open selection
12: activate -- GIFConverter

14: activate -- Finder

16: delete selection

10: selectfile “tile2jpeqg” of folder “Internet downloads™ of startup disk

13: save graphic document “tile2,jpeqg” in file "Montana:internet downloads

13: setposition of container window of folder “Internet downloads”™ of starg

Slelel Tul Ymi| s Leled

(c)|d

Familar fowmed @ cycle ol & comesands

1B g selectbi
1% actvate -- GIFCemerier

¥z achvate == Amder
22 delete selection

Repeat the evcbe: [0 B0 (S )iibg|a0  (fmes )

[iChanae Cycke

1 select file “oleddpeg™ of folder “lntermet downbead 5" of stariun disk

Mt sovve grapbee docament “tillejpeg® indile "Montanacindbernet doesenloads:tile Lpict® as FICT wat

(help_J

Figure 7 Changing JPEG images to PICT images with Familiar 1.3

shown in Figure 6a. To remedy this error, the user
presses change cycle, and Familiar replaces the three-
event cycle with the correct two-event one (Figure 6b).

5.3. Converting images

Figure 7 shows the conversion task of Section 3.3,
performed with the new interface. The first two
iterations have been demonstrated as they were before,
including several noise events (Figure 7a,b); Familiar
correctly predicts the next complete iteration.

6. Discussion

Familiar is the first PBD system that works with
unmodified applications on a commercial platform.
Other such systems have required completely new
applications [1], modifications to the applications and
environment [2], are application-specific [3,4], operate at
a low level [4], or are macro recorders that do not
perform inferencing. Familiar achieves generality by
leveraging existing scripting systems, languages, and
learning techniques.

Testing with end users revealed a variety of problems
with the interface. Solutions to almost all of these have
been incorporated into the most recent version, Future

work will focus on termination conditions, and
evaluating the new interface.

The evaluation exercise described in this paper shows
that end users can use PBD, but highlighted a range of
difficulties that led to improvements in the interface. Our
findings should prove instructive to those who create the
next generation of interface agents.

References

[11 Cypher A. (Ed) Watch what I do: Programming by
demonstration. MIT Press, 1993.

[2] Cypher A. “Eager: Programming Repetitive Tasks by
Demonstration.” In [2], pp 205-217, 1993.

[3] Lieberman, H. “Integrating User Interface Agents with
Conventional Applications”, Proc. Intelligent User
Interfaces, ACM Press, 1998.

[4] Masui T. and Nakayama K. “Repeat and Predict — Two
Keys to Efficient Text Editing”, Proc. CHI, 1994.

[5] Paynter, G. W. Automating Iterative Tasks with
Programming by Demonstration. PhD Thesis, CS
Department, University of Waikato, NZ, 2000.



