2000 Conference on Information Sciences and Systems, Princeton University, March 15-17, 2000

Applications of lossless compression in adaptive text mining

Tan H. Witten
Department of Computer Science
University of Waikato
Hamilton, New Zealand

e-mail: ihw@cs.waikato.ac.nz

I. INTRODUCTION

Text mining is about looking for patterns in natural language
text, and may be defined as the process of analyzing text to
extract information for particular purposes. Compared with
the kind of data stored in databases, text is unstructured,
amorphous, and contains information at many different levels.
Nevertheless, the motivation for trying to extract information
from it is compelling—even if success is only partial. Despite
the fact that the problems are difficult to define clearly, in-
terest in text mining is burgeoning because it is perceived to
have enormous potential practical utility.

This paper argues that lossless compression, operating
within the standard training/testing paradigm of machine
learning, is a key technology for text mining. Research in com-
pression has always taken the pragmatic view that files need
to be processed whatever they may contain, rather than the
normative approach of classical language analysis which gen-
erally assumes idealized input: a sequence of sentences, com-
prising words all of which appear in the dictionary, delimited
by single spaces, with punctuation and perhaps numbers but
no other extraneous symbols. In practice text—particularly
text gathered from the Web, the principal source of material
used today—is messy, and many useful clues come from the
messiness.

To avoid making prior assumptions about the input, adap-
tive techniques are standard in modern text compression.
Adaptation is exactly what is required to deal with the va-
garies of text universally encountered in the real world, typi-
fied by the Web.

This paper describes four areas in which compression has
been used for text mining: generic entity extraction, text cate-
gorization, segmentation into tokens, and acronym extraction,
and concludes with more speculative material on structure
recognition. Throughout this work, a PPM text compression
scheme was used [3], with order 5 (except where otherwise
mentioned) and escape method D [7]. However, the results
should not be particularly sensitive to the compression method
used, although character-based prediction is assumed.

II. GENERIC ENTITY EXTRACTION

Business and professional documents are packed with loosely
structured information: phone and fax numbers, street ad-
dresses, email addresses and signatures, tables of contents,
lists of references, tables, figures, captions, meeting announce-
ments, URLs. In addition, there are countless domain-specific
structures—ISBN numbers, stock symbols, chemical struc-
tures, and mathematical equations, to name a few.

The information extraction research community has stud-
ied these tasks. “Named entities” are defined as proper names
and quantities of interest, including personal, organization,
and location names, as well as dates, times, percentages, and
monetary amounts [2]. The standard approach is manual:

tokenizers and grammars are hand-crafted for the particular
data being extracted. Commercial text mining software in-
cludes IBM’s Intelligent Miner for Text [10], which uses spe-
cific recognition modules carefully programmed for the differ-
ent data types, Apple’s Data Detectors [8], which uses lan-
guage grammars, and the Text Tokenization Tool of [6].

An alternative approach to generic entity extraction is to
use training instead of explicit programming to detect in-
stances of sublanguages in running text. Character-based
language models provide a promising way to recognize lexi-
cal tokens. Tokens can be compressed using models derived
from different training data, and classified according to which
model supports the most economical representation [1].

An Ezample

In order to assess the power of language models to discrim-
inate tokens, experiments were conducted with information
items extracted (manually) from twenty issues of a 4-page,
1500-word, weekly electronic newsletter. Items of the kind
that readers might wish to take action on were classified into
generic types: people’s names; dates and time periods; loca-
tions; sources, journals, and book series; organizations; URLs;
email addresses; phone numbers; fax numbers; and sums of
money. These types are subjective: dates and time periods
are lumped together, whereas for some purposes they should
be distinguished; personal and organizational names are sep-
arated, whereas for some purposes they should be amalga-
mated. The methodology we describe accommodates all these
options: there is no committment to any particular ontology.

Discriminating Isolated Tokens

The first experiment involved the ability to discriminate be-
tween different token types when the tokens are taken in iso-
lation. Lists of names, dates, locations, etc. in twenty issues
of the newsletter were input to PPM separately to form ten
compression models. Each issue contained about 150 tokens,
unevenly distributed over token types. In addition, a plain
text model was formed from the full text of all these issues.
These models were used to identify each of the tokens in a
newsletter that did not form part of the training data, on the
basis of which model compresses them the most. Although
the plain text model could in principle be assigned to a token
because it compresses it better than all the specialized models,
in fact this never occurred.

Of the 192 tokens in the test data, 40% appeared in
the training data (with the same label) and the remain-
der were new. 90.6% of the total were identified correctly
and the remaining 9.4% incorrectly; all errors were on new
symbols. Three of the “old” symbols contain line breaks
that do not appear in the training data: for example, in
the test data Parallel, Computing\nJournal is split across
two lines as indicated. However, these items were neverthe-
less identified correctly. The individual errors are easily ex-

plained; some do not seem like errors at all. For example,
the place names Norman and Berkeley were “mis”-identified
as people’s names, time periods like Spring;,2000 were mis-
identified as sources (because of confusion with newsgroups
like comp.software.year-2000), people’s names were con-
fused with organizational names, and so on.

Distinguishing Tokens in Context

When tokens appear in text, contextual information provides
additional cues for disambiguating them. Identification must
be done conservatively, so that strings of plain text are not
misinterpreted as tokens—since there are many strings of plain
text, there are countless opportunities for error.

Context often helps recognition: e.g., email addresses in
this particular newsletter are always flanked by angle brackets.
Conversely, identification may be foiled by misleading context:
e.g., some names are preceded by Rep., which reduces the
weight of the capitalization evidence for the following word
because capitalization routinely follows a period.

The second experiment evaluated the effect of context by
assuming that all tokens have been located in the test issue,
and the task is to identify their types in situ. If a stretch
of text is identified as a token of the appropriate type it will
compress better using the specialized model; however, begin-
and end-token markers must be coded to indicate this fact.
To investigate this, all tokens in the data were replaced by a
surrogate symbol that was treated by PPM as a single char-
acter (different from all the ASCII characters). A different
surrogate was used for each token type. A new model was
generated from the modified training data, and the test arti-
cle was compressed by this model to give a baseline entropy
of eg bits. Then each token in turn, taken individually, was
restored into the test article as plain text and the result re-
compressed to give entropy e bits. This will (likely) be greater
than ep because the information required to represent the to-
ken itself (almost certainly) exceeds that required to represent
its type. Suppose ey, is the token’s entropy with respect to
model m. Then the net space saved by recognizing this token
as belonging to model m is

e — (eo + em) bits.

This quantity was evaluated for each model to determine
which one classified the token best, or whether it was best
left as plain text. The procedure was repeated for each token.

When context is taken into account the error rate per token
actually increases from 9.4% to 13.5%. However, almost all
these “errors” are caused by failure to recognize a token as dif-
ferent from plain text, and the rate of actual mis-recognitions
is only 1%—or just two mis-recognitions, one of which is the
above-mentioned Berkeley being identified as a name.

To mark up a string as a token requires the insertion of two
extra symbols: begin- and end-token, and it is this additional
overhead that causes the above-noted failures to recognize to-
kens. However, the tradeoff between actual errors and fail-
ures to identify can be adjusted by using a non-zero threshold
when comparing the compression for a particular token with
the compression when its characters are interpreted as plain
text. This allows a small increase in the number of errors to
be sacrificed for a larger decrease in identification failures.

Locating Tokens in Context

Tokens can be located by considering the input as an inter-
leaved sequence of information from different sources. Every

token is to be bracketed by begin-token and end-token mark-
ers; the problem is to “correct” text by inserting such markers
appropriately. The markers also identify the type of token in
question—thus we have begin-name-token, end-name-token,
etc., written as <n>, </n>. Whenever begin-token is encoun-
tered, the encoder switches to the compression model appro-
priate to that token type, initialized to a null prior context.
Whenever end-token is encountered, the encoder reverts to the
plain text model that was in effect before, replacing the token
by a single symbol representing that token type.

The algorithm takes a string of text and works out the op-
timal sequence of models that would produce it, along with
their placement. It works Viterbi-style, processing the input
characters to build a tree in which each path from root to leaf
represents a string of characters that is a possible interpreta-
tion of the input. The paths are alternative output strings,
and begin-token and end-token symbols appear on them. The
entropy of a path can be calculated by starting at the root
and coding each symbol along the path according to the model
that is in force when that symbol is reached. The context is
re-initialized to a unique starting token whenever begin-token
is encountered, and the appropriate model is entered. On en-
countering end-token, it is encoded and the context reverts to
what it was before.

What causes the tree to branch is the insertion of begin-
token symbols for every possible token type, and the end-token
symbol—which must be for the currently active token type so
that nesting is properly respected. To expand the tree, a list
of open leaves is maintained, each recording the point in the
input string that has been reached and the entropy value up
to that point. The lowest-entropy leaf is chosen for expansion
at each stage. Unless the tree and the list of open leaves are
pruned, they grow very large very quickly. A beam search is
used, and pruning operations are applied that remove leaves
from the list and therefore prevent the corresponding paths
from growing further.

To evaluate the procedure for locating tokens in context,
we used the training data from the same issues of the newslet-
ter as before, and the same single issue for testing. The errors
and mis-recognitions noted above when identifying tokens in
context (rates of 1% and 12.5% respectively) also occur when
locating tokens. Inevitably there were a few incorrect positive
identifications—2.6% of the number of tokens—where a seg-
ment of plain text was erroneously declared to be a token. In
addition, 8% of tokens suffered from incorrect boundary place-
ment, where the algorithm reported a token at approximately
the same place as in the original, but the boundaries were
slightly perturbed. Finally, a further 4.7% of tokens suffered
discrepancies which were actually errors made inadvertently
by the person who marked up the test data.

Discussion

We find these initial results encouraging. There are several
ways that they could be improved. The amount of train-
ing data—about 3000 tokens, distributed among ten token
types—is rather small. The data certainly contains markup
errors, probably at about the same rate—4.7% of tokens—as
the test file. Many of the mistakes were amongst very simi-
lar categories: for example, fax numbers contained embedded
phone numbers and were only distinguished by the occurrence
of the word far; several times they were confused with phone
numbers and this counted as an error. Some of the mistakes
were perfectly natural—Norman as a name instead of a place,

for example. In addition, improvements could likely be made
to the pruning algorithm.

III. TEXT CATEGORIZATION

A central feature of the above approach to generic entity ex-
traction is the basic assumption that a token can be identified
by compressing it according to different models and seeing
which produces the fewest bits of output. We now examine
whether this extends to text categorization—the assignment
of natural language texts to predefined categories based on
their content. Already-classified documents, which define the
categories, are used to build a model that can be used to clas-
sify new articles.

Text categorization is a hot topic in machine learning. Typ-
ical approaches extract “features,” generally words, from text,
and use the feature vectors as input to a machine learning
scheme that learns how to classify documents. This “bag of
words” model neglects word order and contextual effects. It
also raises some problems: how to define a “word,” what to do
with numbers and other non-alphabetic strings, and whether
to apply stemming. Because there are so many different fea-
tures, a selection process is applied to determine the most
important words, and the remainder are discarded.

Compression seems to offer a promising alternative ap-
proach to categorization, with several potential advantages:

e it yields an overall judgement on the document as a
whole, and does not discard information by pre-selecting
features;

e it avoids the messy problem of defining word bound-
aries;

e it deals uniformly with morphological variants of words;
e depending on the model (and its order), it can take
account of phrasal effects that span word boundaries;

e it offers a uniform way of dealing with different types of
documents—for example, files in a computer system,;

e it minimizes arbitrary decisions that inevitably need to
be taken to render any learning scheme practical.

We have performed extensive experiments on the use of PPM
for categorization using a standard dataset [5]. Best results
were obtained with order 2; other values degraded perfor-
mance in almost all cases—presumably because the amount
of training data available is insufficient to justify more com-
plex models.

The Benchmark Data

All our results are based on the Reuters-21578 collection of
newswire stories, the standard testbed for the evaluation of
text categorization schemes. In total there are 12,902 stories
averaging 200 words each, classified into 118 categories. Many
stories are assigned to multiple categories, and some are not
assigned to any category at all. The distribution among cat-
egories is highly skewed: the ten largest—earnings, corporate
acquisitions, money market, grain, crude oil, trade issues, in-
terest, shipping, wheat, and corn—contain 75% of stories, an
average of around 1000 stories each.

Pairwise Discrimination

Applying a straightforward compression methodology to the
problem of text categorization quickly yields encouraging re-
sults. In the two-class case, to distinguish documents of class
A from documents of class B we form separate models M4 and
Mp from the training documents of each class. Then, given
a test document (different from the training documents), we

compress it according to each model and calculate the gain
in per-symbol compression obtained by using M4 instead of
Mp. We assign the document to class A or B depending on
whether this difference is positive or negative, on the princi-
ple that M4 will compress documents of class A better, and
similarly for Mp. Encouraging results are obtained.

Building Positive and Negative Models

To extend to multiply-classified articles, we decide whether
a model belongs to a particular category independently of
whether it belongs to any other category. We build positive
and negative models for each category, the first from all ar-
ticles that belong to the category and the second from those
that do not. For a particular category C, call these models
MP and MN.

Given a new article A, denote its length when compressed
according to these models by L[A|Mp] and L[A|My]. The
article’s probability given the categories C and C' can be esti-
mated as:

Pr{A|C] = 27 FAIMPL ppig|@] = 2 LIAIMN]

Bayes’ formula gives the probability that a particular article
A belongs to category C":

Pr[A|C]Pr[C]
Pr[A|C]Pr[C] + Pr[A|C]Pr[C]

The prior probability Pr[C] is the proportion of articles be-
longing to that category, and the denominator is the prior
probability of article A.

Setting the Threshold

Deciding whether a new article should in fact be assigned
to category C or not presents the familiar recall/precision
tradeoff between making the decision liberally, increasing the
chance that an article is correctly identified but also increas-
ing the number of “false positives”; or conservatively, reducing
the number of false positives at the expense of increased “false
negatives.” To allow comparison of our results with others, we
maximize the average of recall and precision—a figure that is
called the “breakeven point.”

The basic strategy is to compare the predicted probability
Pr[C|A] with a predetermined threshold ¢, and declare A to
have classification C if Pr[C|A] > t. The threshold is chosen
individually, for each class, to maximize the average of recall
and precision for that class. To this end the training data is
further divided into a new training set and a “validation set,”
in the ratio 2:1. The threshold ¢ is chosen to maximize the
average of recall and precision for the category (the breakeven
point) on the validation set. Then maximum utility is made
of the information available by rebuilding Mp and My from
the full training data.

As an additional benefit, threshold selection automatically
compensates for the fact that Mp and My are based on dif-
ferent amounts of training data. In general, one expects to
achieve better compression with more data.

Results

Table 1 shows the breakeven points obtained, and compares
them with results reported for the Naive Bayes and Lin-
ear Support Vector Machine methods [4]. PPM outperforms
Naive Bayes on the six largest categories (grain is the only
exception) and is worse on the four smallest ones. It is al-
most uniformly inferior to the support vector method, money
market being the only exception.

PriC|4] =

PPM Naive Bayes LSVM
corn 54.2 65.3 90.3
corporate acquisitions 91.0 87.8 93.6
crude oil 80.7 79.5 88.9
earnings 96.3 95.9 98.0
grain 74.6 78.8 94.6
interest 60.4 64.9 7.7
money market 76.3 56.6 74.5
shipping 81.9 85.4 85.6
trade issues 65.0 63.9 75.9
wheat 64.9 69.7 91.8

Tab. 1: Recall/precision breakeven point for three text
categorization schemes

Compared to LSVM, PPM produces particularly bad re-
sults on the categories wheat and corn, which are (almost)
proper subsets of the category grain. Articles in grain sum-
marize the result of harvesting grain products—for example,
by listing the tonnage obtained for each crop—and all use very
similar terminology. Consequently the model for wheat is very
likely to assign a high score to every article in grain.

The occurrence of the word “wheat” is the only notable
difference between an article in grain that belongs to wheat and
one that does not. The presence of a single word is unlikely
to have a significant effect on overall compression, and this is
why PPM performs poorly on these categories.

Support vector machines perform internal feature selection,
and can focus on a single word if that is the only discriminating
feature of a category. In comparison, Naive Bayes performs
badly on the same categories as PPM (money market is the
only exception): like PPM, it has no mechanism for internal
feature selection.

Modifications

The results in Table 1 were obtained quickly, and we found
them encouraging. We then made many attempts to improve
them, all of which met with failure.

To force PPM to build models that are more likely to dis-
criminate successfully between similar categories, we experi-
mented with a more costly approach. Instead of building one
positive and one negative model, we built one positive and 117
negative models for each of the 118 categories. Each negative
model only used articles belonging to the corresponding cate-
gory that did not occur in the set of positive articles. During
classification, an article was assigned to a category if the pos-
itive model compressed it more than all negative models did.
Results were improved slightly for categories like wheat and
corn. However, the support vector method still performed far
better. Moreover, compared to the standard PPM method,
performance deteriorated on some other categories.

We also experimented with several modifications to the
standard procedure, none of which produced any significant
improvement over the results reported above:

e not rebuilding the models from the full training data;
e using the same number of stories for building Mp and
My (usually far more stories are available for My);

e priming the models with fresh Reuters data from out-
side the training and test sets;

e priming the models with the full training data (positive
and negative articles);

e artificially increasing the counts for the priming data
over those for the training data and vice versa;

e using only a quarter of the original training data for
validation;

e using escape method A for PPM;

e using a word model of order 0, escaping to a character
model of order 2 for unseen words.

Discussion

Compared to state-of-the-art machine learning techniques for
categorizing English text, PPM produces inferior results be-
cause it is insensitive to subtle differences between articles
that belong to a category and those that do not. We do not
believe our results are specific to PPM. If the occurrence of
a single word is what counts, any compression scheme will
likely fail to classify the article correctly. Machine learning
schemes fare better because they automatically eliminate ir-
relevant features.

Compared to word-based approaches, compression-based
methods avoid ad hoc decisions when preparing input text for
the actual learning task. Moreover, these methods transcend
the restriction to alphabetic text and apply to arbitrary files.
However, feature selection seems to be essential for some text
categorization tasks, and this is not incorporated in PPM.

IV. SEGMENTATION INTO TOKENS

Conventional text categorization is just one example of many
text mining methods that presuppose that the input is some-
how divided into lexical tokens. Although “words” delimited
by non-alphanumeric characters provide a natural tokeniza-
tion for many items in ordinary text, this assumption fails in
particular cases. Indeed, the superior performance of PPM-
based categorization for the money market category in Ta-
ble 1 is likely attributable to an unsuitable notion of “word” in
the other methods. As another example, generic tokenization
would not allow many date structures (e.g. 80Jul98, which is
used throughout the newsletters of Section II) to be parsed.
In general, any prior segmentation into tokens runs the risk of
obscuring information.

A simple special case of this scheme for compression-based
entity extraction can be used to divide text into words, based
on training data that has been segmented by hand. An ex-
cellent testbed for this research is the problem of segmenting
Chinese text, which is written without using spaces or other
word delimiters. Although Chinese readers are accustomed to
inferring the corresponding sequence of words as they read,
there is considerable ambiguity in the placement of bound-
aries which must be resolved in the process. Interpreting a
text as a sequence of words is necessary for many information
retrieval and storage tasks: for example, full-text search and
word-based compression.

Inserting spaces into text can be viewed as a hidden Markov
modeling problem. Between every pair of characters lies a
potential space. Segmentation can be achieved by training
a character-based compression model on pre-segmented text,
and using a Viterbi-style algorithm to interpolate spaces in a
way that maximizes the overall probability of the text.

For non-Chinese readers, we illustrate the success of the
space-insertion method by showing its application to English
text in Table 2, which is due to Teahan [9]. At the top is the
original text, including spaces in the proper places, then the
input to the segmentation procedure, and finally the output
of the PPM-based segmentation method.

In this experiment PPM was trained on a sample of En-
glish, and its recall and precision for space insertion were both

text the unit of New York-based Loews Corp that makes
Kent cigarettes stopped using crocidolite in its Mi-
cronite cigarette filters in 1956.
theunitofNewYork-based LoewsCorpthatmakesKentcig
arettesstoppedusingcrocidoliteinitsMicronitecigarettef
iltersin1956.

the unit of New York-based LoewsCorp that makes
Kent cigarettes stopped using croc idolite in its Mi-
cronite cigarette filters in 1956.

input

output

Tab. 2: Segmenting words in English text

99.52%. Corresponding figures for a word-based method that
does not use compression-based techniques [11] were 93.56%
and 90.03% respectively, a result which is particularly striking
because PPM had been trained on only a small fraction of the
amount of text used for the other scheme.

PPM performs well on unknown words: although Micronite
does not occur in the Brown Corpus, it is correctly segmented
in Table 2c. There are two errors. First, a space was not
inserted into LoewsCorp because the single “word” requires
only 54.3 bits to encode, whereas Loews Corp requires 55.0
bits. Second, an extra space was added to crocidolite because
that reduced the number of bits required from 58.7 to 55.3.

Existing techniques for Chinese text segmentation are ei-
ther word-based, or rely on hand-crafted segmentation rules.
In contrast, the compression-based methodology is based on
character-level models formed adaptively from training text.
Such models do not rely on a dictionary and fall back on gen-
eral properties of language statistics to process novel words.
Excellent results have been obtained with the new scheme [12].

V. ACRONYM EXTRACTION

Identifying acronyms in documents—which is certainly also
about looking for patterns in text—presents a rather different
kind of problem. Webster defines an “acronym” as

a word formed from the first (or first few) letters

of a series of words, as radar, from radio detecting

and ranging.
Acronyms are often defined by preceding or following their
first use with a textual explanation—as in Webster’s example.
Finding all acronyms, along with their definitions, in a partic-
ular technical document is a problem that has previously been
tackled using ad hoc heuristics. The information desired—
acronyms and their definitions—is relational, and this distin-
guishes it from the text mining problems discussed above.

It is not immediately obvious how compression can assist in
locating relational information such as this. Language statis-
tics certainly differ between acronyms and running text, be-
cause the former have a higher density of capital letters and
a far higher density of non-initial capital letters. However,
it seems unlikely that acronym definitions will be recognized
reliably on this basis: they will not be readily distinguished
from ordinary language by their letter statistics.

We have experimented with coding potential acronyms
with respect to the initial letters of neighboring words, and
using the compression achieved to signal the occurrence of an
acronym and its definition [13]. Our criterion is whether a can-
didate acronym could be coded more efficiently using a special
model than it is using a regular text compression scheme. A
phrase is declared to be an acronym definition if the discrep-
ancy between the number of bits required to code it using a

general-purpose compressor and the acronym model exceeds
a certain threshold.

We first pre-filter the data by identifying acronym candi-
dates: for initial work we decided to consider words in upper
case only. Then we determined two windows for each can-
didate, one containing 16 preceding words and the other 16
following words. This range covered all acronym definitions
in our test data.

Compressing the Acronyms

Candidate acronms are coded using a group of models that ex-
press the acronym in terms of the leading letters of the words
on either side. This group comprises four separate models.
The first tells whether the acronym precedes or follows its
definition. The second gives the distance from the acronym to
the first word of the definition. The third identifies a sequence
of words in the text by a set of offsets from the previous word.
The fourth gives the number of letters to be taken from each
word. Each of these models is an order-0 PPM model with a
standard escape mechanism.

After compressing the acronym candidates with respect to
their context, all legal encodings for each acronym are com-
pared and the one that compresses best is selected. For com-
parison, we compress the acronym using the text model, tak-
ing the preceding context into account. The candidate is de-
clared to be an acronym if

bits acronym model _

bits text model

for some predetermined threshold ¢. Although subtracting the
number of bits seems more easily justified than using the ratio
between them, in fact far better results were obtained using
the ratio method. We believe that the reason for this is linked
to the curious fact that, using a standard text model, longer
acronyms tend to compress into fewer bits than do shorter
ones. While short acronyms are often spelt out, long ones tend
to be pronounced as words. This affects the choice of letters:
longer acronyms more closely resemble “natural” words.

Ezperimental Results

To test these ideas, we conducted an experiment on a sizable
sample of technical reports, and calculated recall and preci-
sion for acronym identification. The operating point on the
recall /precision curve can be adjusted by varying ¢t. While
direct comparison with other acronym-extraction methods is
not possible because of the use of different text corpora, our
scheme performs well and provides a viable basis for extract-
ing acronyms and their definitions from plain text. Com-
pared to other methods, it reduces the need to come up with
heuristics for deciding when to accept a candidate acronym—
although some prior choices are made when deciding how to
code acronyms with respect to their definitions.

VI. STRUCTURE RECOGNITION

We have shown that while compression is a useful tool for
many token classification tasks, it is less impressive for doc-
ument categorization. As a discriminant, overall compression
tends to weaken as the size of individual items grows, be-
cause a single holistic measure may become less appropriate.
Some decisions depend on the occurrence or non-occurrence of
a few special words, which makes feature selection essential.
Even in token discrimination, different kinds of token may be
distinguishable only by the context in which they occur—for

example, author’s names and editor’s names no doubt enjoy
identical statistical properties, but are distinguished in bibli-
ographic references by local context.

The size of individual tokens can often be reduced by ex-
tending the techniques described above to work hierarchically.
This allows more subtle interactions to be captured. Names
are decomposable into forenames, initial, surname; email ad-
dresses into username, domain, and top-level domain; and fax
numbers contain embedded phone numbers. After analyzing
the errors made during the generic entity extraction exper-
iments of Section II, we refined the markup of the training
documents to use these decompositions. For instance:

Name <n><f>Ian</f> <i>H</i> . <s>Witten</s></n>
Email <e><u>ihw</u>@<d>cs.waikato.ac</d>.<t>nz</t></e>
Fazx <f><p>+64-7-856-2889</p> fax</f>

We use the term “soft parsing” to denote inference of what is
effectively a grammar from example strings, using exactly the
same compression methodology as before. During training,
models are built for each component of a structured item,
as well as the item itself. For example, the forename model
is trained on all forenames that appear in the training data,
while the name model is trained on patterns like forename
followed by space followed by middle initial followed by period
and space followed by surname, where each of the lower-level
items—forename, middle initial and surname—are treated by
PPM as a single “character” that identifies the kind of token
that occurs. When the test file is processed to locate tokens in
context, these new tags are inserted into it too. The algorithm
described in Section II accommodates nested tokens without
any modification at all.

Initial results are mixed. Some errors are corrected
(e.g. some names that had been confused with other token
types are now correctly marked), but other problems remain
(e.g. the fax/phone number mix-up) and a few new ones
emerge. Some are caused by the pruning strategies used; oth-
ers are due to insufficient training data. Despite inconclusive
initial results, we believe that soft parsing will prove invaluable
in situations with strong hierarchical context (e.g. references
and tables).

It is possible that the technique can be extended to the
other kinds of tasks considered above. For example, we could
mark up an acronym, with its definition. Webster’s radar
example above might look like

Acr‘onym ... of ja_series of words, as <a>radar, from
<d>radio detecting and ranging</d>.

To capture the essential feature of acronyms—that the word
being defined is built from characters in the definition—the
search algorithm needs to be extended to consider this possi-
bility.

In text categorization, important features could be high-
lighted. The word “wheat,” which distinguishes articles on
wheat from other articles in the grain category, could be
marked in the training data—or by an automatic feature se-
lection process—and the markup inferred in the test data.
Such techniques may allow compression-based generalization
to tackle problems that require feature selection.

VII. CONCLUSIONS

Text mining is a burgeoning new area that is likely to become
increasingly important in future. One approach is through the

use of hand-tailored heuristics. However, adaptive methods
offer significant advantages in construction, debugging, and
maintenance. While they suffer from the necessity to mark up
large numbers of training documents, this can be alleviated by
priming the compression models with appropriate data—Ilists
of names, addresses, etc.—gathered from external sources.

This paper has argued, through examples, that compres-
sion forms a sound unifying principle that allows many text
mining problems to be tacked adaptively. Success has already
been demonstrated on some tasks. Others, notably text cate-
gorization, seem less well-suited to the holistic approach that
compression offers. However, hierarchical decomposition can
be used to strengthen context, and perhaps even to incorpo-
rate the results of automatic feature selection.

Compression-based techniques for text mining are in their
infancy. Watch them grow.

ACKNOWLEDGMENTS

Zane Bray, John Cleary, Eibe Frank, Stuart Inglis, Malika
Mabhoui, Bill Teahan, YingYing Wen and Stuart Yeates have
all contributed greatly to the research described here.

REFERENCES

[1] Witten, I.H., Bray, Z., Mahoui, M. and Teahan, W.J. (1999)
“Text mining: a new frontier for lossless compression.” Proc
Data Compression Conference, pp. 198-207. IEEE Press, Los
Alamitos, CA.

[2] Chinchor, N.A. (1999) “Overview of MUC-7/MET-2.” Proc
Message Understanding Conference MUC-7.

[3] Cleary, J.G. and Witten, I.H. (1984) “Data compression using
adaptive coding and partial string matching.” IFEE Trans on
Communications, Vol. 32, No. 4, pp. 396—402.

[4] Dumais, S., Platt, J., Heckerman, D. and Sahami, M. (1998)
“Inductive learning algorithms and representations for text cat-
egorization.” Proc Int Conf on Info and Knowledge Manage-
ment, pp. 148-155.

[5] Frank, E., Chiu, C. and Witten, [.LH. (2000) “Text categoriza-
tion using compression models.” Proc Data Compression Con-
ference (Poster paper). IEEE Press, Los Alamitos, CA. Full
version available as Working Paper 00/2, Department of Com-
puter Science, University of Waikato.

[6] Grover, C., Matheson, C. and Mikheev, A. (1999) “TTT: Text
Tokenization Tool.” http://www.ltg.ed.ac.uk/

[7] Howard, P.G. (1993) The design and analysis of efficient lossless
data compression systems. PhD thesis, Brown University.

[8] Nardi, B.A., Miller, J.R. and Wright, D.J. (1998) “Collabora-
tive, programmable intelligent agents.” Comm ACM, Vol. 41,
No. 3, pp. 96-104.

[9] Teahan, W.J. (1997) Modelling English text. PhD thesis, Uni-
versity of Waikato, NZ.

[10] Tkach, D. (1997) Text mining technology: Turning informa-
tion into knowledge. IBM White paper.

[11] Ponte, J.M. and Croft, W.B. (1996) “Useg: A retargetable
word segmentation procedure for information retrieval.” Proc
on Document Analysis and Information Retrieval, Las Vegas,
Nevada.

[12] Teahan, W.J., Yen, Y., McNab, R. and Witten, [.H. (in press)
“A compression-based algorithm for Chinese word segmenta-
tion.” Computational Linguistics.

[13] Yeates, S., Bainbridge, D. and Witten, I.H. (2000) “Using com-
pression to identify acronyms in text.” Proc Data Compression
Conference (Poster paper). IEEE Press, Los Alamitos, CA. Full
version available as Working Paper 00/1, Department of Com-
puter Science, University of Waikato.

