Compressing the Digital Library

Timothy C. Bell*, Alistair Moffat®, and lan H. Witten®

lDepartment of Computer Science, University of Canterbury, New Zealand, tim@cosc.canterbury.ac.nz
“Department of Computer Science, University of Melbourne, Australia, alistair @cs.mu.oz.au

3Departments of Computer Science, University of Calgary, Canada, and
University of Waikato, New Zealand; ian@cpsc.ucalgary.ca

Abstract

The prospect of digital libraries presents the challenge of
storing vast amounts of information efficiently and in a
way that facilitates rapid search and retrieval. Storage
space can be reduced by appropriate compression
techniques, and searching can be enabled by constructing
a full-text index. But these two requirements are in
conflict: the need for decompression increases access
time, and the need for an index increases space
requirements. This paper resolves the conflict by
showing how (@) large bodies of text can be compressed
and indexed into less than half the space required by the
origina text aone, (b) full-text queries (Boolean or
ranked) can be answered in small fractions of a second,
and (c) documents can be decoded at the rate of
approximately one megabyte a second. Moreover, a
document database can be compressed and indexed at
the rate of several hundred megabytes an hour.

Keywords. Compression, indexing, full-text retrieval,
inverted files, query processing.

1. Introduction

Digital libraries contain many gigabytes of text, images,
and other data such as video and audio recordings. The
large size of these collections poses two problems. First,
they require considerable storage space; and second, the
simple act of accessing the library to fulfill some
infformation requirement can be very sdow. In
conventional applications these two problems are dealt
with by using data compression and indexing
respectively. Data compression reduces the amount of
disk required to store information by recoding it in a
more efficient manner. Indexing is used in information
retrieval systems so that fast access can be provided to
the documents stored, in the same way that the index of a
conventional book provides fast access to the pages in
which the main concepts of the book are mentioned. The
challenge facing implementors of digital libraries is that

these two are in tension—data compression saves space,
but at the expense of added access time; and indexing
methods provide fast access, but usualy at the expense
of considerable amounts of additional storage space.
Indeed, a complete index to a large body of text can be
larger than the text itself—after all, it might store the
location of every word in the text.

This paper shows that it is possible to make
compression and indexing work together efficiently. We
describe compression methods suited to large amounts of
text that alow both random-access decoding of
individual documents and fast execution; we show how
the index can itself be compressed so that only a small
amount of overhead space is required to store it; and we
show how the application of compression techniques
allows efficient construction of the index in the first
instance. The result is a system that can take alarge body
of text, and convert it to a compressed text and index
that together take up less than half the space occupied by
the original data. Combining the two techniques incurs
little penalty in access speed—in fact, the access speed
can even be improved, since there is less data to be read
in from slow secondary storage devices. Moreover, the
initial indexing and compression processes can be
effected on a mid-range workstation at a rate of several
hundred megabytes an hour.

The ideas described in this paper have been
implemented in a public-domain full-text retrieval
system called MG, which stands for “Managing
Gigabytes.”1 The MG system is able to index and com-
press text, and is also able to deal with bilevel images
such as scanned documents and with gray-scale images
such as scanned photographs, al in the same framework.
MG provides both fast access and efficient storage. For
example, on a test database of 100,000 newspaper
articles totaling over 250 megabytes, to locate and return
all documents containing both of the words managing
and gigabytes took MG a tenth of a second. Moreover,
the compressed text, compressed index, plus all other

1The MG system is available by anonymous ftp from
munnari . oz. au in the directory / pub/ ng.

auxiliary files, occupy less than 36% of the space
required for the unindexed source text.

A more thorough treatment of such systems, which
are capable of storing and indexing text, images, and
other data, can be found in [8]. In this paper we
concentrate on how compression can be used to decrease
the space required by a document collection and its
index. That is, we are essentially considering the full-text
retrieval situation, albeit it in the context of an integrated
system.

2. Data compression

Data compression allows secondary storage consumption
to be reduced by recoding information into a more
economical representation. By carefully processing data
that is being stored, its size can be reduced, yet the
origina data can be restored before being displayed to a
user. The normal cost of this space saving is the expense
of extra computation. However, CPU performance
continues to increase at a faster rate than disk
performance, and so it is becoming increasingly
attractive to pay this price. In some cases—such as when
datais distributed on CD-ROM—the storage savings that
arise with compression make it possible to manipulate
volumes of data that would otherwise be impossible.

Compression systems use many different strategies.
One important distinction is whether a system is lossless
or lossy. In a lossless system, the origina data is
reconstructed exactly as it was originally. This contrasts
with a lossy system, where the data is “similar” to the
original, but not necessarily identical. Lossy systems are
appropriate for data such as images and audio, where the
stored data is already an approximation to the origina
source. Lossless compression is essential for text and
similar discrete data, where even the smallest of changes
is unacceptable and may result in complete reversal of
meaning.

Several standards have been developed for
compression. To date these have primarily been in the
area of image and video compression, and often describe
lossy techniques: examples include the gray-scale JPEG
standard, the motion picture MPEG standard, and the
(lossless) JBIG binary image standard. In this paper we
focus on lossless compression methods for textual data,
an areain which there are presently no official standards.

The most popular text compression methods for
conventional applications are adaptive, which means that
they change the method of coding to suit the type of data
being compressed [8]. Such techniques make only one
pass through the data, and adaptivity is obtained by
basing the coding strategy on the text already processed
and hence known to the decoder as well as the encoder.
The main advantage of such methods is that the text need
only be processed once, and so encoding can be done as
a“filter” processin applications such as communications
channels. However, the adaptive approach is not suitable
for full-text retrieval situations, because decoding from a

specified point in afile requires that all data prior to that
point be decoded first. The adaptive compressor could be
reset at the beginning of each indexed point in the data,
but these are usually sufficiently frequent that the
compressor has little time to adapt to the text before
being reset, and compression effectiveness is poor.

Fortunately it is not so important to use adaptive
compression in this situation. The data is usualy
archival in nature, which meansthat it is relatively static,
and so a suitable coding strategy can be pre-determined
by a prior scan of the data. For this reason, semi-static
compression methods are likely to be more appropriate
than adaptive ones in information retrieval applications.
Two passes must be made over the source text, but the
expense of the extra pass is incurred only once, at
database creation time, while the benefits—fast decoding
and random access—are exploited every time the
retrieval system is accessed.

Also important to effective data compression is the
distinction between modeling and coding, an idea that
was articulated in the 1980s [5]. In a data compression
system the model provides predictions for symbolsin the
text, in the form of a probability distribution. For
example, after the characters digital libra, the model
might “predict” that the next character will be a letter r
with high probability, and that al other characters are
unlikely. The coding task involves taking this probability
and converting it into bits to represent the symbol.
Shannon’'s work [7] has established that the appropriate
number of bits to encode a symbol of probability p is
—log, p.

Huffman's algorithm is a well-known mechanism for
performing the coding task [4]. Huffman's method does
not necessarily achieve Shannon’s bound, but it has been
shown that it cannot exceed the bound by an average of
more than Pr[s;] + 0.086 bits per symbol, where Pr[s,] is
the probability of the most likely symbol to be coded [2].
The vaue of Pr[s;] will be high when the probability
distribution is skew and accurate predictions are being
made, and in this case Huffman coding can be very
inefficient. In such cases, the more recent technique of
arithmetic coding (see [8] for a description and
references) is appropriate. Arithmetic coding achieves
compression arbitrarily close to Shannon’'s bound, and is
particularly well suited for use with adaptive
compression models. Huffman’'s method is better suited
if the probability distribution does not contain any high-
probability symbols, if the model is static, and if speed is
important.

Given that good tools are available for coding, the
main question in compression is how best to model the
data being compressed. The best sort of model is one
that makes good “ predictions,” that is, one that estimates
a high probability for the symbols that actually occur. In
the next two sections we shall examine models that are
suitable for predicting the structure of abody of text, and
for predicting the entries that occur in an index.

3. Compressing the main text
Choosing a compression method for an application
invariably involves a tradeoff between the amount of
compression achieved and the speed a which
compression (or, more importantly in the present
application, decompression) is performed. In a full-text
retrieval situation, the data being compressed is
relatively static, so it is possible to construct a coding
scheme that is specific to a particular document
collection.

We have experimented with severa strategies for
compressing text in this situation, and have found that
word-based compression is particularly suitable. In a

word-based compression system, a “dictionary” is
constructed that contains al the “words’ in the

collection. A word might be defined, for example, to be
a maxima contiguous sequence of aphanumeric
characters. The text is then coded by replacing each
word in the text with a reference to its position in the
dictionary. The punctuation and white space that
separate words can aso be treated in the same way; a
dictionary of such strings or “non-words” is constructed,
and a single code used to represent all of the characters
that separate each pair of words. The compressor
alternates between the two dictionaries.

Word-based compression is not suitable as a general-
purpose data compression method because it assumes
that the input can be broken up into words. However, it
is suitable for text, and results in effective compression.
It also provides fast decoding—severa characters are
coded onto each codeword, and so only afew operations
arerequired per output byte.

Table 1 shows some of the “words’ that would be
used for word-based coding of a sample text we shall
refer to as WSJ, approximately 100,000 articles from the
Wall Street Journal totaling 266 megabytes of text. The
first column shows words parsed from the text, the
second shows their frequency, and the third shows their
estimated probability, which is simply the words
relative frequencies. In total there are 212,000 distinct
words, 5,800 distinct non-words, and about 46,000,000
tokens of each sort are actually coded to make the
compressed text.

The are several methods that might be used to code
words in this dictionary. A simple one is to use a fixed-
length number—of dog, 212,000u = 18 bits, in this
case—to identify a word. Better compression can be
obtained by basing the coding on the probability
distribution, using Huffman or arithmetic coding. In this
semi-static situation, Huffman coding is ideal because
there are no high-frequency symbols (in the example the
most frequent word, the, has a probability of just 4.42%);
and because a particularly efficient variant known as
canonical Huffman coding can be used. The fifth
column of Table 1 shows a canonical Huffman code for
the words. Like a conventional Huffman code, the
codewords for more probable symbols are shorter than
those for less probable ones. However, in the canonical
code the codewords are chosen so that when the
codewords are sorted in lexical order, they also run from
longest to shortest. This means that codes of the same
length are simply a sequence of consecutive binary
numbers, so it is not necessary to store a complete
decoding tree, only the lexicographically first codeword

Word Frequency | Estimated | Length| Codeword
probability | (bits)
the 2,024,105 4.42% 5 11111
of 1,147,721 251% 5 11110
to 1,083,451 2.37% 5 11101
a 931,603 2.03% 6 111001
and 798,442 1.74% 6 111000
in 739,764 1.62% 6 110111
s 473,111 1.03% 7 1101101
that 408,296 0.89% 7 1101100
for 401,440 0.88% 7 1101011
The 355,042 0.78% 7 1101010
is 321,292 0.70% 7 1101001
said 303,628 0.66% 7 1101000
on 248,643 0.54% 8 11001111
it 231,415 0.51% 8 11001110
Zurui 1 0.000002%| 25 | 0000000000000000000000100
zwel 1 0.000002%| 25 | 0000000000000000000000011
zygd 1 0.000002%| 25 | 0000000000000000000000010
zymurgical 1 0.000002%| 25 | 0000000000000000000000001
7z 1 0.000002%| 25 | 0000000000000000000000000

Table 1 Word-based coding example

of each length. Thus, to record the code in Table 1, the
only 7-bit code that is stored is the one for said, along
with a pointer to the position of said in the wordlist of
column 1. To caculate the code for for, we simply
observe that it comes three places before said in the
wordlist, and obtain its code by adding 3 to the code for
said. Exactly the same principle guides decoding. For
example, the code 1101100 is four greater than the first
7-bit codeword (1101000, for said), and so the
corresponding symbol must be that. This arrangement of
codewords allows fast decoding with a minimum of
decode-time memory.

Using two Huffman codes, one for the words and one
for the non-words, the 266 megabyte WSJ collection is
reduced to 73 megabytes, or just 27.5% of the original
size. On average, each word is coded into 11.1 bits, and
each non-word in 2.3 bits. These compare favorably with
the 18 and 13 bits that would be required by a fixed
binary encoding.

4. Compressing indexes

An index is used to locate documents that contain a
given term or terms specified in a query. Boolean queries
involve a combination of terms and operations such as
AND and OR that are effected by caculating the
intersection and union respectively of the sets of
documents containing each term. Alternatively, ranked
queries might be provided, which score documents
according to some similarity measure, and the set of
“most similar” documentsis returned as an answer to the
query [6].

There are severa data structures that can be used to
support Boolean queries. One of the simplest is a
“bitmap,” which is a two-dimensiona array of hits in
which each row corresponds to aterm that appearsin the
collection, and each column corresponds to one
document. An entry in the bitmap is set to true if the
corresponding term occurs in the indicated document.
Documents that contain a Boolean combination of terms
can be located by performing the corresponding bitwise
operation on rows of the bitmap.

The bitmap is an excellent tool for thinking abstractly
about the indexing process, but in practice it is usually
far too large to be stored explicitly. Most of the entriesin
abitmap are false (i.e., zero), and so methods for storing
sparse matrices can save considerable space. Two
general strategies that are suitable are referred to as
inverted files and signature files. These two strategies
are not normally regarded as compression techniques,
but do in fact perform the function of bitmap
compression. In an inverted file, each row of the bitmap
is replaced by a list of document numbers that indicate
where the 1-bits occur. In other words, it simply stores a
list of locations for each term. Signature files decrease
the storage requirements by retaining the “one bit per
column” of the bitmap, but allowing multiple terms to be
stored in any given row. The effect of the ambiguity so
caused is minimized by storing each term in several of

the rows, so that the probability of any two terms
corresponding to exactly the same set of rows is small.
The resulting structure is probabilistic, in that it may
now indicate that a term is present in a document even
when it is not, and any text retrieved must be checked for
false matches before being presented. However, if a
sufficient number of rows are used for each term, the
probability of false matches can be kept low.

Signature files are generally more efficient than
simple inverted files, in terms of both speed and storage
requirements. However, compression techniques can be
applied to inverted files to make them much smaller than
an equivalent signature file, and yet they need not be
much slower. The improved storage is obtained by
modeling the data stored in the inverted file. Moreover,
signature files are ineffective if the documents vary
widely in length, or if ranked queries must be supported.
The latter difficulty is a result of the need, when
evaluating ranked queries, to know not only whether or
not aterm appears in adocument, but also the number of
times it appears. In these cases inverted files are the
indexing method of choice.

Compressing an inverted file requires constructing a
model to predict where a particular word is likely to
occur in a text. One effective way to predict word
occurrences is to assume a simple statistical model, and
assign a probability to each of the different possible gaps
between occurrences of aword. The size of each gap that
actually occurs is coded with respect to this model. The
frequency of occurrence of a word has a significant
influence on the expected size of a gap. For example,
there will be many words that occur only once in the
entire text, for which only one position is encoded. This
position is essentialy random. At the other extreme,
common words such as the occur regularly throughout
the text, and small gap sizes can be expected. In order to
capture al of these possibilities, the model for
occurrences of words needs to be parameterized by the
frequency with which the word occurs.

The probabilities of gap sizes implied by this sort of
model are conveniently coded by representing the
sequence of actual gap sizes using a Golomb code [3].
The length of a Golomb code increases as the vaue
being encoded increases, but the exact relationship
between the value and its coded length is determined by
a parameter. The underlying model for this code is that
the words are randomly distributed in the index list, and
that the distribution of gap sizes follows a geometric
distribution. To compress an inverted file entry, the
parameter depends in turn on the frequency of the term
corresponding to the entry—the probability that a
randomly selected document contains the word in
guestion. For rare terms the parameter is selected to
favor large gaps; while frequently occurring terms use an
assignment that generates short codewords for small
gaps and relatively long codewords for the supposedly
unlikely long gaps. Golomb codes can aso be encoded
and decoded quickly, which means that little time is

Aegean R

bulldozer] 1

; I T N B
clarinet L

decommission H : : H

Figure 1 Positions of words in the WSJ collection

required to decode the inverted lists needed to answer
any query.

The above model assumes that words are equally
likely to occur anywhere in the text, which is not the
case in practice. For example, Figure 1 shows
diagrammatically the locations of four different words in
the WSJ collection. Each of the words appears in exactly
30 documents, and each appearance is indicated by a
vertical tick. Notice that the words tend to appear in
clusters, even quite generic terms such as bulldozer,
clarinet and decommission. In this case the order of the
documents in the collection is chronological, and so it is
not surprising that there are often small gaps between
articles on the same or related subjects—an item of news
istopical, and appears in severa consecutive issues, but
then drops away. Clustering can be modeled by
predicting small gaps between words once they have
been observed once, and longer gaps once the cluster
appears to have finished. A model based on this idea can
give dlightly better compression than one that does not
take account of clustering, although at the disadvantage
of requiring considerably more memory space.

When compressed, the index is small. For the
266 megabyte WSJ text a Golomb coded index requires
an average of 5.2 bits per document number and 2.0 bits
per within-document frequency, a total of just
18 megabytes, roughly 7% of the size of the input text.
Moreover, this index stores the document number and
frequency of every word and number, including common
terms such as the, and, and 1, and so permits Boolean or
ranked queries on any combination of terms extracted
from the text.

5. Creating indexes
Before the index can be compressed, it must be
constructed. In the large-scale applications we have been
considering here, generating the index is a non-trivial
task. Indeed, constructing an index for a large text using
elementary methods may take many months of computer
time—an impossible requirement, particularly if the
index isto be revised or updated frequently.

One method of index construction operates as
follows. First, the text is processed. As each document is

considered, a list of terms that appear in it is generated.
This list is written to a temporary file of <t, d, fq>
triples, indicating that term t appears in document d with
frequency fy1. Thefileis generated in increasing order of
d, and random order of t. When the input text has been
completely processed, the temporary file is sorted into
order of increasing t, and within equal values of t, of
increasing values of d. Once this has been done, the
inverted index can be generated directly by sequentially
reading the temporary file, and constructing the
compressed inverted lists. This method operates within
modest amounts of time, but has the drawback of
requiring considerable extra disk space for the temporary
file. Indeed, if conventional sorting methods are used,
two copies of the temporary file are required.
Compression can be used to reduce this requirement.
Within the temporary file the d field in each pair can
represented as a d-gap, or difference, using a fixed code
for integers such as Elias's d code [1]. Similarly,
provided that the temporary file is written as a sequence
of sorted runs, Elias's g code can be used to represent t-
gaps economically; and g is also appropriate for the fqy
values. Use of these methods allow the temporary file to
be stored in only about 30% more disk space than is
required by the final compressed inverted file. An in-
place merging algorithm is then the last phase of the
operation. This converts the temporary file into the
desired inverted file without requiring any additional
disk space a all. Hence the entire process can be
executed in only a little more disk space than is
eventually occupied by the compressed index that is
generated. Details of this scheme can be found in [8].
For the same 266 megabyte WSJ text, the index can
be constructed using this agorithm in less than
30 minutes on a mid-range workstation2 using just afew
megabytes of main memory. Compression of the text of
the collection requires a further 30 minutes. In total, it
takes about one hour to build a complete retrieval system
for this text. We have also experimented with a two
gigabyte collection, of which the WSJ database is one

23un SPARC 10 Model 512, with programs written in C.

small part; and all of the results mentioned here scale up
linearly to thislarge corpus.

6. Query processing

Despite the compression applied to both text and index,
query processing is fast. Only the required portions of
the index are decoded at each query, and this is
accomplished at a rate of about 400,000 document
numbers per second. The canonical Huffman code used
for the text decompresses at a rate of approximately one
megabyte per second. Queries usually return a few tens
or hundreds of kilobytes of text (for example, a typical
novel is only a few hundred kilobytes), and so unless a
query involves a pathological number of terms or a very
large volume of output text, response is completed
within tenths or hundredths of a second. For example, it
took just 0.1 seconds to process the query “managing
AND gigabytes’ against the WSJ collection, including
the decoding of 13,000 document numbers from the
index, and the decompression of 15 kilobytes of answer
text. Eight disk accesses were required.

Ranked queries are slower, but principally because
they usualy contain more terms than because of any
intrinsic expense. For example, to extract the top twenty
ranked documents for the query “managing gigabytes
compressing indexing documents images’ from the WSJ
collection took about one second (0.4 seconds of CPU
time) and produced 50 kilobytes of output. More than
45,000 pointers were decoded to answer this query, and
atotal of 53 disk accesses performed.

These rates are comparable with those that would be
obtainable with a system that did not use compression. In
the absence of compression, less CPU time would be
required, but overall query response time would remain
about the same because of the need for 46 times as
much data to be retrieved from the disk.

7. Conclusion

Compression is important for taming the resource-
hungry digital library. In fact, using compression it is
possible to store fully indexed data in less than half the
space required by the original text. Moreover, retrieval
speed need not be significantly worse, because
compression methods are available that require relatively
little computation, and lower volumes of data are
handled by secondary storage devices. Compression
effectively provides a means for exploiting the
increasingly powerful CPU available in modern
computers.

We have aso examined the demanding process of
creating an index, and demonstrated how compression
can be used to balance the use of resources so that the
indexing process does not require unusualy large
quantities of disk space or CPU time.

Working with very large libraries of information
requires a delicate balance between the use of primary
memory, secondary memory, and CPU power.
Compression is an important tool both for facilitating the

storage of large amounts of data, and for generating and
storing the indexes that are required to accessit.

References

[1] Elias, P. (1975) “Universa codeword sets and
representations of the integers,” |EEE Trans. on
Information Theory, 1T-21:194-203.

[2] Gadlagher, R.G. (1978) “Variations on a theme by
Huffman.” IEEE Trans. on Information Theory, IT-
24.668-674.

[3] Golomb, SW. (1966) “Run-length encodings.” IEEE
Trans. on Information Theory, 1T-12(3):399-401.

[4 Huffman, D.A. (1952) “A method for the construction
of minimum redundancy codes.” Proc. IRE,
40(9):1098-1101.

[5] Rissanen, J. and Langdon, G.G. (1981) “Universa
modeling and coding.” |IEEE Trans. on Information
Theory, IT-27:12-23.

[6] Sdton, G. and McGill, M.J. (1983) Introduction to
Modern Information Retrieval. McGraw-Hill, New
York.

[7] Shannon, C.E. and Weaver, W. (1949) The
Mathematical Theory of Communication. University of
Illinois Press, Urbana, I11.

[8] Witten, I.H., Moffat, A. and Bell, T.C. (1994) Managing
Gigabytes: Compressing and Indexing Documents and
Images. Van Nostrand Reinhold, New Y ork.

