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Abstract. We trace the tragicomic courtship between programming by demonstration and machine learning, two
fields that seem made for each other but have never quite got together. A long-term historical perspective illuminates
the twin roles of interaction and sequence learning in programming by demonstration, and reveals the parallel
growth of machine learning as a research area in its own right. A view of the present shows a few—but only a
few—intimations that these two fields are beginning to develop a meaningful relationship. The long-term prognosis
is not so much wedded bliss as assimilation—ultimately PBD and ML shall, in the words of Genesis, cleave unto
each other: and they shall be one flesh.
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The field of programming by demonstration (PBD)
was born in a workshop held at Apple Computer in
March 1992, and is effectively defined by the eighteen
computer implementations documented in the book
that resulted (Cypher, 1993). The workshop was actu-
ally on programming by example, whereas the book is
titled programming by demonstration, and this differ-
ence highlights a basic tension. Are we talking about
computer systems that are taught by giving them ex-
amples of what is to be done?—an example is a “fact
or thing illustrating a general rule,” and that seems to
imply a strong reliance on learning from the examples
that are given. Or are we talking about ones that ac-
cept a demonstration of how it should be done?—to
demonstrate means to “describe and explain by help
of specimens or experiments,” which seems to place
stress on interaction to communicate the steps that are
to be undertaken.1

Of course, we want our systems to do both. We want
them to acquire tasks from the user naturally and ef-
fortlessly. We want them to accept whatever the user
chooses to provide: examples, demonstrations, ad-
vice, hints, instructions, constraints, assertions, spec-
ifications, execution traces, even programs. We want
them to be resourceful: to employ domain knowledge
whenever it is available, to solicit new information
when appropriate, to interact with the user to clarify
his or her intentions where necessary. The problem is
not just to process each piece of information individ-
ually and operationalize it as a component of the task,
but—far more difficult—to integrate different sources
together, make sense of them, and work out when and
how to clarify them by seeking more information, or
more examples, or more direction. And, when the
task is at least partly learned, to handle the transfer of

1Definitions are from the Concise Oxford Dictionary.

control from user to machine, teacher to apprentice—
and, when problems arise, back again—smoothly, ele-
gantly, and naturally.

This takes us far beyond what is normally considered
to be “machine learning.” Fundamentally, PBD differs
from ML in that it embodies a strong motivation to get
the very most out of very small samples—it is just not
acceptable to rely on statistical averaging and build
systems that behave well only in the limit. If statistical
methods border one side of ML, then PBD lies on the
very opposite flank. PBD combats error by capitalizing
on interaction with the user, not by processing large
samples of data.

This article is about PBD and the role of machine
learning. It provides a long-term historical perspec-
tive, beginning at the dawn of time and ending far in
the future, with a brief tour of the present on the way.
It’s a personal view: I hereby apologize, and once
only, for the emphasis on the work of my students and
colleagues—it is only because that is what I know best.

1 The very beginning

It is easier for a tutor to command than to teach—John Locke, 1693

We trace the twin beginnings of PBD in interactive pro-
gramming environments and sequential learning algo-
rithms, two streams of activity that only recently began
to meet. The renaissance of “conventional” ML had
remarkably little effect on either: until recently, PBD
seems to have been more concerned with commanding
than with teaching.

Roots in interaction. PBD dates back to the early
1970s in what was then without doubt the Mecca of



highly-interactive computer systems, Xerox PARC.
David Smith, working under the supervision of Alan
Kay, who even at that time had the justly deserved
reputation as the doyen—one might almost say the
prophet—of interactive software, designed and imple-
mented a “creative programming environment” that
suggested a radical new approach to programming.
Smith’s 1975 thesis is a fascinating and literary work
that spans the “two cultures” of art and science—it
is a superlative model for a doctoral thesis. The first
part, Aspects of creative thinking, comprises a wide-
ranging discussion of thought, mental images, creativ-
ity, and computers; the second, Pygmalion, describes
an “iconic programming system” which strove to do
for the specification of procedures what graphical icons
had done for the manipulation of objects. The funda-
mental problem was seen as one of abstraction and the
issue of “learning” was not mentioned explicitly: PYG-
MALION’s emphasis was “on doing rather than telling,
... [on] descriptions in terms of the concrete which
PYGMALION turns into the abstract” (Smith, 1975).

Eventually the iconic approach to the human interface
emerged in commercial form as the Xerox STAR com-
puter of the early 1980s, the first incarnation of the
windows-icons-mouse-pointer interface paradigm that
is almost universal today (Smith et al., 1982). Al-
though Smith led the design team, PYGMALION had
been left by the wayside: STAR lacked any facility
for PBD. However, a 1981 project by Dan Halbert,
Smith’s student, added PBD to produce a prototype
called SMALLSTAR, and Halbert’s 1984 thesis, Pro-
gramming by example, developed and amplified that
work. SMALLSTAR followed the PYGMALION philoso-
phy of employing interactive techniques to allow users
to specify and manipulate programs in concrete terms.
For example, generalizations were not induced from
examples, but defined explicitly by having the user fill
out “data description” property sheets.

Roots in sequence learning. At the same time as
Smith was working on PYGMALION, John Andreae,
who was something of a thorn in the flesh of artificial
intelligence at the time, was working in New Zealand
on interactive “learning machines,” a topic that was
distinctly unfashionable in AI circles (even ten years
later it was derided by Charniak and McDermott in
their Introduction to Artificial Intelligence). I visited
Andreae in 1976 because his seminal research on what
is now called reinforcement learning related to my
just-completed thesis on networks of two-armed ban-
dit controllers. He was finishing a book, Thinking with
the teachable machine, that described PURR-PUSS, a
program that was capable of being taught rudimentary
operations such as counting and substitution, inter-
actively through an ASCII terminal. As well as being
teachable, PURR-PUSS was supposed to have a “mind of
its own” and seek new experiences of its own volition:
thus it was—intentionally!—not easy for teachers to
impose their will on the direction of its learning.

Andreae’s revolutionary book conveyed a radical new
vision of artificial intelligence, replete with breath-
taking anthropomorphic analogies, and met a pre-
dictably chilly reception from the AI community. Nev-
ertheless it spawned a good deal of research on the
identification of sequences, in other words, the infer-
ence of structural descriptions from a “behavior se-
quence” of discrete abstract tokens or “events.” The
question of inferring structure from behavior had been
addressed, and solved, in the 1950s—but only for de-
terministic sequences. That is, given a sequence pro-
duced by a deterministic finite automaton, the structure
of the automaton can be inferred (up to homomor-
phism). The drawback is the assumption of determin-
ism, which is crucial; the slightest acausality in the
sequence renders the inferred structure meaningless
(Gaines, 1976a).

A decade earlier, Mark Gold (1967), in a paper that
was later hailed as the first theoretical foundation of
ML, had modeled the notion of language acquisition in
terms of an informant who presented positive and, per-
haps, negative examples of well-formed sentences to
a learning machine. Using a simple enumerative argu-
ment, Gold showed that whereas the class of context-
free languages is learnable if the informant presents
negative examples, not even the regular languages are
learnable from positive examples alone. A former
colleague of Andreae’s, Brian Gaines, implemented
the enumeration as an “optimal causal modeler” that
produced finite-state models of non-deterministic se-
quences by generating all models with a given num-
ber of states and choosing the best 1-state model, the
best 2-state model, and so on, for the given sequence
(Gaines, 1976b).2 Clearly the procedure is exponen-
tial, but he carried it out typically to 10- or 12-state
models for particular sequences, both natural and ar-
tificial (including one that represented observations
of the grooming behavior of the house-fly). The re-
sults showed clearly and graphically the tradeoff be-
tween model complexity—the size of the model—and
goodness-of-fit—the extent to which it corresponds to
the observed data.

Enumeration is, of course, hopeless for large models.
The alternative is to restrict the context of past events
that are used for prediction. Witten (1979) investi-
gated the transformation of fixed-context models into
state models, while Andreae’s student Cleary (1980)
achieved a similar effect more simply with context-
based models whose context length was allowed to
vary up to a fixed maximum. These techniques turned
out to be remarkably successful in predicting certain
kinds of action sequence, and in the early 1980s they
were employed for PBD in a predictive calculator and a
predictive computer interface (Witten, 1981, 1982)—
the latter is still used by disabled computer users (Dar-
ragh and Witten, 1992).

2Gaines called his system ATOM for “A tom-cat,” a barbed ref-
erence to the feline PURR-PUSS.



From evaluation via compression to MDL. A
problem underlying all the early work on behavior-
sequence induction was one that is endemic to general-
purpose learning systems: for any particular problem,
a hand-crafted solution is bound to outperform any-
thing that a “learning machine” might come up with.
The virtue of learning is its generality, rather than its
performance in any particular situation. But it was—
and still is—very difficult to obtain suitable sources
of data on which to evaluate alternative methods of
sequence learning. Eventually we hit upon the idea
of evaluating sequence induction methods by apply-
ing them to the compression of discrete sequences like
text, which provided a huge source of test data—every
file becomes an interesting challenge—and a clear, un-
ambiguous performance metric. Once the technique of
arithmetic coding became known in the early 1980s,
it was a simple matter to transform a series of prob-
abilistic predictions into a bitstream from which the
original sequence could be regenerated. Surprisingly,
although people had worked for years on compression
algorithms, the variable-context method of sequence
prediction turned into a compression scheme that far
outperformed all others (Cleary and Witten, 1984)—
and still does (Bell et al., 1990; Cleary et al., 1995).

The foray into compression was stimulated solely by a
desire to evaluate sequence-induction methods quan-
titatively, and it proved very satisfying to work in an
area which, unlike PBD, has an unequivocal, cut-and-
dried performance metric. However, the linkage is
much more fundamental. During the last decade it has
emerged that compression provides a more satisfac-
tory philosophical foundation for ML than does either
Gold’s (1967) model of inference or the more recent
“probably approximately correct,” or PAC-learning,
criterion (Valiant, 1984). Both of these have proved
relatively fruitless for practical PBD, although the for-
mer, with its “in the limit” orientation, is probably
more apt than the latter, which assumes that input is
characterized by probability distributions.

According to the minimum description length principle
(MDL), of all “theories” (or “models,” or “programs”)
that “explain” (or “account for,” or “generate”) a given
set of observations, one should prefer the one that min-
imizes the sum of (a) the intrinsic complexity of the
theory and (b) the amount of information needed to
derive the original observations from it. The intrinsic
complexity of a theory is, essentially, its size: in sci-
ence one prefers small, parsimonious, theories. The
information needed to derive the original observations
is, essentially, the poorness-of-fit: we prefer accurate
theories that account for as much as possible of the data
presented. The tradeoff was noted above in reference
to Gaines’s enumerative inducer; the MDL twist is to
simply add the two measures and use the sum as an
overall figure of merit.

Machine learning. The renaissance of “conven-

tional” machine learning within AI in the late 1970s
and early 1980s had little effect on the development
of PBD. Winston’s landmark 1970 thesis on learn-
ing structural descriptions like that of an “arch” was
clearly concerned with toy problems that could not
possibly give any realistic help to a potential PBD
user. Mitchell’s formalization of the version space
technique in his 1978 thesis seemed more promising—
and, much later, its use was actually investigated in a
PBD system (Mitrović, 1990). However, it did not
seem to be applicable to problems on a realistic scale.
In fact, although the version space method eliminates
any dependence of what is learned on the order of
presentation of examples, the time taken to assimilate
each example is highly dependent on presentation or-
der, and unfortunate ordering can effectively cause the
internal search to blow up. Statistical techniques like
Quinlan’s ID3 (now C4) appeared in the early 1980s
(Quinlan, 1983). These involved heuristic subdivision
rather than search. However, they relied on far larger
numbers of examples than was reasonable to assume
in the PBD context.

The raw material for PBD is sequential—examples are
sequences and inferences are programs—whereas ML
invariably addressednon-sequential learning problems
(and still does). The few exceptions, such as SPARC/E
(Dietterich and Michalski, 1986) and TDAG (Laird and
Saul, 1994), proved to be less than helpful to practical
PBD. Just one ML project had a discernable influ-
ence on PBD. Andreae’s son Peter performed doctoral
research at MIT under Winston’s direction, creating
a bridge between the cultures of sequence learning
and conventional AI. The result was NODDY, a robot
programming system that acquired procedures from
examples using an approach called “justified general-
ization” (Andreae, 1984) that eventually became the
precursor of METAMOUSE (Maulsby 1988) and ETAR

(Heise, 1989).

What about teaching? Right from the beginning,
John Andreae’s early work emphasized teaching just
as much as learning. But it is hard to draw a firm
line between teaching and programming. Here are
some examples that illustrate the problem. First, it
is normally viewed as the teacher’s job to choose ex-
amples in an order that is helpful to the learner, and
presentation order certainly has an effect on learnabil-
ity. But this can be taken to extremes: Gold (1967)
showed that descriptions unlearnable from positive and
negative examples can be learned if the presentation
sequence is sufficiently regular; moreover, positive ex-
amples alone suffice—yet the constraints on presenta-
tion order are so rigid that one would hardly call this
“teaching.” Second, Gaines (1976b) showed that the
task of sorting can be “taught” by demonstrating the
steps in an example sorting sequence to a learning au-
tomaton that is trivially simple to implement; yet the
steps must be spelled out in such detail that no natu-
ral “teacher” would be capable of producing a correct



demonstration. Third, Biermann (1972) demonstrated
a “trainable Turing machine” in which the user sup-
plied examples of the machine’s input, output, and
head movements during a computation, and the system
would algorithmically create its own finite-state con-
troller that handled a class of “similar” computations.
Training this machine was tantamount to specifying a
Turing machine for the desired task, something that
most teachers would surely cavil at. Finally, PURR-
PUSS itself can in principle be taught anything, for An-
dreae’s student MacDonald (1984) demonstrated that it
is possible to teach it to behave like a Turing machine,
and thereafter “teach” it an arbitrary program.

The real distinction between teaching and program-
ming is that a teacher does not use a formal model of
the learner, whereas a programmer normally expects
to know exactly how his instructions are going to be
interpreted. In other words, a teacher adopts the in-
tentional stance while a programmer adopts the design
stance (Dennett, 1987).

The notion of a sympathetic teacher has been formal-
ized in terms of “felicity conditions,” which are con-
straints satisfied by a teacher that make learning better
than from random examples (Van Lehn, 1983)—such
as that examples should be classified correctly, the
teacher should show all work, not use examples that
contain misleading coincidences, introduce just one
new feature per lesson, etc. While these conditions
provide some design guidelines for PBD, they do not
go very far. More recently, MacDonald (1991) de-
fined a measure of instructability that expresses the
instructional complexity of a task as a function of its
inherent task complexity. The instructional complex-
ity measures the difficulty of instruction, including any
prerequisite training that is required. The more slowly
it increases with task complexity, the more instructable
the system.

2 The present state of the art

It is better to have wisdom without learning, than to have learning

without wisdom—Charles Colton, 1825

We pause here to take stock of the present state of the
art. As before, we commence with the twin strands of
interaction and sequence learning, and then move on
to the application of machine learning algorithms, the
problem of feature selection, and the state of interactive
learning in the ML field itself. We look at the question
of embodying domain knowledge, and the state of the
art in instructability. Finally we comment on imple-
mentation and explain why building operational PBD
systems is hard.

Interaction. The highly-interactive nature of PBD
that was pioneered at Xerox PARC in the 1970s has
matured into an enduring emphasis on graphical inter-
action. Most PBD projects place great stress on graph-

ics. As Cypher’s (1993) book illustrates, the concept
of PBD has come to embrace graphical user interface
development environments as well as end-user appli-
cations, a tradition that began with Myers’s (1988)
PERIDOT. And of the end-user applications, the ma-
jority involve example-based graphical editing, pro-
gramming through geometry, graphical histories, and
so on. Potter (1993) even uses the pixels on the screen
as a lowest-common-denominator graphical commu-
nication medium for all tasks, whether graphical or
not.

Graphical interaction forms an appealing basis for PBD
because it is direct, immediate, and supports reference
to component parts by pointing. An even more tangible
form of PBD is the “leading” that is used to program
some industrial robots, for example, paint-sprayers, in
which the trainer moves the robot’s limbs through the
desired motions and the robot repeats these motions
later.

Sequence learning. A program is executed in a se-
quential series of steps,and part of PBD is the inference
of program structure from observation of the steps.
Grammatical inference, the construction of grammars
from example sentences, is a standard—and difficult—
problem in language acquisition. However, in PBD we
have to deal with a single, continuous, unsegmented,
behavior sequence rather than a set of sentences, and
this renders standard grammatical inference techniques
inapplicable. In fact, until recently the only practical
way to infer a sequence’s structure was to use one of
the methods mentioned earlier: limited-context pre-
diction on the one hand and the enumerative technique
on the other.

However, two new developments are underway
(Nevill-Manning, forthcoming). First, a method for
inducing a deterministic context-free grammar for a
sequence has been devised that is able to combine ter-
minal symbols to produce higher-level symbols in a
recursive manner, leading to a potentially complex,
compact structural description of the sequence. Sec-
ond, it has been shown that, given a sequence, a push-
down finite-state automaton can be derived that is ca-
pable of recognizing branching and looping, as well
as recursive and non-recursive procedure calls. The
first technique provides a powerful way of compress-
ing strings generated from formal grammars, and has
been applied in computer graphics to natural-looking
structures generated from recursive L-systems; it also
forms the basis of a competitive text compression tech-
nique. However, it has the drawback that the slightest
variation between two subsequences causes the algo-
rithm to ignore their similarities. The second scheme,
on the other hand, excels at recognizing branching,
looping, and recursive structures, but is particularly
sensitive to the level of abstraction of the symbols that
it takes as input. A combination of the methods ap-
pears to be quite powerful, and is capable of finding



structures which each method on its own overlooks.

Applying ML algorithms. Most current PBD
projects do not employ techniques from machine learn-
ing, and those that do use ad hoc,domain-specific, gen-
eralization methods. A notable exception is Maulsby’s
CIMA (Maulsby, 1994), which bases its learning com-
ponent on the PRISM algorithm (Cendrowska, 1987).
PRISM constructs conjunctive rules, building up rule
after rule until all the examples are covered. When a
rule is being constructed, negative examples are ex-
cluded by conjoining new terms, one by one, until
none are covered. The terms are chosen using a simple
coverage heuristic—this differs from Quinlan’s better-
known C4, which uses an information-based metric to
choose the best feature to add (Quinlan, 1993). How-
ever, PRISM is a relatively unsophisticated ML algo-
rithm. Unlike most other similarity-based learning
methods, it does not cope with “noise”: noisy exam-
ples will cause uncontrolled overfitting to occur, result-
ing in a ruleset that is excessively detailed and tailored
to the specific examples that have been seen. (There
are extensions of PRISM that avoid this problem.)

In many PBD situations, the problem of noise is less
prominent than it is for general ML. Noise sometimes
stems from genuine non-determinism in the data—and
this is a particular issue in PBD for robot programming.
In other contexts, it may be caused by an inadequate set
of attributes. Another source is teacher error: teachers
must be able to recover from mistakes easily. Rather
than treating noise as inherent and coping with it using
probabilistic techniques, it may be worth seeking, and
correcting, inadequacies in the description language
used. Although a model that makes non-deterministic
predictions is fine for some purposes (such as com-
pression), it is less useful for the kind of prediction
that a PBD system must undertake. Sometimes it is
more productive to strive to eliminate noise by adding
new attributes than to put up with it as a necessary evil.

The traditional ML technique for dealing with inade-
quate description languages is constructive induction,
where new attributes are created as functions of old
ones. The aim is to transform the original representa-
tion into a space in which the examples exhibit more
regularity. Typical operators include quantizing nu-
merical attributes, conjoining nominal ones, tallying
how many of a given set of boolean attributes are true,
and comparing (=, �, etc) different attributes.

Even without constructing new attributes, there is in-
variably a host of features that may be relevant to any
particular decision. This leads to a problem of feature
selection or, to use the accepted ML term, “bias”: how
can one determine a set of likely candidate features
and expand that set when it proves inadequate—that is,
when non-determinism appears? Although there have
been some studies of how to detect changes of bias,
these do not seem to have led to useful general results

or techniques. However, in PBD, with its emphasis
on interactive learning, the selection of an appropriate
bias becomes an ideal point at which to involve the
teacher.

Interactive ML techniques. Little research in ML
has addressed interactive learning, which is surpris-
ing because learning systems have a great deal to gain
by showing more initiative—in particular, by actively
posing test examples rather than passively waiting for
more examples to appear. An early system, MAR-
VIN, learns concepts by asking questions (Sammut and
Banerji, 1986). The teacher begins by presenting an
example of the desired concept, whereupon Marvin
begins to ask questions to eliminate possible hypothe-
ses. While learning a concept, it modifies its current
hypothesis by generalization and specialization trans-
forms until it converges on the target concept. While
this is an appealing model, in practice MARVIN asks
a huge number of apparently extremely trivial ques-
tions that would certainly not be tolerated by any se-
rious user. Moreover, it presupposes a hierarchically-
structured network of concepts and breaks down in
more general partially-ordered domains. This can be
ameliorated by more sophisticated techniques, and the
number of unproductive or inappropriate questions can
be reduced (Krawchuk and Witten, 1988).

De Raedt’s CLINT is a more recent interactive learning
system which speeds up the questioning process by
permitting the teacher to classify features as relevant
or irrelevant (de Raedt, 1991). Since it has no means
of deciding which features to ask about, it invites the
teacher to examine the current concept description and
classify features it has proposed.

CLINT gives the teacher formal control over the
learner’s bias. CIMA provides a more informal mecha-
nism by allowing teachers to give linguistic “hints” that
are interpreted in terms of changes of bias (Maulsby,
1994). These hints are not processed by a compre-
hensive natural-language understanding system; to do
so would be an interesting and potentially productive
exercise. Instead, the user’s utterances are merely
scanned for keywords that appear in a lexicon along
with the relevant feature that each keyword relates to.
The appearance of a keyword in a hint is interpreted
as a request to augment the learner’s bias by including
the related feature. This nicely circumvents the chief
difficulty of natural language processing, that it is easy
to completely misinterpret an utterance (for example,
by ignoring a word like “not” that inverts its mean-
ing). The inclusion of a feature in the learner’s bias
does not imply any commitment as to how it will be
used: that will be determined by the examples which
are processed by the learner. For example, if a fea-
ture is used in a negative sense, in that the required
condition obtains only when it is not present, that will
be determined quite naturally by the induction compo-
nent from the examples given. It does not matter if the



keyword spotter fails to notice the sense in which the
term is used—perhaps, for example, the word “absent”
is missing from its lexicon. The use of verbal hints to
focus learning from examples is a powerful general
idea that is likely to see widespread applicability in the
future.

Embodying domain knowledge. Wherever possi-
ble, PBD must take advantage of domain knowledge to
increase the leverage of the examples supplied, and to
ensure that the concepts learned are operational in the
sense that they can be used to make specific, useable,
predictions. But domain knowledge is unlikely to take
the form of a “deep” theory—say a scientific or mathe-
matical one—of the kind used in classical explanation-
based learning. Rather, it will be expressed as some
sort of classification scheme that supports appropriate
actions and inferences. We call such schemes “mi-
crotheories”: they tend to be heuristic in nature and
are difficult to defend in any way other than the extent
to which they expedite learning.

One example is the theory of constraints that underlies
the METAMOUSE system, a demonstrational interface
for graphical editing tasks within a drawing program
(Maulsby, 1988). Let us examine this more closely, not
to extol its virtues as a constraint classification scheme,
for it is ad hoc and hard to justify from any theoreti-
cal perspective, but rather to expose the nature of this
microtheory from which METAMOUSE gains much of
its power. In METAMOUSE, the term constraint is used
to mean “a spatial relation of special interest.” For
instance, if a horizontal construction line is moved
upward to coincide with the bottom of a box on the
screen, a variety of touch relations are observed: the
line touches the box’s lower-left corner (line-to-point),
perhaps its center coincides with the lower-right cor-
ner (point-on-point), and maybe the line intersects an-
other line elsewhere on the screen (line-to-line). Each
of these corresponds to a constraint, and is assigned
a level of significance. A determining constraint is
one that leaves no free variables (e.g. point-on-point);
weak-1 and weak-2 constraints leave one (e.g. line-to-
point) and two (e.g. line-to-line) degrees of freedom
respectively; while trivial constraints are ones that hold
necessarily. For METAMOUSE, constraint-solving is the
process by which predicted program steps are realized
as actions with specific values for object variables, and
so constraint classification forms the key to generaliz-
ing actions.

The taxonomy of actions in CIMA is another microthe-
ory (Maulsby and Witten, 1995). There are four types:
classify actions, which (merely) discriminate between
positive and negative examples; find actions, for which
the descriptions must delimit objects and the direction
of search; generate actions, which specify all features
of a new object; and modify actions, which not only
discriminate between positive and negative, but also
determine the property’s new value. Again, the point

is that this microtheory forms the basis of operational-
ity testing in CIMA.

Instructability. The most ambitious vision of an
instructable system that appears to be implementable
with today’s technology is Maulsby’s TURVY, and its
partial incarnation in the CIMA learning algorithm.
This is based on a simple model—or microtheory—
of instruction that postulates three entities that can be
communicated between teacher and system: examples,
rules and features. Each of these can be classified by
the teacher as positive or negative. Examples are clas-
sified with respect to some concept: this is the usual
“membership query” instruction supported by super-
vised learners. Rules are judged to be valid or not, an
operation that is widely adopted in systems that learn
from an informant.

Features are more unusual, for they affect the learner’s
bias rather than judging a particular example or
rule. Formally, an attribute (e.g. color) or value
(e.g. color(red)) is classified as relevant or irrelevant to
some subset of examples. A complete classify-feature
instruction would specify a particular attribute value,
the concept and disjunct (current rule), and whether
it is relevant or irrelevant. But the system is capable
of interpreting ambiguous, incomplete “hints.” A hint
may map to several classify-feature instructions, and
it need not define all the arguments. The user may
suggest either a feature type or a specific value, and
may refer to a rule, a set of examples, or a particular
example.

Hints may be verbal or gestural, the latter involving
pointing at objects to indicate whether they are rele-
vant. As explained earlier, verbal hints are interpreted
by simple keyword-spotting.

Implementation. In our experience, the imple-
mentation of a highly reactive system that employs
search-based AI techniques and works robustly with
casual users is a very demanding undertaking. For
example, METAMOUSE was originally constructed in
Lisp in the form of an experimental prototype, then
rewritten in C++ and Motif. Reimplementation proved
to be a far more difficult undertaking than originally
anticipated. The combination of interactive graph-
ics, constraint manipulation, and inductive inference
made METAMOUSE an intricate and delicate program
to work with. We observed with regret that our test
users encountered many new bugs in the system, which
supposedly had been thoroughly exercised.

METAMOUSE’s tool-based metaphor intentionally en-
courages users to behave creatively by discovering
novel ways to teach and novel constructions to “ex-
plain” aspects of what is taught. The system applies
inferential methods to make, and execute, generaliza-
tions about the behavior. The searching that is in-
volved means that when unanticipated situations arise



they often lead to crashes. Constructing and debug-
ging systems of this nature is intrinsically difficult.
The conclusion of the METAMOUSE experience was
that simulated systems should be tested extensively
before a full implementation is attempted; this philos-
ophy has been followed in TURVY and related projects
(Maulsby, 1994).

Recent trends in software technology, such as Ap-
pleEvents and Microsoft’s WordBasic, permit in-
creased program access to the internal operations of
application programs using scripting and recording
techniques. There is no question that METAMOUSE

would be far easier to implement today if it were based
on an existing graphics editor that was AppleEvent-
aware. Nonetheless, many of the problems we en-
countered were attributable to the amalgamation of
AI-style searching with creative interactive operation,
and these would remain even with the new technology.

3 And the future : : :

Experience is the only teacher—Emerson, 1845

Eventually, machine learning will disappear—not in
the sense of being wiped out, or forgotten, but in the
sense of becoming invisible, not identifiable as a “dis-
cipline.” Techniques of ML will be absorbed into
application areas, just as techniques of AI—list pro-
cessing from the 60s, searching from the early 70s,
rule-based programming from the late 70s, object-
orientation from the early 80s—have become absorbed
into mainstream computer science. Already, some ML
is disappearing into database mining; rule induction
from examples has become commonplace; and ML
toolkits are emphasizing integrated environments for
data exploration rather than individual techniques.

Let me speculate (yes, self-indulgently) about four ar-
eas of future concern to PBD.

Communication. PBD will go multimodal. Dif-
ferent modes of expression—verbal, visual, gestu-
ral or deictic, even tactile—will help to widen the
channel of communication through which computers
are instructed. Already there are PBD systems that
use these modes (including tactile communication for
robot “leading,” e.g. Heise, 1989). Research in com-
bining modes will burgeon.

More distantly, PBD researchers will look at theories of
conversation, such as Austin’s view of language as ac-
tion, Searle’s speech act theory, and Grice’s conversa-
tional postulates, to help model communication. They
will rediscover plan inference from AI and implement
agents that infer their user’s plans. They will begin to
wonder whether agents are conscious—or should be.

Instructability. Far richer models of interaction
will be developed. Microtheories of instruction, such

as CIMA’s, will be extended to deal with a wider variety
of information exchanged between user and system,
and a more comprehensive account of how ambiguous
“hints” relating to this information can be interpreted
and acted on.

New models of interaction will classify different types
of question, such as ones designed to debug concepts,
ones that challenge the teacher’s accuracy, and ones
that test a hypothesis that the learner has formed. Even
theoretical ML has considered different query types—
not just membership but also equivalence, existen-
tial, subset, superset, disjointness, exhaustiveness—
but these do not seem particularly germane to PBD.

PBD researchers will address issues such as when sys-
tems should ask questions, how questions should be
formulated, how the most appropriate question can be
chosen. They will ponder the automation of pedagogy.

Interactive software engineering. One class of
ML applications is to the automated production of
software; from similarity-based induction of rules for
expert systems, through inductive generation of logic
programs, to the derivation of operational models
(“skills”) from deep models (“understanding”) using
explanation-based learning.

If ML strives to automate the production of software,
PBD goes beyond by attempting to automate the in-
teractive production of software—and far beyond by
employing, as teachers, end-users with no program-
ming knowledge. This will be seen as one solution to
the problem of custom software—too many applica-
tions needed and not enough specialists to write them.

The question of bugs in programs generated by demon-
stration will arise. While academics contemplate is-
sues of reliability of artificial agents, perhaps using
theoretical models of trust (Luhmann, 1979), end-users
will simply cope with bugs on a pragmatic basis, just
as secretaries cope with bugs in word-processors at
present. Of course, damage-control mechanisms will
be put in place to limit the effect of bugs in PBD-
generated software.

PBD systems will perform automatic sanity checks on
the programs they generate,and these will become ever
more sophisticated and comprehensive as the effec-
tive bandwidth between user and system increases—as
they come to understand each other better. Eventually,
interactive proof techniques for software quality assur-
ance will be integrated with interactive programming
environments, so that as a program is generated by
demonstration, it is accompanied by a proof of cor-
rectness.

Theoretical foundations. The MDL principle will
emerge as the underlying theoretical foundation of
PBD. This is because, unlike statistical (e.g. t-tests)
and probabilistic (e.g. PAC) measures, it is applica-



ble even when the number of examples is very small.
However, MDL tacitly assumes that the effect of the
particular language in which the theory is couched can
be eliminated by compressing all information by an en-
tropy coder before it is measured—providing links to
Kolmogorov complexity on the one hand and Bayesian
inference on the other. Unfortunately, this tactic works
only in the limit for large theories. For small theories,
the language of expression constitutes an unavoidable
biasing factor and care must be taken to ensure that the
language is appropriate.

MDL applies to situations where a theory is generated
from the examples prior to measuring its complexity
and goodness-of-fit. This “off-line” orientation does
not reflect for the on-line, continually adaptive, reali-
ties of PBD. Adaptive forms of MDL will be devised
to overcome this deficiency. Eventually, the dynamic,
adaptive, realm will become the norm for theoretical
development learning, and theories that address static
snapshots will seem anachronistic.

4 When will they ever learn?

A little learning is a dangerous thing—Alexander Pope, 1711

A teacher is one who enables learning: by creating a
suitable environment, by demonstrating, by directing
attention, by supplying motivation, by inspiring. ML
is in danger of becoming bogged down in an insipid
kind of learning. We train our ML systems like we train
chickens, or plants, by accustomization: endless drill
and practice. Teaching, in contrast, is interactive and
relies on creative interplay between the participants.
PBD is about interaction through multiple channels of
communication, about showing and leading, language,
looking and listening. And a little learning.
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