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Abstract

The 1R procedure for machine learning is a very
simple one that proves surprisingly effective on the
standard datasets commonly used for evaluation.
This paper describes the method and discusses two
areas that can be improved: the way that intervals are
formed when discretizing continuously-valued
attributes, and the way that missing values are
treated. Then we show how the algorithm can be
extended to avoid a problem endemic to most
practical machine learning algorithms—their
frequent dismissal of an attribute as irrelevant when
in fact it is highly relevant when combined with
other attributes.

1 Introduction

In a contentious paper demonstrating the in-
adequacies of datasets used to benchmark machine
learning algorithms, Robert Holte of the University
of Ottawa described a very simple learning
algorithm, which he called 1R, that competes
favourably with state-of-the-art techniques in the
field [Holte, 1993]. Holte did not promote the use of
1R as a rival mainstream learning technique; rather,
he used it to show that most of the datasets that
researchers were using to test their algorithms did
not embody very complex rules.

Holte went on to debate the question of whether or
not real-world datasets contain complex
relationships. Citing some documentary evidence
that they do not, he concluded with a salutary appeal
to researchers to use a “simplicity first”
methodology in machine learning. We have adopted
this philosophy in our own work and have been able
to demonstrate the efficacy of 1R as a filter to select
relevant subsets of attributes prior to learning
[Holmes and Nevill-Manning, 1995].

Given Holte’s motivation for developing 1R, it is
not surprising that some of the details of the
algorithm have not been fully explored, namely
quantization of continuously-valued attributes and
the handling of missing values. Since we now put
1R to regular use and have extended its application
to attribute selection, we were keen to tidy up these
details.

In this paper we present our improvements to the
basic algorithm. We also extend it to find rules from
combinations of attributes—this was mentioned in
Holte’s paper, but not implemented. The sections
that follow describe the original implementation, the
enhancements we have made to it, our extension to

avoid greedy selection, and some preliminary
experimental results that show that the changes are
indeed beneficial.

2 The 1R Algorithm

Like other empirical learning methods, 1R takes as
input a set of examples, each with several attributes
and a class. The aim is to infer a rule that predicts
the class given the values of the attributes. The 1R
algorithm chooses the most informative single
attribute and bases the rule on this attribute alone.
Full details can be found in Holte’s paper, but the
basic idea is:

For each attribute a, form a rule as follows:
For each value v from the domain of a,

Select the set of instances where a has value v.
Let c be the most frequent class in that set.
Add the following clause to the rule for a:
   if a has value v then the class is c

Calculate the classification accuracy of this rule.
Use the rule with the highest classification accuracy.

The algorithm assumes that the attributes are
discrete. If not, then they must be discretized, and
Holte presents a technique for this (see Section 2.2).
Missing values are handled in the algorithm by
treating them as a separate value in the enumeration
of an attribute (see Section 2.4).

2.1 A Worked Example

Table 1 shows the golf data [Quinlan, 1994], a
small illustrative dataset that uses weather
information to decide whether or not to play golf.
The dataset has two nominal attributes, outlook

outlook temp. hum. windy class

sunny 85 85 false Don’t Play
sunny 80 90 true Don’t Play

overcast 83 78 false Play
rain 70 96 false Play
rain 68 80 false Play
rain 65 70 true Don’t Play

overcast 64 65 true Play
sunny 72 95 false Don’t Play
sunny 69 70 false Play
rain 75 80 false Play

sunny 75 70 true Play
overcast 72 90 true Play
overcast 81 75 false Play

rain 71 80 true Don’t Play

Table 1: The golf dataset



(with values sunny, overcast and rain), and windy
(with values true and false), and two continuous-
valued ones, temperature and humidity. In order to
demonstrate the basic workings of the algorithm, we
consider only the nominal attributes.

The frequencies of each class for each value of the
nominal attributes are shown in Table 2. The rules
derived from these Tables, and their accuracies, are
shown in Table 3. For each attribute and value, the
class chosen is the one that occurs most frequently
in that combination—for example, when the
outlook attribute is sunny, the class chosen is Don’t
Play because, as Table 2 shows, that occurs three
times whereas the Play class occurs only twice.
Where the highest frequencies are equal, a random
choice is made. For example, in the windy rule of
Table 3, the if true then Play choice would be just
as acceptable as the if true then Don’t Play choice
that is shown: from these examples it seems that the
windy attribute being true has no significance in
deciding whether or not to play golf.

2.2 Quantization

Any method for turning a range of values into
disjoint intervals must take care to avoid creating
large numbers of rules with many small intervals.
This is known as the problem of “overfitting,”
because such rules are overly specific to the data set
and do not generalize well. Holte achieves this by
requiring all intervals (except the rightmost) to
contain more than a predefined number of examples
in the same class. Empirical evidence led him to a
value of six for datasets with large numbers of
instances and three for smaller datasets (with less
than about 50 instances) [Holte et al, 1989].

As an example, the temperature attribute of the golf
dataset gives the following value/classification pairs:

64 65 68 69 70 71 72 72 75 75 80 81 83 85
P D P P P D P D P P D P P D

Holte’s technique would form an interval of class P
stretching from 64 to 71, one of class P from 71 to
83, and another of class D including just 85. The
two leftmost intervals would then be merged, as
they predict the same class. The accuracy of this
quantization is 10/14 (there are four
misclassifications in the leftmost interval).

2.3 New Approach

Our algorithm for splitting a continuous range of
these pairs into discrete intervals is as follows:

1. Sort the tuples by attribute value.
2. Form intervals by placing a split point between

every pair of different values.
3. Repeat

a. remove split points between intervals that
predict the same class,

b. examine the decrease in accuracy which
would result from removing each split point,

c. remove the least costly split point (in the
event of a tie, choose one at random);

until there are no more split points.
4. Choose the best split point on the accuracy vs

number of splits curve.

This is how we would proceed on the temperature
data.

64 65 68 69 70 71 72 72 75 75 80 81 83 85
P D P P P D P D P P D P P D

Removing the split points between intervals that
predict the same class gives

64 65 68 69 70 71 72 72 75 75 80 81 83 85
P D P P P D P D P P D P P D

Each of the splits separates intervals of different
classes, and removing any of them decreases the
overall accuracy of the quantisation. For example,
removing the split-point between 65 and 68 creates a
new interval from 65 to 70, whose predominant
class is Play. The Don’t Play tuple is now
misclassified as Play, resulting in a reduction in
accuracy of one example, or 7%. This turns out to
be the least costly split point to remove (although
there are others that involve the same cost).

64 65 68 69 70 71 72 72 75 75 80 81 83 85
P D P P P D P D P P D P P D

The split point between 64 and 65 can now be
removed without further loss of accuracy.

64 65 68 69 70 71 72 72 75 75 80 81 83 85
P D P P P D P D P P D P P D

The algorithm continues to remove split points and
record the resulting accuracy until none are left. The
outcome of the exercise can be summarized in a

outlook Play Don’t Play

overcast 4 0
sunny 2 3
rain 3 2

windy Play Don’t Play

true 3 3
false 6 2

Table 2: Frequencies of values in nominal
attributes

outlook if overcast then Play (4/4)
else if sunny then Don’t Play (3/5)
else if rain then Play (3/5)

Accuracy = 10/14 (71.4%)

windy if true then Don’t Play (3/6)
else if false then Play (6/8)

Accuracy = 9/14 (64.3%)

Table 3: Rules derived from Table 2



table charting the tradeoff as split points are
removed, as shown in Table 4.

Plotting the number of intervals against the
resulting accuracy shows the effect of the algorithm
as it progresses. We seek the “knee” of this curve—
the optimal tradeoff between overfitting the data and
obtaining good accuracy. This can be obtained by
finding the maximum value of the second derivative
of the curve (once the axes have been converted to
comparable units). The calculations involved are
beyond the scope of this paper. However, we
demonstrate the process with an example.

The golf data has insufficient complexity to define
an interesting knee point on the tradeoff curve.
Consider instead a widely-used machine learning
dataset that has nine continuous attributes (the so-
called “glass” dataset G2).

It is clear from Figure 1 that attributes Rl and Ca
exhibit points on their tradeoff curves where
dramatic changes take place. The curve for attribute
Na is more problematic. There is no useful
maximum for this curve. Our hypothesis is that
attributes having this characteristic curve are
irrelevant ones—their values are randomly scattered
across the real line, and they make no contribution
to classification accuracy. If this hypothesis is true,
it provides a further piece of information that 1R can
use when determining the relevance of attributes.

2.4 Missing Values

Missing values are treated by Holte’s system as a
separate value that an attribute may assume. This
implies that whether or not an attribute is missing
constitutes information that is useful for prediction.
In some circumstances this is plausible, but it is a
risky assumption across all datasets. When using 1R
as a filter, it can be particularly misleading to
choose attributes with large numbers of missing
values that seem to make highly accurate
predictions. Consider, for example, this rule formed
from the protime attribute by 1R from one of
Holte’s datasets (HE):

if protime is missing then live (53/67)
else if protime < 36 then die (8/12)
else if protime ≥ 36 then live (66/76)

There are 155 instances of which approximately 1/3

are missing. This attribute is ranked fourth in
accuracy (of 19) by 1R, but with so many missing
values it is difficult to conclude that it is really
relevant.

2.5 New Approach

Our approach to missing values is well demonstrated
in the example above. We assume that the fact that
an attribute value is missing implies that it contains
no information. Accordingly, when data is missing
we predict the default class—the most commonly
occurring class overall.

In the majority of cases that Holte examined this
new approach arrives at the same result as his
original method, because for these datasets the class
predicted by the missing values is indeed the default
class. Although our more conservative approach
often arrives at the same result, it is more
satisfactory when 1R is used for automatic attribute
selection.

2.6 Avoiding Greedy Decisions

Most machine learning schemes operate greedily, by
considering attributes individually and choosing the
best one at each point. This process does not
guarantee to find the best decision tree or rule set
overall, but is employed because it is
computationally feasible.

John et al. (1994) have shown that considering
attributes individually when building decision trees
can result in larger and less accurate trees than if
attributes are considered in combination. They give
an example where four attributes predict the class
perfectly when taken together, but where C4.5
prefers attributes that were generated randomly.

Because 1R is extremely efficient in its evaluation
of attributes, it can be used to identify promising
attribute combinations. This process, which we call
2R,  produces new attributes by concatenating pairs
of attributes, then runs 1R on this new dataset. The
best 2-rule formed by this process indicates the best
pair of attributes in the dataset.

For example, in the golf dataset, one new attribute
would result from the concatenation of outlook and

splits accuracy

7 13
6 12
5 12
4 11
3 10
2 10
1 9
0 9

Table 4: Tradeoff between splits and accuracy
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Figure 1: Tradeoff curves for three attributes from G2



windy. The values of this new attribute would be
sunny-false, sunny-true, overcast-false, overcast-true,
rain-false and rain-true. These new attributes gain
accuracy partly as a result of the greater number of
unique values that they contain, so comparisons
with the individual attributes are meaningless.
However comparison with other derived attributes is
informative.

The best of the resulting 2-rules does not always
include the attribute which produces the best 1-rule.
When it does not, the 2-rule contains a useful pair of
attributes which would have been ignored by greedy
schemes like C4.5.

Some problems may require three or more attributes
to be combined before the combination shows its
worth, as in John et al.’s example. Our
concatenation program can be applied several times,
to yield 4-rules, 8-rules and so on. Using 4R, we are
able to detect the pattern in the example that John et
al. provide.

3 Conclusion

In an earlier paper [Holmes and Nevill-Manning,
1995], we demonstrated the efficacy of 1R as an
attribute subset selection algorithm. However, we
were not satisfied with two issues that arose: the
quantization of continuous-valued attributes, and the
handling of missing values.

In this paper we have addressed these issues by
making changes to the original 1R algorithm. We
have not proved conclusively that these changes are
better, but initial experiments show considerable
promise.

The treatment of missing values is something of a
philosophical difference in approach. In practice, the
effect of the two approaches is quite similar. For the
quantization problem it should be possible to show
improvements, at least experimentally, over the
original. In point of fact, experimental evidence
already exists to show that the original method is
not ideal [Dougherty, Kohavi and Mahsami, 1995].

Our quantization method relies on finding maxima
of the second derivative of the tradeoff curves. It is
not clear that this can be reliably determined given
that “random” curves are common in most real-world
datasets. We will be performing further studies
which will aim to try to detect the knee points
reliably.

Finally, we presented an extension to 1R which
helps to avoid the problem of making greedy
decisions early in attribute selection. The
complexity of the 1R algorithm is O(n) for 1-rules
(n attributes) and O(n2) for 1-rule pairs. This could
prohibit its use as a practical tool. Our current
implementation represents something of a brute-
force approach, and we intend to spend time in the
future developing a more efficient algorithm.
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