
Cima: an interactive concept learning
system for end-user applications

David Maulsby

Section on Medical Informatics
Stanford University
Room MSOB x215

Stanford, CA 94305-5479 USA

tel. +01 (415) 725–1672
fax. +01 (415) 725–7944

maulsby@smi.stanford.edu

Ian H. Witten

Department of Computer Science
University of Waikato

Private Bag 3105
Hamilton, New Zealand

tel. +64 (7) 838–4246
fax. +64 (7) 838–4155
ihw@cs.waikato.ac.nz

Running head Interactive concept learning

Contact author Ian H. Witten
Department of Computer Science
University of Waikato
Private Bag 3105
Hamilton, New Zealand

tel. +64 (7) 838–4246
fax. +64 (7) 838–4155
ihw@cs.waikato.ac.nz

Abstract

Personalizable software agents will learn new tasks from their users. In many cases the

most appropriate way for users to teach is to demonstrate examples. Learning complex

concepts from examples alone is hard, but agents can exploit other forms of instruction

that users might give, ranging from yes/no responses to ambiguous, incomplete hints.

Agents can also exploit background knowledge customized for applications such as

drawing, word processing and form-filling.

The Cima system learns generalized rules for classifying, generating, and modifying data,

given examples, hints, and background knowledge. It copes with the ambiguity of user

instructions by combining evidence from these sources. A dynamic bias manager

generates candidate features (attribute values, functions or relations) from which the

learning algorithm selects relevant ones and forms appropriate rules. When tested on

dialogues observed in a prior user study on a simulated interface agent, the system

achieved 95% of the learning efficiency observed in that study.

1 Introduction

A truly personalizable software agent is one that learns new tasks from the user. For the

interaction to be comfortable and reliable, the agent must facilitate rich communication with

both user and task environment. Its learning mechanism should minimize the number of

examples needed—in particular negative examples, which users perceive as time-wasting

errors. To take advantage of users’ knowledge and keep them in control, the learner could

accept additional instructions: partial specifications or “hints.” It could also exploit

application-specific domain knowledge. Moreover, it should learn not merely how to

distinguish positive from negative examples, but to describe those aspects of data relevant to

the actions it is taught. Finally, since the set of potentially relevant features is enormous,

even in simple situations, the learner must be able to select and change its focus of attention.

The user might direct the bias by suggesting relevant features of the data. In turn, the agent

should assess the user’s hints and select among alternative interpretations by ranking them

according to their plausibility and statistical utility.

This paper describes Cima (pronounced Chee-ma), an interactive learning algorithm for

modeling the data selected and modified by an agent as it performs a task. Part of a

programming-by-demonstration system, which learns tasks by watching the user perform

them, Cima is invoked when actions are matched, to find a common description of their

“operands.” The algorithm is based on a standard DNF concept learner, Prism

(Cendrowska, 1987). Prism finds a set of rules covering all and only positive examples.

Taking a set of classified examples as input, it forms rules by adding “features” (attribute-

value predicates) until the rule covers only positive examples. In contrast, Cima takes

examples, task knowledge and instructions as input, and adds features to a rule until it meets

Maulsby and Witten 2

stated utility and instructional criteria. Utility criteria ensure that a rule includes features

required for a given type of action (classify, find, generate or modify data). Instructional

criteria ensure that a rule includes features that the user suggests and avoids ones that the

user rejects. To select features, Cima augments Prism’s probabilistic coverage measure with

a set of “justification” heuristics, including beliefs based on user hints or prior task

knowledge.

The feasibility of utilizing ambiguous hints was established in a “Wizard of Oz” user study

in which a researcher simulated an instructible agent called Turvy (Maulsby et al., 1993).

The data gathered in this study influenced the choice and weighting of heuristics. It also

affords an opportunity to assess Cima’s performance on real user interactions even before

the system is ready for field testing.

2 Data descriptions and utility criteria

To model tasks, an agent needs to learn about data, actions, and when to act. Data

descriptions (Halbert, 1993) specify criteria for selecting objects, and the results of actions.

For instance, suppose the user wants an agent to store email messages from Pattie Maes in

the folder “Mail from pattie,” as shown at the top of Figure 1. The data description sender’s

id begins “pattie” tells it which messages to select—those from Pattie, regardless of her

current workstation. The data description folder named “Mail from <first word of sender’s

id>” tells it where to put them.

Conventional machine learning algorithms learn to classify examples. But agents do things

with data, and to be useful, descriptions may require features in addition to those needed for

classification. This is one reason why classification learning methods are rarely used in

interface agents. Cima embodies a model for testing whether a description determines the

necessary action parameters, as well as correctly classifying examples (c.f. the

“operationality” tests used in the pioneering Eager system for programming by

demonstration; Cypher, 1993b). Figure 1 illustrates four types of action: classify (sort) data;

find data; generate new data; and modify properties. Cima ensures that each rule meets the

utility criteria for the given type of action, preferring features that contribute most toward

satisfying them.

Classify actions have a single utility criterion: to discriminate between positive and negative

examples. Features with the most discriminating power are therefore strongly preferred.

This is the criterion tested by Prism and nearly all other learning algorithms.

Find adds a second criterion: the description must delimit objects, and in some domains state

the direction of search. Thus a text search pattern specifies where the string begins and

ends, and whether to scan forward or backward. Features that describe more parts or

constraints are preferred. For instance, the pattern follows the string “fax ” is incomplete;

Maulsby and Witten 3

Cima adds matches Number–Number (or, if it has the appropriate concept, is a

phoneNumber) to specify where the string ends. It prefers these over precedes a blank

because they specify both endpoints of the text.

Generate adds a third criterion: the description should specify all features of a new object. If

generating a graphic, the description must specify size, shape, color, etc.; for text, it must

specify the actual string. Though user input is a valid feature value, the system strongly

prefers value “generators”—constants, such as “toDo”, or functions, such as

Next(DayName).

Modify is a special case of Generate, requiring the description to discriminate between

positive and negative examples, and to determine (as far as possible) the property’s new

value. Again, deterministic or strongly constraining values are preferred. The graphics

example in Figure 1 shows a conjunction of features determining a property value: two

relations of the form touch(Circle.center, Line) together determine the circle’s new location.

By itself, each one removes a degree of freedom on the circle’s center. The utility criteria for

set-2D-object-part-location state that a location has two potential degrees of freedom (x,y).

Features that remove both degrees of freedom, e.g. touch(Circle.center, Line.midpoint), are

most strongly preferred, and after them, features that remove one degree of freedom. Cima

continues adding touch(Circle.center, Line) features until zero degrees remain. If the user

rejects an example in which the circle touches two solid lines, Cima adds a third feature—

that one of the lines is dashed—to meet the classification criterion.

3 Interacting with the user

An interactive learner elicits instructions from the user, processes them, and provides

feedback. The feedback should help the user understand the learner’s state well enough to

formulate appropriate further instructions. Although elicitation and feedback are vital to the

success of interactive agents, they lie beyond the scope of this paper (see Maulsby, 1994).

Here we focus on the instructions that the learner can interpret, and show how they are

processed.

Instruction types

Cima supports three types of instruction:

classifyExample (Example, Class, Concept)

classifyRule (Rule, Class, Concept)

classifyFeature (Feature, Class, Concept, Subset)

In practice, users omit or underspecify some of the arguments to these instructions. The first

instruction classifies an example as positive or negative with respect to some concept: this is

the usual instruction given to inductive learning programs. The user implicitly classifies

Maulsby and Witten 4

example data by selecting or inputting it while demonstrating a task.

The second states whether a given rule is valid: it has been studied in systems that learn

from an informant (Angluin, 1988). Cima interprets one form of this instruction—namely,

when the user classifies the rule as correct or incorrect through a menu command. If

incorrect, the rule must contain incorrect or irrelevant features, and so Cima asks the user

for classifyFeature instructions to guide it in generating a new rule.

The third instruction, classifyFeature, is more unusual. Formally, an attribute (e.g. color) or

value (e.g. color(red)) is classified as relevant or irrelevant to some subset of examples—or,

equivalently, some rule in the concept description. Henceforth we call this rule the

“disjunct” to which the classifyFeature instruction applies. An instruction given by the user

may suggest either a feature type or a specific value, and it may include ambiguous language

that suggests several types or values. Cima handles ambiguous, incomplete, informal

instructions, which we call “hints,” by generating multiple interpretations, that is, multiple

classifyFeature instructions. Although Cima can assign confidence scores to interpretations

and thus rank them, it relies more on using multiple sources of information to decide which

interpretation is best (see Section 5).

Interpreting hints

Hints may be verbal or gestural (pointing at objects to indicate whether they are relevant).

For example, in the sort mail task at the top of Figure 1, the user might point at the substring

pattie in the From field and say “Look at this.” Cima generates the following interpretations

(assuming that this particular example is labeled eg03):

classifyFeature (Begins(SenderID, “pattie”), relevant, “sort mail”, eg03)

classifyFeature (Begins(SenderID, LowercaseWord), relevant, “sort mail”, eg03)

If the user says “Always look at this,” the disjunct specifier is allExamples rather than eg03.

Note however that being relevant to eg03 does not imply being irrelevant to other examples;

rather, the instruction biases the learning system to use these features when describing a

subset of examples that includes eg03. Cima generates these initial interpretations by

applying domain knowledge to the data involved in the user’s action. For verbal hints, it

extracts key phrases and searches a thesaurus for corresponding attributes and values,

generating one interpretation for each meaning. For pointing gestures, as in this example, it

finds features relating the selected data to the target example, and generates both specific and

generalized values. In this example, Begins(SenderID, Lowercase-Word) is obviously

irrelevant to the task. Cima relies on the learning algorithm to choose the best interpretation

based on other criteria, such as statistical fit to examples.

ClassifyFeature instructions can emanate from another agent or from domain knowledge.

Maulsby and Witten 5

Cima records the instruction’s source and uses credibility ratings to select among conflicting

suggestions. As a matter of courtesy, the user’s suggestions are given priority, and the

system always tries to use features that the user suggests and avoid ones that she rejects,

though it may advise her that this causes the description to be inconsistent or excessively

complex.

Related work

Some other work on machine learning addresses the use of classifyFeature instructions.

Clint-Cia (de Raedt and Bruynooghe, 1992), which builds Horn-clause descriptions of

classification concepts, can incorporate feature values (that is, predicates) suggested by the

user as relevant to the current example. It displays the conjunction of feature predicates it

has chosen to form a rule, and invites the user to classify them. Thus it processes

instructions of the form

classifyFeature (<predicate>, relevant, <current concept>, <current example>).

Julien and Fenves’s (1992) “interactive inductive learning system” (IILS) processes several

forms of classifyFeature instructions. In terms of the IILS user interface metaphor, the user

sets “constraints” on attributes in the current bias (that is, the set of available attributes),

which classify some or all values of a given attribute as relevant, irrelevant, or

unclassified—in the last case the learning algorithm itself decides whether to use it. The

system also provides a crude method of specifying the disjunct, since the instruction

indicates whether the constraint applies to all, some, or the remaining, examples. In terms of

our notation, IILS accepts instructions of the form

classifyFeature (<attribute> | <attribute-value>, relevant | irrelevant | unclassified, <current

concept>, some | all | remaining).

In relating our research to the machine learning literature, two points stand out. First,

previous systems handle only peculiar forms of classifyFeature. Second, they assume that

the instruction specifies the attribute or attribute value without ambiguity. They do not

handle “hints” of the sort we encountered in our user study and present in the scenarios

below, where the learning algorithm must decide which attribute or value is intended.

4 Example scenarios

Suppose that the user has a text file of addresses and is creating an agent to retrieve and dial

phone numbers. She wants to teach the agent to strip the local area code (617). Sample data

appears in part i of Figure 2: the positive examples (local numbers) are shown in boldface

type. The scenarios that follow illustrate teaching the concept “local phone number” by

examples (part ii of the Figure) and by using hints along with some domain knowledge

(parts iii, iv, and v). We assume that Cima has not yet been taught the concept of phone

Maulsby and Witten 6

number. (The “◊” symbol is used throughout to represent the space character.)

Learning from examples

To give the first example, the user selects 243–6166 with the mouse and picks I want this

from a popup menu. Cima records the example and its context, and proposes the rule (a) in

Figure 2.ii. When given the second example, 220–7299, Cima generalizes the rule to (b). It

predicts the third example, and then the fourth, 255–6191. Because this is preceded by a

nonlocal area code, the user rejects it by selecting Not this one from the menu. At present

Cima is focusing only on the pattern of the selected text: since no generalization covers all

three positive examples yet excludes the negative, it forms three special-case rules, shown in

(c). Because it had to create new special-case rules, Cima shifts bias and examines the

neighboring text for distinguishing features. As a result, it finds the single general rule

shown in (d). This predicts the remaining positive examples, except for an anomalous one,

339–8184, that lacks an area code. When the user says I want this, Cima forms the

disjunctive ruleset (e). To maximize the similarity between rules, it adopts a generalized

pattern for this final phone number—even though it is the only example of the new disjunct.

Suggestions from the user

Now consider the same task taught by examples and hints. Realizing that the distinguishing

feature of a local phone number is its area code, the user selects the text “(617)” and chooses

Look at this from the popup menu when giving the first example. This causes Cima to

examine the user’s selection and infer that this text pattern should precede examples of the

concept. Thus it forms the rule shown in line (a) of Figure 2.iii. After the second positive

example, Cima generalizes the phone number, as shown in (b). This predicts the remaining

examples (other than the anomalous one).

Rather than point at “(617)”, the user could have given a verbal (typed or spoken) hint such

as “it follows my area code” while selecting the first example. The phrase “it follows”

corresponds to text before and after the example, with preference to the former; “area code”

is unrecognized. Using built-in knowledge, Cima selects as salient feature values the

parenthesis before the example and the blank space after it. A second verbal hint, “any

numbers OK,” given while pointing at the phone number, causes Cima to generalize the

example, focusing on tokens of type Number and ignoring other properties such as string

value and length. It forms the rule shown in line (a) of Figure 2.iv. After the negative

example it specializes the text FOLLOWS feature, obtaining the rule in line (b).

A programmer could specify the concept in greater detail by classifying features as follows:

classifyFeature (Token_Sequence (Target, [Number–Number]), relevant, “local phone”,

allExamples)

classifyFeature (Ends (BeforeTarget, “(617)”), relevant, “local phone”, allExamples)

Maulsby and Witten 7

The specification is incomplete, but Cima will add the requisite features when given

examples. After the first positive example, it forms the rule shown in entry (a) of Figure

2.v; it has added the Search direction feature required for utility when searching for data but

omitted by the programmer. To cover the anomalous positive example, Cima forms a

second rule, using the Token_Sequence suggested by the programmer and an alternative

value of the suggested Ends(BeforeTarget) feature, as shown in entry (b) of the Figure.

These scenarios illustrate some important behaviors of the Cima learning system:

• adding and focusing on features suggested by the user;

• focusing on features suggested by background knowledge;

• using knowledge and statistics to choose the most justified interpretation of a hint;

• shifting bias to find simpler descriptions.

5 System overview

Cima is implemented in the Common Lisp Object System (CLOS). Figure 3 illustrates its

components (except the interface to applications). The discourse manager processes

instructions, decides when to update the concept or shift bias, and generates feedback to the

user. The dynamic bias manager loads the current set of features, matches and generalizes

their values on new examples, and updates beliefs about their relevance based on user hints

or domain knowledge. The DNF learning algorithm forms rules by selecting among features

proposed by the bias manager, evaluating them on heuristics also supplied by the bias

manager.

Knowledge sources

Cima uses three sources of built-in knowledge. Discourse knowledge defines the types and

forms of instructions users may give, as well as the forms of feedback and elicitation the

system can generate. Rules state the context in which feedback and elicitation are used—for

instance, if a concept describes the alignment of graphics, the agent draws a guideline to

illustrate. Elicitation knowledge includes rules for deciding whether to shift bias or ask the

user for a hint when the current bias appears inadequate. Although several such rules have

been discussed in the machine learning literature (Haussler, 1988) and implemented in

Cima, much more research remains to be done in this area.

Bias/focus knowledge comprises the heuristics for ranking the relevance of features, and the

methods for interpreting user hints. General knowledge about the domains of text, numbers

and graphics is combined with knowledge customized for an application. As explained in

Section 2, utility criteria associated with each type of action prescribe the features and

restrictions on feature values required for a concept to be operational. To interpret hints, the

bias manager uses a thesaurus to map phrases into defined attributes and values. Finally, to

select features when forming rules, the learning algorithm uses “justification” heuristics,

Maulsby and Witten 8

testing the rules’ statistical fit to examples, satisfaction of utility criteria, salience based on

domain knowledge, and (most important) beliefs based on user hints.

Feature knowledge defines the types and values of features, and their generalization

hierarchies and operators. When adding a new type of feature, application programmers

define a class and methods for matching two feature values and finding their minimal

common generalization. The programmer may also define three optional methods. The first

generalizes a feature value based on domain knowledge: for instance, automatically deriving

Number–Number from 243–6166. The second finds a generalization that mismatches some

other value: Cima uses this to specialize a feature when given negative examples. The third

computes a default salience score for a given feature value. For instance, the salience

method for text gives a high score to short contextual features containing delimiters, such as

text FOLLOWS)◊, which scores higher than text FOLLOWS Word◊Word◊Word◊.

Processing instructions

Pseudocode for Cima’s instruction handlers appears in Figure 4. The handler for

classifyExample instructions gets the observable and computed features of the new example

and then updates the concept description. The handler for classifyFeature first generates

interpretations of the feature specification and then calls the magnifyBias routine, which

adds features suggested by the interpretations to the set of features available for describing

the concept. The classifyFeature handler then marks the features as relevant or irrelevant to

the given example or subset, and updates the concept description. The handler for

classifyRule either marks the rule as accepted by the user, or asks the user to indicate why

the rule is incorrect, by classifying some its features as irrelevant. The current classifyRule

handler does not attempt to guess which features are wrong, nor does it deal with

classifications of “too general” or “too specific.”

Figure 4 also describes the routines that support the instruction handlers. The

computeFeatures routine extracts the features of an example and then updates the set of

feature values available for describing the concept by calling magnifyBias. Features may be

directly observable properties of the example, or computed relations between its properties

and those of previous examples. A new example may introduce new types of feature, in

particular new relations. For instance, suppose we have a sequence of numbers, 2, 4, 8,

By the third example, it is interesting to consider the relation value(current) =

2×value(previous). The bias knowledge passed to computeFeatures includes feature

detectors that check for such interesting relationships. The magnifyBias routine fires these

detectors, adds any new features discovered, and then tests or computes their values on all

positive and negative examples. Note that some features, such as the relation noted above,

may be interesting only if they apply only to positive examples, or only to negative ones,

Maulsby and Witten 9

and to examples in sequence. The feature detectors can enforce such conditions.

The updateConceptDescription method is called from classifyExample and classifyFeature.

It invokes the learning algorithm (described in the next section) to compute a new set of

rules that describe the concept. Sometimes the new ruleset covers some negative examples,

or grows much more complex—perhaps because the learning algorithm has formed new

special-case rules. Either of these is symptomatic of an inadequate feature repertoire. To

remedy this, updateConceptDescription calls the magnifyBias routine, which adds features

to the current repertoire in accordance with pre-defined, application-specific rules for

widening the learning system’s focus of attention.

Cima is a dynamically biased learning system in two respects: it can focus attention by

classifying features as relevant or irrelevant before computing a concept description; and it

can broaden its search by enlarging the feature set. Both of these operations can be driven

by instructions from the user or from the agent’s own background knowledge. The next

section explains how Cima searches for a concept within a given feature set.

6 Learning algorithm

Cima’s learning algorithm seeks a DNF ruleset that meets all the utility and instructional

criteria, and minimizes the number of rules and features per rule. It uses a greedy

subdivision strategy pioneered in ID3 (Quinlan, 1986) and adapted for rule-learning in

Prism (Cendrowska, 1987), in which rules are progressively specialized by adding the

feature that appears most “useful” or “justified” according to a heuristic, until the rules

satisfy utility criteria (such as correct classification). Figure 5 summarizes Cima’s methods

for creating a ruleset, forming a single rule, and selecting the next most justified feature.

The most noteworthy aspects of the algorithm are that it tests the candidate rule on multiple

utility and instructional criteria, and that it selects features according to several heuristics,

including beliefs based on user hints. Because the rules it creates meet action-specific utility

criteria wherever possible, the algorithm can be used in a variety of applications beyond

classification. By considering only rules that contain all features suggested by the user, the

algorithm ensures that the learning agent “obeys” the user. To generate an alternative

description by “independent thought,” the system can set the instructional criteria to nil. The

use of several feature selection heuristics allows both suggestions from the user and

background knowledge to be exploited, yet their merit is assessed on other criteria, such as

how well they distinguish positive and negative examples.

Selecting the features

Perhaps the most important distinction among greedy DNF learning algorithms is the

measure that they evaluate to select the next term with which to specialize a rule. ID3 uses an

information-based measure, the “information gain” of an attribute with respect to the current

Maulsby and Witten 10

subset of examples. Induct (Gaines, 1989) uses a probabilistic measure, Pr[Class | Feature],

and then prunes terms from rules on the basis of the probability that the rule would be

bettered by a randomly-chosen one. Prism does not prune terms and only generates “exact”

rules that perform perfectly on the training set. It uses the same probabilistic measure as

Induct, but breaks ties according to the number of examples covered. Cima extends this

approach by treating the feature preference heuristics as a parameter and allowing any

number of them.

Figure 6 lists the heuristics used by Cima, in order of importance. The first is suggested

relevance, in which a feature’s score depends on whether the user (or an agent) has

classified it as relevant or irrelevant, and also reflects the credibility of the source. Figure 7

shows the range and interpretation of scores. A score of 0 indicates that no suggestion has

been made. When the user positively affirms a feature as relevant or irrelevant, perhaps by

selecting it from a property sheet, it scores 1 (User affirms) or –1 (User repudiates). If the

system has inferred that the feature is relevant from a pointing hint, the score is about 0.75

(User suggests).

A hint may refer to an entire collection of features (e.g. “text before selection”), and there

may be several competing interpretations. Thus many feature values may score equally on

suggested relevance. Filtering the winners through other heuristics amounts to gathering

multiple sources of evidence for disambiguating the suggestion.

The second heuristic measures the ability of features to predict the current partitioning of

positive and negative examples. Prism’s measure, Pr[Class | Feature], tends to overfit the

example set, because it prefers features that cover only positive examples regardless of how

few they cover. Cima uses category utility, adapted from the Cobweb clustering algorithm

(Fisher, 1987) and defined as Pr[Class | Feature] × Pr[Feature | Class]. For example, in

Figure 8 feature A covers two positive and no negative examples, B covers four of each,

and C covers three positives and one negative: C scores highest.

The third heuristic is utility for action, which prefers features that contribute most toward

achieving the utility criteria specified for the current action. If the action is to classify

examples, then the utility metric is category utility (already tested). If it is to find data, the

heuristic prefers features that specify the most delimiters or search parameters. For actions

that generate data, it prefers features that deterministically specify object attributes. For

actions that modify object properties, it prefers features that determine or most strongly

constrain a property’s new value.

The fourth heuristic, used in other rule, dictates that features found relevant to one disjunct

are likely to be relevant to another. Particular values are preferred over attributes, so that if

color(red) is used in some rule but color(blue) is not, color(red) is preferred (assuming that

Maulsby and Witten 11

both have equal category utility in the current subset). But if color(red) is not among the

candidate features, the heuristic still prefers any value of color over other attributes such as

size and shape.

The fifth and sixth heuristics rank features on application-defined salience measures. The

seventh heuristic, generality or specificity, prefers either more general or more specific

values of features, according to the current bias. In the unlikely event that several candidate

features remain, Cima finally chooses one arbitrarily.

Machine learning theorists concerned with refining the statistical or informational metric

used for feature selection may view the use of multiple heuristics with suspicion. We point

out that programming by demonstration presents special demands and opportunities.

Application developers and end-users offer a rich variety of knowledge that lacks theoretical

rigor and may be expressed ambiguously. In many applications, users expect the system to

achieve correct performance after very few examples, and they tolerate only “reasonable”

errors (Maulsby et al., 1993). Exploiting domain knowledge through multiple heuristics

reduces sample complexity and increases the justifiability of statistical inference.

7 Evaluation

Cima is designed to interact with users and exploit customized domain knowledge, hence it

is not easy to evaluate its performance. Testing it on the large public datasets used in

machine learning research would not exercise its most important capabilities, nor predict its

interactions with real users. On the other hand, we have yet to implement the robust user

interface needed for an effective user study. Our initial evaluation therefore utilizes data

gathered in the Turvy user study mentioned in Section 1. Cima was run on transcripts of

users’ input to Turvy—the examples and hints they gave in the course of teaching Turvy

about syntactic structures in a bibliography.

Experimental design

Cima was taught eight textual search patterns from five tasks in the Turvy user study. The

concepts are named with a letter identifying the task and a number, as follows: (A1)

underlined text, (B1) start and (B2) end of paper title, (C1) primary author’s surname, (C2)

publication date, (D1) all surnames, and (F1) colons and semicolons to be cut or (F2)

replaced with periods. Part i of Figure 9 shows some of the bibliographic data (there were

nineteen entries in total), while part ii presents some of the data descriptions that Cima

learned.

Cima was tested on four user traces from the Turvy experiment, and on learning from

examples alone. Three of the traces were chosen at random from the seven available; the

fourth was chosen because it contained hints fraught with errors.

In evaluating Cima the aim is not to replicate all of Turvy’s behavior, since Cima is only one

Maulsby and Witten 12

component of a task learning agent. But since users accepted Turvy, meeting or exceeding

Turvy’s concept learning performance is Cima’s primary design objective. The experimental

conditions biased results both for and against Cima: where possible, more heavily against it.

Preparing the input for Cima required a manual step—transcribing users’ speech to text and

segmenting the utterances—but this gave Cima no special advantage since Turvy understood

speech perfectly. Turvy could disjoin attribute values or rules; Cima, only rules. This

favored Turvy, which always chose the appropriate tactic. When Cima predicted a different

negative example than Turvy, the researcher would classify it correctly, since Turvy’s users

correctly classified all examples.

Cima was put at a disadvantage by its interpretation of hints. Although both Cima’s and

Turvy’s vocabularies were restricted to terms describing syntactic structures and relations,

Turvy understood phrases, such as “Look for quotes before italic text.” Cima, however,

merely spotted keywords—“quotes”, “before”, “italic”, “text”. Thus Cima generated more,

and more ambiguous, interpretations than Turvy: in this case it would focus on quotes

before italic text, but also on quotes or italics before the example, if those happened to be

present. Cima also used a simplistic rule for filling in the Subset argument in classifyFeature

instructions: if a hint is given prior to any examples, or includes the keywords “any,”

“every” or “all,” then it applies to allExamples, otherwise it applies to the most recent

example. Some users gave hints before demonstrating any example. In this case, Turvy

“cleverly” associated hints with the appropriate examples when they appeared. Cima,

however, interpreted them as applying to all examples: thus whatever features it might

suggest were deemed relevant to any example in which they appeared. Since keyword

spotting inevitably led Cima to propose feature types as well as values, it was certain to find

some interpretation that would apply to any example. In consequence, Cima tended to form

overly complex, specialized rules whenever hints were given prior to any examples.

Preliminary results

Learning system performance is often measured by the number of positive and negative

examples required to achieve some level of predictive accuracy (as in the PAC learning

model, Valiant, 1984). For programming-by-demonstration systems and interface agents,

predictive performance in the course of learning is more relevant. We used a predictive

utility score defined as Pr[Predicted | +] × Pr[+ | Predicted]; that is, the proportion of

positive examples the learner predicted, times the proportion of predicted examples that were

positive. Analogous to the category utility measure used in the learning algorithm, it

balances breadth of coverage (Pr[Predicted | +]) against accuracy (Pr[+ | Predicted]). Scores

are normalized relative to Turvy’s average: thus a score equal to Turvy’s becomes 1.0.

Figure 10 shows Cima’s score on the eight concepts. The graph on the left depicts the range

Maulsby and Witten 13

of performance on all user traces; that on the right compares learning from examples only

with learning from examples and hints. Overall, Cima averages 95% of Turvy’s score; 94%

when learning from examples alone, and 96% when given hints. Variability between tasks

is partly attributable to the relatively small number of examples of each concept. Cima’s

domain knowledge and automatic generalization enabled efficient learning from examples

alone, requiring on average 1 positive and 0.4 negative examples per disjunct. But as the

graphs show, performance on some tasks varied widely due to the quality of hints and

Cima’s interpretation of them.

Although the evaluation is only preliminary because the protocols employed were also used

as inspirational examples during system design, we conclude that Cima performs well

enough to warrant further development, and that the user interface should be designed to

ensure that the user refers to an example when giving verbal hints.

8 Conclusion

Cima is a concept learner for agents that acquire task knowledge by recording end-users’

input to computer applications. It supports task learning by forming generalizations of

individual actions and data. It comprises one half of the agent’s learning system; the other

half induces the sequential structure of tasks. We envisage an architecture with three main

components: the learning system; a discourse manager, which handles instructions from and

feedback to the user; and a connection to applications, which records events and generates

actions.

In addition to Cima, we have already implemented an algorithm, called ActionStreams,

which forms a hierarchical description of a task from an unsegmented stream of example

actions, and have tested it in the context of programming by demonstration (Maulsby, in

press). Integrating this algorithm with Cima requires a negotiation between the two, to

decide whether actions should be generalized by Cima so that they can be matched by

ActionStreams. This negotiation is non-trivial, since simplifying the description of a

program by matching actions provides a justification for generalizing, but finding a plausible

generalization likewise provides a justification for matching. Thus, both Cima and

ActionStreams may influence one another’s decision to match and generalize. We have also

implemented preliminary versions of the discourse manager and the connection to

applications. When all components have been integrated, we will conduct further testing on

new user dialogs and tasks.

Programming by demonstration offers new opportunities and challenges for research on

machine learning. When an agent learns directly from the user, it must utilize multiple

sources of information—including interaction with the user. In our research, the machine

learning goal of minimizing example complexity is taken to an extreme, and the criteria for

learning include action-specific operational utility as well as correct classification. This paper

Maulsby and Witten 14

has presented an interaction model comprising three types of instruction, classifyExample,

classifyRule, and classifyFeature, and a novel methodology for interpreting ambiguous and

incomplete hints in terms of classifyFeature instructions. The model has been implemented

in the Cima learning algorithm and has been shown to perform well on dialogs collected

from human interaction with a simulated interface agent. The work demonstrates that

keeping the user in the loop makes it possible for machine learning to enhance human-

computer interaction.

References

Angluin, D. 1988. Queries and concept learning. J. Machine Learning (2), pp. 319–342.

Cendrowska, J. 1987. PRISM: an algorithm for inducing modular rules. Int. J Man-

Machine Studies, 27(4), pp. 349–370.

Cypher, A. (ed.) 1993a. Watch what I do: programming by demonstration. MIT Press.

Cambridge MA.

Cypher, A. 1993b. Eager: programming repetitive tasks by demonstration. In Watch what I

do: programming by demonstration, pp. 205–217. MIT Press. Cambridge, MA.

de Raedt, L., and Bruynooghe, M. 1992. Interactive concept-learning and constructive

induction by analogy. J. Machine Learning (8), pp. 107–150.

Fisher, D. 1987. Knowledge acquisition via conceptual clustering. J. Machine Learning (2),

pp. 139–172.

Gaines, B.R. 1989. An ounce of knowledge is worth a ton of data: quantitative studies of

the trade-off between expertise and data based on statistically well-founded empirical

induction. In Proc. ML’89, Sixth International Workshop on Machine Learning, pp.

156–159. San Mateo, CA.

Halbert, D.C. 1993. SmallStar: programming by demonstration in the desktop metaphor. In

Cypher (1993a), pp. 103–123.

Haussler, D. 1988. Quantifying inductive bias: AI learning algorithms and Valiant’s learning

framework. Artificial Intelligence (36), pp. 177–221.

Julien, B. and Fenves, S. J. 1992. Constraining induction with expert knowledge. In

AAAI-92 workshop on constraining learning with prior knowledge, pp. 27–32. San

Jose, CA.

Maulsby, D., Greenberg, S., and Mander, R. 1993. Prototyping an intelligent agent through

Wizard of Oz. In Proc. InterCHI’93, pp. 277–285. Amsterdam.

Maulsby and Witten 15

Maulsby, D. 1994. Instructible agents, PhD thesis. Dept. of Computer Science, University

of Calgary, Canada.

Maulsby, D. In press. Inductive task modeling for user interface customization. In Proc.

International Conference on Intelligent User Interfaces. ACM Press.

Quinlan, J.R. 1986. Induction of decision trees. J. Machine Learning (1), pp. 81–106.

Valiant, L.G. 1984. A theory of the learnable. Communications of the ACM (27) 11, pp.

1134–1142.

Maulsby and Witten 16

Figure captions

Figure 1 General types of action on data

Figure 2 i Sample phone numbers (positive examples shown in bold)
ii Series of data descriptions induced from examples
iii Data descriptions induced from examples and pointing hint
iv … from examples and verbal hints
v … from examples and partial specification

Figure 3 Learning system components

Figure 4 Methods for handling instructions and changing bias

Figure 5 Algorithm for composing DNF data description rules

Figure 6 Heuristics used to select the most justified feature

Figure 7 Degree of the “suggested relevance” measure

Figure 8 Category utility of three features, A, B and C

Figure 9 i Some of the bibliographic data used to evaluate Cima
(Legend: “%” = start or end italics; “@” = start or end boldface)

ii Data descriptions learned for some concepts from the user study

Figure 10 Cima’s performance relative to Turvy

Mon 21 toDo
Generate

Mon 21 toDo
Tue 22 toDo

Mail from pattie

tel 243–6166
fax 284–4707

 From pattie@media
 To maulsby@media
 Subject Tuesday meeting

Classify

Modify

Find tel 243–6166
fax 284–4707

If the message is from “pattie”,
then put it in the folder “Mail from pattie”.

Find the next telephone number
preceded by the word “fax”.

Insert a calendar template of the form:
[Next(DayName) Tab Next(DayNumber)
Tab toDo].

Move the circle to the point at which a
dashed line intersects a plain line.

Figure 1

i Me (617) 243–6166 home; (617) 220–7299 work; (617) 284–4707 fax

Cheri (403) 255–6191 new address 3618 – 9 St SW

Steve C office (415) 457–9138; fax (415) 457–8099

Moses (617) 937–1064 home; 339–8184 work

ii a. Rule formed after first example

Searching forward, Selected text MATCHES 243–6166

b. Rule generalized after second example

Searching forward, Selected text MATCHES Number(length 3)–Number(length 4)

c. Ruleset formed after negative example “255–6191”

Searching forward,
Selected text MATCHES 243–6166

or Selected text MATCHES 220–7299
or Selected text MATCHES 284–4707

d. Rule formed after shift of bias

Searching forward,
Selected text FOLLOWS 617)◊ and MATCHES Number(length 3)–Number(length 4)

— Note: Cima proposes 617)◊ rather than 7)◊ because it tokenizes at the word level by default

e. Ruleset after final positive example “339–8184”

Searching forward,
Selected text FOLLOWS 617)◊ and MATCHES Number(length 3)–Number(length 4)

or Selected text FOLLOWS ;◊ and MATCHES Number(length 3)–Number(length 4)

iii a. Rule formed after first example and pointing hint

Searching forward, Selected text FOLLOWS (617)◊ and MATCHES 243–6166

b. Rule generalized after second example

Searching forward, Selected text FOLLOWS (617)◊ MATCHES Number(length 3)–
Number(length 4)

iv a. Rule formed after first example and verbal hints

Searching forward, Selected text FOLLOWS)◊ and MATCHES Number–Number

b. Rule specialized after negative example

Searching forward, Selected text FOLLOWS 617)◊ and MATCHES Number–Number

v a. Rule formed after first example and partial specification

Searching forward, Selected text FOLLOWS (617)◊ and MATCHES Number–Number

b. Ruleset after final positive example

Searching forward,
Selected text FOLLOWS (617)◊ and MATCHES Number–Number

or Selected text FOLLOWS ;◊ and MATCHES Number–Number

Figure 2

Dynamic
Bias

Manager

Discourse
Knowledge
• Instructions
• Feedback
• Elicitation

Discourse
Manager

• Utility criteria for actions
• Focusing heuristics

Bias / Focus KnowledgeUser

Examples
Hints

Elicitations
Feedback

• Pre-defined feature types
• User-taught concepts

• Matching
• Generalization

Feature Knowledge

DNF
Learning
Algorithm

Examples
Features

Suggestions

Descriptions

 Formalized
 Examples
Hints

Shift bias!

• Salience metrics

• Application terminology
• Gesture interpretations
• Feature indexing

Figure 3

on classifyExample (Example, Class, Concept)
computeFeatures (Example, Class, Concept, BiasRules for classifyExample)
add Example to Examples of Concept
updateConceptDescription (Concept, classifyExample)

on classifyFeature (FeatureSpec, Class, Concept, Subset)
compute interpretations of FeatureSpec
magnifyBias (FeatureSet for Concept, interpretations of FeatureSpec, Examples of Concept,

BiasRules for classifyFeature)
repeat for each Feature in interpretations of FeatureSpec

mark Feature as relevant or irrelevant (according to Class) to the given Subset of Concept
note source of justification for Class [ie. suggested by user hint, background knowledge, etc.]

updateConceptDescription (Concept, classifyFeature)

on classifyRule (Rule, Class, Concept)
if Class is Correct, mark Rule as userAccepted
else mark Rule as UserRejected and

ask user to classify some features of Rule

computeFeatures (Example, Class, Concept, BiasRules)
repeat for Features of Concept

if Feature is observable in Example, then get observed value of Feature
else compute value of Feature in Example in relation to other Examples of Concept
magnifyBias (Features of Concept, Features of Example, Examples of Concept,

FeatureDetectors in BiasRules)

magnifyBias (FeatureSet, SuggestedFeatures, Examples, BiasRules)
add SuggestedFeatures to FeatureSet
fire BiasRules to add further features to FeatureSet
repeat for each new Feature in FeatureSet

observe or compute value of Feature in all Examples [if possible]

updateConceptDescription (Concept, Instruction)
repeat until success or resource limits reached

newRuleset = makeRules (Concept, FeatureSet for Concept, Examples of Concept,
UtilityCriteria for Concept, PreferenceHeuristics for Concept)

if newRuleset is inconsistent or has increased complexity then
magnifyBias (FeatureSet for Concept, nil, Examples of Concept, BiasRules for Instruction)

else signal success

Figure 4

makeRules (Concept, Features, Examples, Criteria, Heuristics)
repeat until all positive examples are covered:

add makeOneRule (Concept, Features, Examples, Criteria, Heuristics) to Concept’s definition
return new Concept definition

makeOneRule (Concept, Features, Examples, Criteria, Heuristics)
create new empty Rule
repeat until Rule meets Utility Criteria and Instructional Criteria, or until all Features have been tried:

add mostJustifiedFeature (Features, Heuristics, Concept, Examples) to Rule
delete Examples no longer covered by Rule
update bias, removing Criteria already satisfied and re-ordering preferences

simplify (Rule, Concept, Features, Examples, Criteria, Heuristics)
return Rule

mostJustifiedFeature (Features, Heuristics, Concept, Examples)
set Candidates to Features
repeat for each SelectionHeuristic in Heuristics until only one Candidate remains:

set Candidates to FeaturesScoringHighest (SelectionHeuristic, Features, Concept, Examples)
return first feature in Candidates

Figure 5

1. suggested relevance
2. category utility
3. utility for action

4. used in other rule
5. feature value salience
6. feature type salience

7. generality or specificity
8. arbitrary choice

Figure 6

0 1–1 Degree of relevance believed

Cima re
jects

User re
jects

User re
pudiates

User a
ffirm

s

User suggests

Cima suggests

relevantirrelevant

Figure 7

+

–

A A B B B B

B B B B

C C C

C

cu(A,+) = 1*1/2 = 1/2 cu(B,+) = 1/2*1 = 1/2 cu(C,+) = 3/4*3/4 = 9/16

Figure 8

i John H. Andreae, Bruce A. MacDonald: Expert control for a robot body: %Journal IEEE Systems,
Man & Cybernetics:% July 1990.

Ray Bareiss: @Exemplar-based knowledge acquisition:@ Academic Press: San Diego CA:1989
D. Angluin, C. H. Smith: Inductive inference: theory and methods: %Computing Surveys 3 (15),% pp.

237-269: September 1983.
Michalski R. S., J. G. Carbonell, T. M. Mitchell (eds): Machine Learning II: Tioga. Palo Alto CA. 1986
Kurt van Lehn: “Discovering problem solving strategies: Proc. Machine Learning 7th Int’l Workshop,

pp. 215–217: 1989.

ii B1 Start of journal paper title

Searching forward from start of paragraph, Insertion point FOLLOWS :◊ and PRECEDES
CapitalWord

B2 End of journal paper title (actually, after colon at end of title)

Searching forward from previous example of B1, Insertion point PRECEDES ◊%

C1 Primary author’s surname

Searching forward from start of paragraph (Note: this feature used in all four rules),
Selected text MATCHES CapitalWord and PRECEDES :

or Selected text MATCHES CapitalWord and PRECEDES ,
or Selected text MATCHES Michalski
or Selected text MATCHES LowercaseWord◊CapitalWord

D1 Any surname

Searching forward (Note: this feature used in all seven rules),
Selected text MATCHES CapitalWord and PRECEDES :◊NonAlphanumericCharacter

or Selected text MATCHES CapitalWord and FOLLOWS CapitalWord.◊ and PRECEDES ,
or Selected text MATCHES LowercaseWord◊CapitalWord and PRECEDES :
or Selected text MATCHES LowercaseWord◊CapitalWord and FOLLOWS CapitalWord.◊
or Selected text MATCHES CapitalWord(length 9) and FOLLOWS Linebreak
or Selected text MATCHES Quinlan
or Selected text MATCHES Mitchell

Figure 9

A1 B1 B2 C1 C2 D1 F1 F2Concept

Max.
Mean all users
Min.

0.0

0.5

1.0

1.5

2.0 Examples only
With hints

A1 B1 B2 C1 C2 D1 F1 F2
0.0

0.5

1.0

1.5

2.0

Figure 10

