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Abstract

In this paper, we investigate the method of
stacked generalization in combining models
derived from different subsets of a training
dataset by a single learning algorithm, as
well as different algorithms. The simplest
way to combine predictions from competing
models is majority vote, and the effect of
the sampling regime used to generate train-
ing subsets has already been studied in this
context—when bootstrap samples are used
the method is called bagging, and for disjoint
samples we call it dagging. This paper ex-
tends these studies to stacked generalization,
where a learning algorithm is employed to
combine the models. This yields new meth-
ods dubbed bag-stacking and dag-stacking.

We demonstrate that bag-stacking and dag-
stacking can be effective for classification
tasks even when the training samples cover
just a small fraction of the full dataset. In
contrast to earlier bagging results, we show
that bagging and bag-stacking work for sta-
ble as well as unstable learning algorithms,
as do dagging and dag-stacking. We find
that bag-stacking (dag-stacking) almost al-
ways has higher predictive accuracy than
bagging (dagging), and we also show that
bag-stacking models derived using two differ-
ent algorithms is more effective than bagging.

1 Introduction

Wolpert (1992) proposed stacked generalization as a
general method of using a high-level model to com-
bine lower-level models to achieve greater predictive

accuracy. Although it has met with some success for
regression tasks (Breiman, 1996a), its application to
classification tasks has been limited. However, very
recently we have successfully applied stacked general-
ization to classification tasks (Ting & Witten, 1997), a
domain in which there has been a significant amount
of research on model combination. However, previ-
ous research has largely been restricted to such simple
methods as majority vote and weight averaging (e.g.,
Breiman, 1996b; 1996d; Hansen & Salamon, 1990; Per-
rone & Cooper, 1993; Oliver & Hand, 1995).

The term bagging refers to the use of majority vote to
combine multiple models derived from a single learning
algorithm using bootstrap samples (Breiman, 1996b).
Another, which we call dagging, is similar but uses dis-
joint samples rather than bootstrapping. The present
paper investigates the use of a learned model instead
of majority vote to combine the individual models,
thereby adopting the framework of stacked general-
ization. We call the resulting methods bag-stacking, in
which bootstrap samples are used as training data for
the individual models, and dag-stacking, which uses
disjoint samples.

Breiman (1996b) concluded that bagging only works
with unstable learning algorithms such as decision tree
learners. In contrast, our results show that bagging
and bag-stacking (and also dagging and dag-stacking)
both work with stable learning algorithms too—they
can work well when the individual models are derived
from just a small fraction of the full dataset. The im-
plication of these results is that models can be derived
much more quickly (because less training data is used),
and that the methods of bagging and dagging, as well
as bag-stacking and dag-stacking, apply to more learn-
ing algorithms than was previously thought.

This paper concentrates on comparing the predictive
accuracy of bagging with bag-stacking, and dagging



with dag-stacking, when used to combine models de-
rived by a single learning algorithm and by two dif-
ferent learning algorithms. Section 2 formally intro-
duces the notions of bagging, dagging, bag-stacking
and dag-stacking. Section 3 reports results obtained
when stacking models derived by a single learning algo-
rithm, and Section 4 examines the stacking of models
derived by two different learning algorithms. Section 5
discusses some further issues, followed by related work
and conclusions.

2 Bagging, Dagging, Bag-Stacking
and Dag-Stacking

Given a training dataset £ = {(yn,zn),n =
1,...,N'}, where y, is the class value of the nth in-
stance and x,, is a vector representing its attribute val-
ues, we consider subsets of samples produced by one
of two sampling regimes:

bootstrap samples — randomly sample £
with replacement into K subsets of size
N, where N < N';

disjoint samples — randomly sample £
without replacement into K disjoint sub-
sets of size N, where KN < N'.

Use some learning algorithm to derive K models My
from the subsets. The learning algorithm is called a
level-0 generalizer, and the resulting models are level-
0 models. The bagging method (Breiman, 1996b) uses
majority vote to combine the classification outputs of
models derived from bootstrap samples. The method
that we call dagging uses the same majority vote to
combine the outputs of models derived from disjoint
samples.

Now, instead of majority vote, let us consider the use
of a higher-level learning algorithm to combine the
level-0 models in the spirit of stacked generalization
(Wolpert, 1992; Ting & Witten, 1997). However, un-
like the previous implementations of stacked general-
ization, we do not employ cross-validation to generate
the higher-level data. Instead, we use £ as a test set
for each of the K models—despite the fact that sub-
sets of £ were used to train those models. Suppose
that there are I output classes, and let pg;(x) denote
the probability that the kth model assigns to the ith
class given the test instance x. The vector

s Pri(Tn)s - - Prr(Tn))

gives the kth model’s class probabilities for the nth
instance, and at the end of the testing process, the

P/m = (pkl (l'n), e

data assembled from the output of the K models is

.7Pk:n,-..,PKn)7TL:1,...,NI}.

‘C = {(yﬂ7plna ..
This is called level-1 data. Use a learning algorithm,
which we call the level-1 generalizer, to derive a model
M that predicts the class from this level-1 data. M is
called the level-1 model.

To classify a new instance, the level-0 models M, are
used to produce a vector (pi1,-., P11, - - -y Pkly-+> Pkl

.., PK1,--,PK1) which is input to the level-1 model
M, and the output of M is the final classification re-
sult for that instance. To estimate each method’s pre-
dictive accuracy we always use a completely separate
test dataset 7.

Depending on the sampling strategy used to produce
the data from which the level-0 models are derived, we
call this implementation of stacked generalization bag-
stacking or dag-stacking (bootstrap/disjoint samples
aggregation by stacking).

The following subsections describe pertinent details of
the level-0 and level-1 generalizers used in this paper.

2.1 Level-0 Generalizers

Two learning algorithms are used at level 0: C4.5,
the well-known decision tree learner (Quinlan, 1993),
and NB, a re-implementation of a naive Bayesian clas-
sifier (Cestnik, 1990). Only unpruned trees are de-
rived from C4.5 since, as Breiman (1996b) discovered,
aggregation from bagged models seems to eliminate
overfitting.! It is necessary for our implementation
that the level-0 generalizers produce output class prob-
abilities p;(z) for any instance z (where, in all cases,
>, pi(z) = 1), and we now exhibit the formulas that
are used to estimate this.

C4.5: Consider the leaf of the decision tree at which
the instance z falls. Let m; be the number of
(training) instances with class ¢ at this leaf, and
suppose the majority class at the leaf is I. Let
E =73 ,,;m; Then

E+1
m; . A
pl(x) = (1 _pj(w)) X f, for ¢ #I

NB: Let p(i|z) be the posterior probability of class i,
given instance x. Then

0y _plil)
PO = 5 Gl

!Our experiments confirm this.



In both cases the class that the level-0 model pre-
dicts for an instance z is that I for which p;(z) >

pi(z) for all i # 1.

Breiman (1996b) claims that bagging can only improve
the predictive accuracy of learning algorithms that are
unstable, where an “unstable” learning algorithm is
one for which small perturbations in the training set
can produce large changes in the derived model. C4.5
and NB are unstable and stable respectively, which en-
ables us to investigate bag-stacking and dag-stacking
under both conditions.

In Section 3, only one learning algorithm—either C4.5
or NB—is used to derive all of the level-0 models. In
Section 4, both are used together.

2.2 The Level-1 Generalizer

We previously discovered that stacked generalization
works well when a multi-response linear regression al-
gorithm, MLR, is used as the level-1 generalizer (Ting
& Witten, 1997). Consequently we use the same algo-
rithm for both bag-stacking and dag-stacking.

MLR is an adaptation of a least-squares linear regres-
sion algorithm that Breiman (1996a) used in regression
settings. Any classification problem with real-valued
attributes can be transformed into a multi-response re-
gression problem. If the original classification problem
has I classes, it is converted into I separate regression
problems, where the problem for class ¢ has instances
with responses equal to one when they have class £ and
zero otherwise.

The input to MLR is level-1 data. The linear regres-
sion for class ¢ is simply

K
LRy(z) = Z Z kit Pri(T)-

k=1i=1
Choose the coefficients {aye} to minimize

2

Z Yn — Z Z it Pri(Tn)
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The coefficients {ay} are constrained to be non-
negative. This is accomplished by using a constrained
least-squares algorithm described by Lawson & Han-
son (1995) to derive non-negative regression coeffi-
cients for each class.

We are now in a position to describe the work-
ing of MLR. To classify a new instance z, compute
LRy(x) for all I classes and assign the instance to

Table 1: Datasets used in experiments

Dataset | #Training #Classes #Attr. #Test
DNA 2000 3 60 1186
Satellite 4435 6 36 2000
Letters 15000 26 16 5000
Shuttle 43500 7 9 14500

that class ¢ which has the greatest value: LR,(x) >
LRy (z) for all £/ # .

3 Stacking models derived by one
algorithm

We now describe experiments to investigate bag-
stacking and dag-stacking of models that are derived
by a single learning algorithm. The four datasets
used are the moderate to large ones used in the Stat-
log project (Michie et al., 1994) and also by Breiman
(1996b, 1996d); they are summarized in Table 1. Each
includes separate training and test sets. Small datasets
are not used because we investigate models derived
from only a fraction of the original dataset.

The following subsections compare the predictive error
rate of bagging to that of bag-stacking, and dagging
to that of dag-stacking. We vary the data size N from
which level-0 models are derived, and also the number
K of level-0 models that are combined together.

3.1 Bag-Stacking

For each dataset, parts of the training data £ are used
to derive models and the entirely separate test set 7
is used to assess their error rate.

Eg is the error rate of a single model derived
from all of L;

Ep and Egg are the error rates of bagging
and bag-stacking respectively.

Tables 2 and 3 show these figures for the level-0 gen-
eralizers C4.5 and NB respectively. In Table 2, which
uses C4.5, Eg is the testing error rate of a pruned
tree; as noted earlier, unpruned trees are used else-
where. The following four columns give Eg and Epg
for K = 10, 20 and 50, based on level-0 models each
derived from just N instances of the training set L,
for small values of N and for N = N’. The size of the
samples used is indicated in the first column. Results
for K = 50 are not available for the Letters dataset
because they take too long to compute (see Section 5).



Table 2: Error rates when bagging and bag-stacking
C4.5 models

Table 3: Error rates when bagging and bag-stacking
NB models

Dataset K =10 K =20 K =150 Dataset K =10 K =20 K =50
N| Es| Ep FEps| Ep FEps| FEp Eps N| Es| Ep FEps| Ep FEps| Ep Eps
DNA DNA
100 96 5.7 65 5.4| 64 6.0 100 105 7.1 90 58 99 48
200 96 5.7 78 4.9 69 5.3 200 87 6.0 84 53 95 49
400 6.5 63| 4.9 4.8/ 48 44 400 5.2 4.7 53 4.1 52 4.1
800 60 6.0/ 5.6 5.4/ 50 5.0 800 48 43| 48 3.8 47 36
2000| 5.8/ 6.0 6.0/ 4.9 4.9 48 5.0 2000 4.2| 4.5 42| 45 36| 44 3.7
Satellite Satellite
100 17.7 16.9| 16.9 156 164 14.2 100 20.9 16.1| 21.0 16.4| 20.7 15.2
200 16.2 15.5| 15.8 14.1| 156 13.8 200 21.1 17.6| 21.5 16.4| 20.8 15.2
400 149 13.7| 14.2 13.5| 13.5 12.5 400 22.7 17.1| 22.5 16.7| 21.0 15.1
800 13.2 12.9| 12.6 12.0| 12.9 12.1 800 22.9 20.5| 23.1 20.0| 23.0 19.3
4435/14.8| 11.5 11.6| 11.9 11.8| 11.2 11.0 4435|23.3| 23.2 21.1| 23.3 21.2| 23.1 20.9
Letters Letters
100 43.2 34.1| 36.6 28.6 100 57.8 39.1| 47.7 30.4
200 35.2 28.7| 29.8 24.5 200 42.6 29.1| 37.7 24.4
400 27.7 24.2| 232 204 NA NA 400 399 28.4| 380 25.6] NA NA
800 21.8 19.7| 184 16.5 800 39.2 29.4| 379 27.1
1600 16.4 15.6| 14.5 13.3 1600 385 30.8| 37.5 28.7
15000/12.9| 8.6 8.4 75 71 15000(38.7| 37.7 32.6| 37.5 32.1
Shuttle Shuttle
400 0.586 0.462| 0.614 0.393| 0.559 0.276 400 8.179 7.614|8.152 7.593|8.124 6.628
800 0.510 0.379] 0.497 0.283| 0.510 0.234 800 8.048 6.310|8.159 6.366|8.076 6.297
1600 0.372 0.179| 0.366 0.172| 0.310 0.097 1600 8.145 7.248(8.097 7.041(8.028 6.366
3200 0.200 0.131] 0.193 0.117| 0.179 0.090 3200 8.090 7.145|8.303 7.097|8.221 6.531
43500/0.48/0.028 0.007/0.021 0.007|0.028 0.014 43500/9.759.297 6.759(9.407 6.724(9.455 6.724

For each dataset, bold face is used to indicate error
rates that are lower than the value of Eg. In addition,
underlining is used to compare the results with the
value of Ep that was obtained using the largest values
for K and N, that is, with K = 50 level-0 models
(K = 20 for the Letters dataset) each trained using
the size of the full dataset (N = N'). The lowest error
rates for Ep and ERg in each dataset are marked with
“and ~respectively.

The figures in bold show the remarkable result that
both bagging and bag-stacking can achieve better pre-
dictive accuracy than a single model derived using the
entire dataset—even when their level-0 models are de-
rived from a small fraction of the dataset. This is
apparent in the DNA and Satellite datasets when com-
bining C4.5 models, and in all datasets when combin-
ing NB models. In almost all cases, bag-stacking yields
superior performance to bagging, except in only two
cases in combining C4.5 models (i.e., N=2000, K=50
in the DNA dataset; N=4435, K=10 in the Satellite
dataset).

Now turn attention to the underlined figures. It is
apparent when bagging and bag-stacking C4.5 mod-
els that the error rate tends to decrease as the train-
ing size N increases—as one might expect. However,
the evidence when bagging and bag-stacking NB mod-
els is mixed. While the expected trend is followed in
the DNA dataset, in the Satellite dataset the error
rate seems to increase with N. In the Letters dataset,
the error rate of bag-stacking demonstrates a U-shape
trend while bagging follows a normal trend as N in-
creases. Nonetheless, in almost all cases the predictive
error rates of both bagging and bag-stacking decrease
when K increases.

In bagging and bag-stacking C4.5 models, the lowest
error rate is achieved by bag-stacking models derived
using a small fraction of the full DNA dataset. In the
other three datasets, the lowest error rate is achieved
by bag-stacking models derived using the size of the
full dataset. In bagging and bag-stacking NB models,
the lowest error rate is achieved by bag-stacking mod-
els derived using a small fraction of the full dataset in



Table 4: Bagging, dagging, bag-stacking and dag-
stacking C4.5 models

Table 5: Bagging, dagging, bag-stacking and dag-
stacking NB models

Dataset Eg Ep Epgg Ep Epg Dataset Eg Ep FEpgg Ep Eps
DNA DNA

N=100, K=20 6.5 5.4 8.3 5.4 N=100, K=20 9.0 5.8| 10.5 5.0
N=200, K=10 9.6 5.7 7.8 5.6 N=200, K=10 8.7 6.0 5.8 4.8
N=400, K=5 9.1 8.6 7.6 6.0 N=400, K=5 5.4 4.8 4.8 4.7
all data 5.8 all data 4.2

Satellite Satellite

N=100, K=44 16.2 14.5| 16.5 14.7 N=100, K=44 20.8 14.9| 20.7 15.0
N=200, K=20 15.8 14.1| 15.2 134 N=200, K=20 215 16.4| 215 174
N=400, K=10 14.9 13.7| 14.0 144 N=400, K=10 227 171 22.2 20.0
N=800, K=5 14.4 14.0| 14.9 14.2 N=800, K=5 22.7 204| 239 20.2
all data 14.8 all data 23.3

Letters Letters

N=400, K=20 23.2 204| 239 21.0 N=400, K=20 380 25.6| 380 245
N=800, K=10 21.8 19.7| 21.0 18.6 N=800, K=10 377 326| 37.7 286
N=1600, K=5 20.1 182| 206 184 N=1600, K=5 380 31.4| 384 31.2
all data 12.9 all data 37.8

Shuttle Shuttle

N=400, K=50 0.559 0.276| 0.510 0.297 N=400, K=50 8.124 6.628| 8.062 6.324
N=800, K=50 0.510 0.234| 0.517 0.207 N=800, K=50 8.076 6.297| 7.966 7.021
N=1600, K=20 0.366 0.172| 0.345 0.172 N=1600, K=20 8.097 7.041| 7.910 6.607
N=3200, K=10 0.200 0.131| 0.221 0.172 N=3200, K=10 8.090 7.145| 8.028 6.821
all data 0.048 all data 9.75

all four datasets.

3.2 Dag-Stacking

This section compares two methods of combining
dagged models. As in the above investigations, all er-
ror rates are calculated using the test set 7, which is
entirely separate from the training data L.

Ep and Epg are the error rates of dagging
and dag-stacking respectively.

The figures Es, Ep and Epg from the previous subsec-
tion are also included, for ease of comparison. Results
are tabulated in Table 4 for C4.5 models and Table 5
for NB models. The first column indicates the val-
ues of K and N used—because subsets are disjoint for
dagged models it is necessary that KN < N' in all
cases. In order to reduce the number of tests that had
to be done, Eg, Eg and Epg figures from the previ-
ous work were re-used by choosing K = 5, 10, 20, 50
subsets of N = 100, 200, 400, 800, 1600, and 3200 in-
stances wherever possible. For the DNA dataset, the
2000 training instances were split into 20, 10, and 5
equal subsets. For the Satellite dataset, 4400 of the

4435 training instances were split into 44 subsets, and
4000 of them were split into 20, 10, and 5 subsets.
For Letters, only about half of the training data was
used, and split into 20, 10, and 5 subsets. For the
Shuttle data, 20,000 and 40,000 of the 43,500 train-
ing instances were split into 50 subsets, and 32,000 of
them were split into 20 and 10 subsets.

Examination of the values of Ep and Epg in the final
column of both tables reveals that dag-stacking, like
bag-stacking, almost always yields a lower predictive
error rate than dagging. The only exception is com-
bining C4.5 models with N = 400 and K = 10 in the
Satellite dataset. However, comparing bag-stacking
with dag-stacking, Eps vs Epg, gives no clear indi-
cation of either method being superior to the other.
The same is true when comparing bagging with dag-
ging, Ep vs Ep.

Summary
Summarizing the conclusions from these experiments,

we find that

e stacking using MLR almost always yields lower
predictive error rate than majority vote when



combining either bagged or dagged models;

e bag-stacking and dag-stacking have comparable
predictive accuracy, as have bagging and dagging;

e when using bagging or bag-stacking, it is some-
times better to use only a small fraction of the
entire dataset to derive the models;

e bagging, dagging, bag-stacking and dag-stacking
all work well with both unstable (i.e., C4.5) and
stable (i.e., NB) learning algorithms.

4 Bag-stacking models derived by two
different algorithms

In this section, we investigate bag-stacking models de-
rived using both C4.5 and NB, and compare the pre-
dictive error rate to that of bagging. Table 6 shows
the result of bagging and bag-stacking when the same
number of models was generated by C4.5 and NB from
the same sample size. The final two columns give
the corresponding figures when only one learning al-
gorithm is used.

These results reveals an important feature of bagging:
unless the predictive error rate of the base models is
fairly close, bagging does not improve accuracy. This is
apparent in the last three datasets. Here the difference
in error rate Ep between the two homogeneous models
is large, and in each case the performance of bagging
models derived from heterogeneous level-0 generalizers
falls far short of that for the better of the two homoge-
neous cases. On the other hand, in the DNA dataset
the heterogeneous model outperforms the better of the
two homogeneous models because the difference in er-
ror rate is much smaller. This accords with the results
of Ting & Witten (1997) when combining three differ-
ent types of learning algorithms using majority vote.
Although bag-stacking suffers from the same problem,
it does so to a far smaller extent—as the last three
datasets show.

To further investigate this phenomenon, we tried com-
bining unequal numbers of models derived by C4.5 and
NB from different values of N, so long as the two ho-
mogeneous cases yield comparable performance. Two
datasets, in which combining heterogeneous models
performs worse than combining homogeneous models,
are used for this investigation: Satellite and Letters.?

2The Shuttle dataset is not used because the difference
between the two homogeneous models are so great that no
comparable performance can be obtained (see Tables 2 and

3).

Table 6: Bagging and bag-stacking level-0 models from
different algorithms

C4.5& NB C4.5 NB
Dataset Ep Eps| FEp FEps| Ep Eps

DNA
N=100, K=20x2 6.0 4.8 6.3 5.7 99 5.2
N=200, K=10x2 46 3.3 7.8 4.9 84 5.3
N=400, K=5x2 49 41 6.5 6.3 5.2 4.7

Satellite
N=200, K=20x2 18.4 14.7| 15.7 14.3| 21.7 17.2
N=400, K=10x2 20.1 14.5| 14.2 13.5| 22.5 16.7
N=800, K=5x2 18.4 13.2| 13.2 12.9| 229 20.5

Letters
N=800, K=10x2 26.1 18.2( 18.4 16.5| 37.9 27.1
N=1600, K=5x2 26.0 18.2| 16.4 15.6] 38.5 30.8

Shuttle
N=1600, K=10x2| 3.310 0.172| 0.366 0.172| 8.097 7.041
N=3200, K=10x2| 3.407 0.124| 0.193 0.117| 8.303 7.097

Table 7: Bagging and bag-stacking different numbers
of level-0 models from two learning algorithms

C4.5 NB C4.5 & NB
Dataset EB EBS EB EBS EB EBS
Satellite K =10 K =50 K =10450
N=100 17.7 169 | 207 152 | 20.2 14.0
N=200 16.2 15.5 20.0 14.0
N=400 14.9 13.7 19.9 13.2
N=800 13.2 129 19.7 12.6
Letters K =10 K =20 K =10+20
N=200 35.2 287|377 244|315 22.5
N=400 277 242 27.7 19.8
N=800 21.8 19.7 24.6 17.5
N=1600 | 16.4 15.6 20.9 14.8

We refer to Tables 2 and 3 to choose the values of
K and N, such that the two homogeneous cases have
comparable performance. In both datasets, we choose
the (near-)best performing bagging and bag-stacking
NB models, i.e., K = 50 and N = 100 for the Satel-
lite dataset, and K = 20 and N = 200 for the Let-
ters dataset. Then, choose the comparable performing
C4.5-derived models: K = 10, and N = 100 to 800
for the Satellite dataset, and N = 200 to 1600 for
the Letters dataset. We re-state the results with these
settings in the second and third columns of Table 7.
Because bag-stacking is more tolerant of differences
in level-0 performance, we expect bag-stacking hetero-
geneous models to yield better predictive accuracy in
more cases than bagging in this experiment.

The results of the heterogeneous model are shown in
the last column of Table 7. With bagging (Eg), the
heterogeneous model has lower error rate than that for



both homogeneous models in just one case (N = 200
in the Letters dataset) where the difference in error
rates is small. With bag-stacking (Epg), the hetero-
geneous model yields lower predictive error rates than
both of the homogeneous ones in all cases. These re-
sults confirm our expectation.

5 Discussion

When the full dataset is used to generate each level-0
model, our results for bagging are in agreement with
those of Breiman (1996b)—bagging increases the pre-
dictive accuracy of unstable learning algorithms but
not stable ones. However, when just a small propor-
tion of the data is used to generate level-0 models,
we find that bagging can improve the predictive ac-
curacy of stable learning algorithms too. Although
this is in accordance with the results of two studies
of base-line behavior of a different kind of dagging
(Ting & Low, 1997; Ting & Witten, 1997), which uses
different model combination methods from majority
vote, it contradicts the conventional wisdom that “the
more data the better.” It certainly has significant im-
plications for learning time: since each level-0 model
uses much less training data, it can be obtained much
faster.

Like bagging and dagging, bag-stacking and dag-
stacking are ideally suited to parallel processing be-
cause each level-0 model can be constructed indepen-
dently. Moreover, because it uses the MLR method,
level-1 learning can also benefit from parallelism. For
a I-class problem, the regression for each class can be
carried out independently on I CPUs.

The execution time of MLR depends on the number
of classes involved as well as on the training set size.
When K models are combined in a I-class problem,
the number of attributes for level-1 data is KI and
the regression algorithm must be executed I times.
Figure 1 shows the execution time of MLR for the
four datasets on a Sun SPARCserver 1000 machine. In
Letters, which has 26 classes, execution time increases
dramatically with the number of models. The increase
is little more than linear for K up to 50 in the other
three datasets, where the maximum number of classes
is seven.

Note that the training data size for level-1 learning
need not be N'. Since every learning algorithm has its
own learning curve which levels off at the tail of the
curve as the training data size increases, in most large
databases, MLR only requires part of the full dataset
to yield a model that performs well.

MLR's Execution Time
10 T T T T T T T T T J,
DNA (in minutes) <
Satellite (in minutes) ~4--
Letters (in hours)’-5--
Shuttle (in hours) x

°or

A

Time
(4]
T
[l

\\*\‘ hE

5 10 15 20 25 30 35 40 45 50
K, number of models

Figure 1: Computation time for MLR

It might be thought obvious that bag-stacking (or dag-
stacking) will outperform bagging (or dagging) be-
cause the additional level-1 learning inevitably pro-
vides more information than a mere majority vote.
However, not any learning algorithm is suitable for the
level-1 generalizer. Ting & Witten (1997) show that
of four learning algorithms tested, only MLR performs
satisfactorily (the other three were C4.5, NB and IB1).

Note that in cases where the size of the full dataset
is required to train level-0 models, the improvement of
bag-stacking over bagging is usually small. One reason
is that the level-1 data is produced from the majority
of the data used to train level-0 models. Thus the
probabilities (i.e., Pr,) employed in the level-1 data
are over-estimated. One way to rectify this problem is
to use the out-of-bag estimation (Breiman, 1996e) to
get a better estimate of the probabilities.

6 Related Work

The research reported in this paper was inspired by
Breiman (1996b, 1996d), as well as by our own work
(Ting & Witten, 1997). Breiman (1996b) introduces
the idea of bagging, and Breiman (1996d) also shows
that combining models (using majority vote) derived
using a small fraction of the entire dataset gives accu-
racy better than that of a single model derived using
the entire dataset. Our contribution here is to show
that stacking these procedures generally works even
better than combining them using majority vote.

Wolpert introduced stacked generalization as long ago
as 1992, and Ting & Witten (1997) shows convincingly



how to make it work in classification tasks. The key is
the use of output class probabilities of level-0 models
as level-1 data, and the use of MLR as the level-1 gen-
eralizer. The present paper incorporates this frame-
work, except that cross-validation is not used (details
of the differences between implementations are sum-
marized in Appendix). Other work on stacked general-
ization in classification tasks either has a more limited
focus or evaluates the results on just a few datasets
(LeBlanc & Tibshirani, 1993; Chan & Stolfo, 1995;
Kim & Bartlett, 1995; Merz, 1995; Fan et al., 1996).

Several researchers have investigated various methods
of combining models produced by a single learning
algorithm from the entire dataset. Different models
have been generated by varying the learning param-
eters (Hansen & Salamon, 1990; Perrone & Cooper,
1993; Kwok & Carter, 1990; Oliver & Hand, 1995;
Kononenko & Kovaci¢, 1992) and by using differ-
ent sampling methods (Freund & Schapire, 1996; Ali
& Pazzani, 1996). Techniques used to combine the
individual models include (weighted) majority vote,
weighted averaging, Bayesian/likelihood combination
and distribution summation. None of this work uses a
learning algorithm to perform level-1 learning.

Ting & Low (1997) study the base-line behavior of
dagging empirically. Theoretical work on dagging in-
cludes Kearns & Seung (1995) and Meir (1994).

7 Conclusions and future work

This paper shows how stacked generalization can be
successfully applied to combine bagged or dagged mod-
els derived from a single or multiple learning algo-
rithms. Stacking using MLR almost always yields a
lower predictive error rate than majority vote when
combining either bagged or dagged models. Both bag-
stacking and dag-stacking work for stable as well as
unstable learning algorithms, even using subsets which
cover only a small fraction of the full dataset to derive
the level-0 models.

When combining models derived from different learn-
ing algorithms, it is necessary that the models perform
comparably in order to guarantee increased predictive
accuracy through bagging or bag-stacking. However,
bag-stacking is more tolerant than bagging of differ-
ences in level-0 performance.

Dagging (dag-stacking) has been shown to be compa-
rable to bagging (bag-stacking). This finding opens up
an application of dagging and dag-stacking to on-line
learnings, where data constantly arrives in batches.

One can also apply the same stacked generalization
framework to arcing (Breiman, 1996¢), yielding “arc-
stacking” or the stacking of arced models. We plan to
investigate this method in the near future.
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Appendix—Implementations of stacked
generalization

This Appendix recounts the key differences between
stacked generalization as used in this paper and that
described by Ting & Witten (1997). We denote the
latter by SG for ease of reference. The differences are
in the training process, and mainly affect the compu-
tational requirements.

Suppose that there are K level-0 models.

e SG relies on cross-validation to obtain level-1
data. Suppose J-fold cross-validation is em-
ployed. Let the learning time for each level-0
model be C and the testing time for each instance
be t. Then the computational time required for
the preparation of level-1 data is

K(JC + N't),
where N’ = is the size of the give dataset L.

e Bag-stacking and dag-stacking need just one
round of learning for each level-0 model. The
computational time required to prepare the level-
1 data is

K(C + N't).

We conclude that SG needs a factor of J more compu-
tation time than bag-stacking and dag-stacking, since
N't < C for a learning algorithm such as C4.5 and
N't ~ C for NB. Moreover, C' in bag-stacking and
dag-stacking is often much less than for SG, since less
training data is necessary.

Finally, SG requires a final training which uses the
entire dataset £ for each level-0 model to complete the
whole training process. No such re-training is required
for bag-stacking and dag-stacking.

The reader is referred to Ting & Witten (1997) for dif-
ferences between the initial proposal of stacked gener-
alization by Wolpert (1992) and the recent successful
implementation for classification tasks.
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