
A Distributed Digital Library Architecture
Incorporating Different Index Styles

Rodger J. McNab
Ian H. Witten

Stefan J. Boddie

Department of Computer Science,
The University of Waikato,

New Zealand
email {rjmcnab, ihw, sjboddie}@cs.waikato.ac.nz

Abstract

The New Zealand Digital Library offers several collections
of information over the World Wide Web. Although full-
text indexing is the primary access mechanism, musical
collections can also be accessed through a novel melody
retrieval system. In offering this service over a three-year
period, we have had to face many practical challenges in
building, maintaining, and administering diverse
collections of different kinds of information, involving
different search and retrieval systems, with different user
interfaces.

This paper describes the design of the software we
have built to support the service. Interface server programs
provide a uniform interface between search engine and
client, irrespective of the nature of the collection. Search
engines that embody completely different index styles
operate under a single distributed framework—we describe
as examples MG, a full-text retrieval system, and MR, a
melody retrieval system. A flexible protocol for
communicating between an interface server and a search
engine is defined. The resulting architecture simplifies
library administration and the creation of new collections
by providing a unified framework under which vastly
different user interfaces and search engines can co-exist in
a distributed computing environment.

1 Introduction

The New Zealand Digital Library (NZDL) is a freely-
accessible facility that makes available a dozen or so
quasi-independent collections of information over the
World Wide Web (at http://www.nzdl.org)—many of
which involve several Gbytes of on-line information [9].
Operated as a research project in the Computer Science

Department at Waikato University in New Zealand since
1995, the system is continually evolving, and both the
number and variety of collections offered are increasing
rapidly. The collections are intended as independent
demonstrations of digital library technology, rather than a
unified library in their own right. We believe that this
style of organization will become common in digital
libraries of the future, because different kinds of material
are most useful when indexed and made accessible in ways
that take account of their individual nature.

As a digital library grows and the variety of different
kinds of material in it expands, problems of
administration and maintenance become increasingly
severe. Most of the collections we currently maintain
comprise text, the primary access mechanism being full-
text retrieval [10]. However, some collections contain
music, for which the primary access mechanism is a tune
retrieval interface that allows a user to sing or hum a
melody and have it (and others like it) located in the
collection [4, 5]. Initially, special-purpose code was
written to embed these search engines within a World
Wide Web interface to the digital library as a whole;
however, this imposed a significant administration and
maintenance burden. This paper describes a uniform
architecture that was developed to accommodate these two
search and retrieval mechanisms, and the vastly different
document types that they involve. This architecture is
quite general and will be able to incorporate other retrieval
mechanisms in the future—for example, an image
collection accessed by content-based queries (for example
[8]).

The structure of this paper is as follows. We begin by
looking in detail at the two search and retrieval programs
currently in use. We then identify the requirements for the
architecture, and the dimensions of flexibility that it needs
to have. We define what we mean by a digital library

collection and base our architecture on supporting this
notion. Then we describe the design of the digital library
system, which centers around three kinds of
program—builders, searchers, and interface programs—and
the protocol with which interface programs communicate
with searchers. Finally, we review some other digital
library architectures and discuss differences with the one
that we have developed.

2 Example search and retrieval systems

We begin by examining the two search and retrieval
systems that are currently used in the New Zealand Digital
Library: MG, a full text retrieval system, that is used to
index ordinary textual collections; and MR, a music
retrieval system, to search collections of melodies.
Although currently only these two are in use, our
architecture is designed to be general enough to
accommodate other search and retrieval systems.

Figure 1 shows a query page for the Computer
Science Technical Reports collection, which uses MG, and
a query page for the Melody Index collection, which uses
MR. Although the interfaces are very different—for
example, the music interface accepts audio queries in
several MIME types and returns documents as a GIF image
of notated music, or in several audio formats—we realized
that they nevertheless had a great deal in common. The
interface must be able to display appropriate query options
and return both query results and target “documents” back
to the user in a variety of forms. Here we provide a brief
description of these two indexers to convey the radical
differences between them.

2.1 Full-text retrieval using MG

The MG system [10] is a freely-available full-text
retrieval system that makes efficient use of disk resources
by storing the index, and the text that is indexed, in
compressed form. Typically text compresses to 25% of its
original size, and the compressed index, which is stored at
the level of granularity of documents rather than words,
occupies around 7% of the size of the original text. This
leads to a total storage requirement for the indexed
collection of approximately one-third of the size of the
original text alone.

The MG software runs on most Unix systems, and on
32-bit Windows machines. It supports ranked and Boolean
queries, all combinations of stemming and casefolding,
and allows the user to specify the maximum number of
documents to be returned from a query. While very
efficient in storage, having indexes at the level of
granularity of whole documents is something of a
restriction, and although MG does support a subsidiary

paragraph-level index as well this is not enough to give
the flexibility we require for most collections in the New
Zealand Digital Library. Consequently, we build a separate
index for each part of the document that a user might wish
to search. Thus we have indexes for complete documents,
individual pages, paragraphs, articles, abstracts, authors,
titles, and so on. This has the advantage of allowing
fielded search as well.

Most of the collections in the New Zealand Digital
Library are textual and use MG as their underlying search
engine.

2.2 Melody retrieval using MR

The MR system [5] is a novel scheme for searching
musical melodies: it matches sung (or hummed) input to a
database of tunes. Options are provided to restrict attention
to subsets of the database, to choose one of two matching
algorithms, to match anywhere within a tune or
beginnings only, to match using musical intervals or up-
down-same contour, to ignore or take account of note
durations, to transcribe using fixed tuning or try to adapt
to overall drift in the user’s intonation, to specify
minimum rest and note lengths, and to specify the speed
of the music. The reason for many of the options is that
users differ in their musical ability and in the accuracy
with which they remember tunes, so it is necessary to
provide flexibility to cater for this variation.

At present, just one collection is based on this
retrieval system, a Melody Index that comprises a database
of nearly ten thousand international folk tunes from
various countries. There are just over half a million notes
in the database, and the average length of a melody is
around fifty notes. The database is segmented into the
following parts:

〈 North American (and British) folksongs (1700
tunes)

〈 German ballads and folksongs (5500 tunes)
〈 Chinese ethnic and provincial songs (2100 tunes)
〈 Irish folksongs (50 tunes),
 and each part can be searched separately.

3 Requirements

We seek a design that is flexible enough to
accommodate diverse collections of information. In order
to get started, a “model” of a collection is necessary, a
model that characterizes collections in an open way that is
not restrictive. Our experience with the wide variety of
requirements posed within the New Zealand Digital
Library led us to the following model.

All collections are made up of documents. Documents
come in a variety of formats: we presently accommodate

plain ASCII, PostScript, PDF, HTML, SGML, and
Microsoft WORD for textual documents; REFER, BIBTEX,
and USMARC for bibliographic information; and various
internal formats for musical information. Collections
must invariably undergo some building process to make
them suitable for display, search and retrieval. This might
involve converting the documents to another format, and
identifying subparts that require their own indexes.
Amongst the current collections are indexes for complete
documents, individual pages, paragraphs, articles,
abstracts, authors, titles, subjects, publication details,
references, and motions. The building process also
involves preparing some statistics about the collection.

Access points to a collection define ways in which it
can be searched by a user, via some user interface. These
access points generally correspond to the collection’s
index or indexes (although it is possible that some
collections will be searched directly, without indexes
being created in advance). The interface enables a user to
submit a query and receive a list of results in return. The
search might be based on a textual string, an audio stream,
a graphics file, or (conceivably) any other object:
mechanisms for specifying the query data (or its
whereabouts) and submitting it are needed. The list of
results returned to the user specifies matching documents
or parts of documents. The user examines this list and
retrieves some of the documents it mentions—or
information about them. The results of a search can be
expressed in different forms. The returned documents may
be the original documents that comprise the collection, or
a transformation of them—perhaps in another format, or a
subpart, or some associated information (size, location,
price, etc.). The format might depend on the original
document type.

Some means of browsing the collection is necessary.
Inevitably collection-dependent, this may take the form of
a hierarchical browser, or a table of contents, or a list of
sites. Some collections may be browsable in several
ways. Collections may have controlled access: public or
private. Public collections are available to all; private
ones reveal their existence to a restricted audience. Access
to the whole of a private collection, or to parts of it,
might be subject to user authentication. Billing is also a
necessary requirement and could form part of the user
authentication processes. Additionally, a collection may or
may not be active, that is, actually up and running.
Descriptive information (in the form of text) must also be
associated with each collection: a title, brief summary, and
description of each index. This information may be
provided in different languages.

We need to accommodate distributed processing
within the architecture. Search engines for different
collections should be capable of residing on different

computers, and it should be possible for multiple copies
of a search engine to work in parallel on several
processors. Under this distributed architecture, individual
organizations can maintain their own collections of
information; but there is a consistent interface for
accessing them. Moreover, a user can query several
collections simultaneously.

It must be possible to make different user interfaces
to the same collection, so that interfaces can be provided
for different user populations (such as the visually
impaired). System maintainers must be able to develop
and test new user interfaces while existing ones are still
running. Also, other applications may use the same
index/search engine sub-system—for example, alerting
services (for example [11]) or data mining schemes (for
example [1]).

Finally, a mechanism is necessary for learning about
other collections, so that user interfaces can draw the
user’s attention to the existence of new collections as they
come up, without requiring any special effort by the
system maintainers.

4 Design

An architecture that satisfies these requirements has
been designed and implemented as a foundation for the
New Zealand Digital Library. The design, shown in
Figure 2, consists of three programs—a builder, a searcher
and an interface—and a protocol for communicating
between the interface and each searcher. Every collection
of information must have a searcher, however, it may not
need a builder. There is no limit on the number of searcher
programs that a given interface program can connect to.
The crux of the new architecture is the separation of
interface programs from the actual search engines, and the
definition of a protocol for communicating between the
two. We return to this below in the section on interface
programs.

To incorporate different index styles, often with
vastly differing needs, the builders and searchers use a
flexible, object-oriented program structure. Object classes
with all the basic features needed for building and
searching are defined, but the functionality they provide is
selectively overridden by defining subclasses for particular
search and retrieval systems, and these are finally
overridden by collection-specific subclasses that
accomplish any tasks peculiar to a collection. This object
hierarchy is shown in Figure 3 for three example
collections: the Computer Science Technical Reports
collection (CSTR), the Frequently Asked Questions
collection (FAQ), and the Melody Index collection
(MELDEX). Further search and retrieval systems can easily

be incorporated into this framework by deriving other
search and retrieval subclasses.

Each object structure is encased in a simple wrapper
program that provides a consistent command-line
interface, no matter what indexing or searching subsystem
lies beneath. This mechanism greatly simplifies
maintaining the collections, because there are fewer
programs for administrators to come to terms with. The
class hierarchy is written in object-oriented PERL,
although any language that allows communication over
the Internet would serve. Communication between the
objects and the search engines themselves is handled by
piping information back and forth, allowing full language
flexibility. In fact, the actual search engines are written in
C (for MG) and C++ (for MR).

4.1 Builders

Builders are responsible for accomplishing all the
tasks that are necessary to make a collection ready for
serving to users. This may include converting documents
to a different format, building indexes, and preparing
statistics about the document collection. All this work is
specific to both the collection and the search and retrieval
software that is being used for it. There are four methods
in the builder class: init, build_indexes,
make_auxiliary_files, and cleanup. Init parses command-
line options, initializes variables used in the building
process, removes old indexes, converts files to a useable
format, caches archives onto local storage, and records
building dates. Build_indexes creates the files that are
needed to search a collection and obtain search results.
Make_auxiliary_files prepares statistics for the collection
and performs other functions such as gathering tables of
contents, site lists, and so on. Cleanup removes
temporary files and performs other general housekeeping
operations.

4.2 Searchers

Searchers are responsible for performing all the tasks
involved in actually serving collections to users. This
includes providing access points to a collection, retrieving
documents from it, and obtaining any general information
that relates to the collection. It also includes provision for
obtaining information about other collections that are
available. When invoked, a searcher calls an initialize
method in the search class, kills any other searcher for the
same collection, and initializes its communication port. It
then waits for requests and responds by calling the
appropriate method in the search class. When the server is
shut down, a cleanup method is called.

There are four types of documents that a searcher deals
with: boilerplate, collection information , summaries, and
target documents. Boilerplate1 is used for any collection-
specific text needed by an interface program—this text
may be available in more than one language. In a well-
designed collection, all text specific to that collection
should be stored as boilerplate documents, rather than (for
example) as string constants in the interface program.
Collection information refers to documents relating to the
collection that are not indexed. Examples include tables of
contents, site lists, collection icons, short descriptions of
the collection, collection-specific help, and other
information generated on the fly—like a musical staff
showing a melody that was sung as an input query.
Summaries are short descriptions of target documents in
the collection, often available at different levels of detail.
They are used both when browsing a collection and when
displaying search results to give a small amount of
information about hits. Finally, target documents are
those that make up the collection, either the original
documents or versions in other formats.

4.3 Interface programs

Interface programs mediate between the user and the
searchers. They allow information to be obtained about a
collection, searches to be performed, and documents to be
retrieved. Interface programs are designed so that they can
run on a machine different from the one that hosts the
searcher. Interface programs communicate with each
searcher through a well-defined communication protocol
that can provide all the information needed to present a
complete view of the collection to a user. They divorce
the user interface from the searching, allowing individual
user interfaces to be created without the restriction of a
pre-determined information format (such as HTML). Using
the information provided by the searcher, an interface
program can present an attractive, informative interface to
a collection of information on a remote computer with
little or no special configuration effort.

Interfaces have been written that allow command-line
access (mainly for debugging and performing information
retrieval experiments) and end-user access over the World
Wide Web. The latter involves several pieces of software:
the user’s Web browser, an HTTP server, a CGI script, and
an interface server program. The last three could be
combined if efficiency became an issue. If the occasion
arose—as it might for interfaces to people with special

1 “Boilerplate” is a journalistic term for repeated items of canned text

(like a newspaper masthead), used so often that they are stored as
pre-prepared printing plates.

needs—a full window-based user interface could also be
created.

4.4 Protocol for communication

The communication protocol defines how interface
programs communicate with searchers; this is similar in
spirit to the well known Z39.50 protocol [6] but
incorporates an added degree of generality that is needed to
implement the architecture. Unlike Z39.50, the protocol
we have designed is stateless. This generally simplifies
implementation. However, it does make certain tasks, like
authentication, more difficult. Messages are sent from the
interface program to the search program using a remote
procedure call mechanism. Arguments are serialized,
passed across a socket interface, and de-serialized. The
procedure—a method within the search class—is called and
the result is serialized, returned through the socket and de-
serialized by the interface mechanism.

There are three types of message that all search
classes must be able to respond to: requests for general
information, requests for a search, and requests for
documents. The message type is prepended to the message
name, giving a uniform naming convention. The
messages, split into these three categories, are summarized
in Table 1: they are explained in more detail below.

Because all collections on a single computer are
included in the same file structure, once the location of
one collection is known it is possible to ascertain what
other collections are present on the same machine. This
gives a convenient mechanism for discovering the
existence of collections. When an interface program starts
up (and at periodic intervals after that) it sends messages
to all the collections which it has information on,
requesting information on other collections on the same
machine. The information that is returned about each
collection includes its identifier, the host machine it runs
on, and the port it uses for communication. When a
collection is added, its existence will (eventually) be
noticed by every interface program, providing it is aware
of another collection on the same machine. The automatic
nature of the notification process greatly simplifies the
administration involved in collection creation.

Once the interface program has constructed a list of
collections, it can acquire further information about each.
This allows it to present the user with an appropriate
menu of collections. ThisCollection and Boilerplate
information messages are requested when the interface
program is exploring all the collections. The
SearchOptions message is used so that the interface
program can present appropriate choices for a user’s query,
and obtain the information necessary to specify the query.
Other messages like CollectionInfo and SummaryOptions

are needed when query and results pages are displayed.
Finally, the DocumentTypes message is used to determine
an appropriate format when the user requests a document.

This protocol, like any other, is critically dependent
on semantics—a common understanding of what the
various terms mean. Using it, well-engineered interfaces
can be created for a large range of diverse collections:
however, it does require the interface program’s author to
understand all the various options. For this reason defaults
are given for all search, summary, and document-type
options. This allows even a simple interface program to
communicate with a powerful searcher.

When the user has selected all necessary options and
entered the information required to perform a search, which
in most cases constitutes a list of query terms, the
interface program makes the corresponding request to the
searcher. The response includes any information that
relates directly to the query. This often involves optional
information: for example, if the searcher expands terms
before matching them, the expanded query may be
returned; or if an audio track has been transcribed before
matching it, the transcription may be returned. Typically,
the list of returned documents is saved by the interface
program and delivered a page at a time using the document
summaries.

Messages in the third section of Table 1 are used to
obtain the various documents that are accessible through
the search program. Two of them, Boilerplate and
Summaries, return lists because these documents are
frequently required in groups and are generally brief. The
other two, CollectionInfo and TargetDocument, return
single documents because they are usually only required
individually and are generally longer.

5 Other architectures: Review and
comparison

In this section we review other architectures and
comment on how they differ from that presented here.

5.1 NCSTRL: Networked Computer Science
Technical Reports Library

The Networked Computer Science Technical Reports
Library, or NCSTRL (pronounced “ancestral”), is an
amalgam of two earlier projects for gathering together
technical reports in computer science (WATERS and
DIENST), which in turn were inspired by a scheme
(UCSTRI) for searching the README files that often
appear in FTP archives of technical reports. A distributed
architecture, it provides users with four kinds of service
[3]: a repository service, an index service, a meta service,
and a user interface service. All services communicate

using a protocol that was developed in the DIENST
project.

Review. The repository service stores documents.
Documents are uniquely specified by a string called a
handle (or “unique document identifier”). Document
handles have two parts: a naming authority and a string
provided by that authority. Naming authorities are
hierarchically organized, with period symbols used to
separate each name. Handles are similar in intention to
universal resource names (URNs) on the World Wide
Web. The document model allows a single document to
reside in several different formats, and, where appropriate,
provides access to individual pages of documents. Formats
are intended to express the purpose of a document rather
than its representation, although the possible
formats—which include PostScript, plain text, OCR’d
text, scanned images, in-line images, document structure
files, and HTML—seem to indicate a rather low-level
interpretation of “purpose.” The actual representation of
the document is represented as a MIME type corresponding
to its format.

The index service provides a facility for searching a
set of document descriptions and returning a list of handles
of those that match, or for returning bibliographic
information about a particular document. Boolean searches
are permitted, and title, author, and abstract fields are
supported. Stemming and casefolding appear to be always
in force. The meta service provides a directory of other
service locations. Through it one can list the resources
involved in the library, such as, index servers,
repositories, and organizations that publish reports. The
user interface service provides a form that allows a fielded
search to be specified, and web pages to browse the
collection by date or author. An important feature is that
it can perform parallel searching of multiple document
indexes.

NCSTRL is built on the DIENST protocol, an open
protocol that uses HTTP for information transmission.
Although designed specifically for technical reports, this
protocol should be applicable to other types of collection.
It embodies the document model described above, and it
seems that other index and user interface services could be
provided, based on this protocol. A serious problem with
the distributed nature of the architecture is that parts of the
index become unavailable when servers go down;
however, it is planned to provide some fault tolerance by
replicating index records on a backup server, thus making
it possible to search the information on a site when it is
down (but not retrieve the reports stored there).

Comparison. The principal difference between
NCSTRL and the NZDL architecture is that NCSTRL

regards a collection as made up of many different
distributed servers, whereas we view a library as
comprising many different distributed collections.
NCSTRL is oriented towards a particular type of
collection—technical reports—that are inherently
distributed amongst the organizations that publish them.

In contrast to NCSTRL, each of the collections in the
NZDL is centralized as a particular information repository,
although it may have been gathered from several sources
on the Internet. Moreover, for any particular collection a
certain piece of indexing software is responsible for
maintaining all access points to it, which simplifies the
design considerably. Access to individual collections is
“learned” from the collections themselves, which reduces
the need to publish each new collection’s availability.
Other differences include the fact that in the NZDL
architecture formats do not relate to intent; the unrestricted
range of formats enables multimedia searching; and no
structure (e.g. pagination) is imposed on documents
except by the indexing software that processes them. As
befits its bibliographic orientation, NCSTRL permits field
searching whereas we rely more heavily on ranked full-text
search.

5.2 Harvest

HARVEST is a distributed digital library system that
intends to make efficient use of Internet resources [2].
First, gatherer programs are run to collect documents from
the repositories where they reside. These programs filter
the raw information, reducing the amount that needs to be
transmitted. This information is then conveyed to a
broker, which indexes it and provides an interface to the
collection. Indexes can be replicated efficiently on different
sites on the Internet using a replicator program. Brokers
can also build indexes by filtering information held by
other brokers, which allows, for instance, the creation of a
subcollection containing Artificial Intelligence technical
reports from a full Computer Science technical report
index.

Although the HARVEST architecture is distributed,
brokers do not support distributed information retrieval:
the indexing software and user interface must run on the
same machine. There is, however, a special central broker,
called the HARVEST server registry, that contains
information about each gatherer, broker, cache, and
replicator on the Internet. This central index can help users
find a suitable broker that is likely to contain the
information they are seeking. It was also planned to
develop tools to permit recursive query
evaluation—allowing users to search several servers
identified by the registry simultaneously.

Review. A broker consists of five software
modules: collector, registry, storage manager, index/search
engine, and query manager. The collector is responsible
for obtaining new information, the registry stores
information about each object, the storage manager
archives the object on disk, the index/search engine
indexes and retrieves the objects, and the query manager
provides a World Wide Web interface to the index/search
engine.

HARVEST defines a generic index/search engine
interface that can accommodate a variety of “backend”
search engines. Two search programs have been developed
specially for HARVEST—Glimpse, which supports small
indexes and flexible queries, and Nebula, which sacrifices
index size for speed. The only requirements placed on the
index/search engine are that they must support Boolean
queries and allow incremental updates. The query manager
implements a consistent interface that is oriented towards
the World Wide Web; it also allows a user direct access to
each index/search engine to take advantage of its special
features. Unfortunately the query interface does not retain
state across queries, so query refinement is not possible.

The HARVEST system is highly customizable—with
moderate programming effort. This flexibility is shown in
the wide range of demonstration collections implemented
with the software—a Networked Information Discovery
and Retrieval collection, a Computer Science Technical
Report collection, a PC Software collection, and a
collection of World Wide Web home pages.

Comparison. HARVEST focuses on making good
use of Internet resources. However, our experience in the
New Zealand Digital Library is that only around half of
the collections we are currently developing contain
information obtained over the Internet, and even fewer
have a requirement to be updated over the Internet. We feel
that this situation will reflect digital libraries of the
future, with most of the content coming from local
material or from private or in-house collections. Although
HARVEST’s broker system does accommodate different
index styles, it is unclear whether the design is able to
incorporate the diverse index and search engines needed for
multimedia collections. Finally, the fact that the
index/search engine is combined with a user interface
means that cross-collection searches cannot be made,
multiple interfaces are hard to make, other services cannot
be built upon the search subsystem, and it could not
operate at a remote site.

5.3 Stanford’s Infobus

Inspired by the concept of a computer bus, the
InfoBus being developed by the Stanford Digital Libraries

Group defines a standard mechanism for interacting with
many different distributed information servers [7]. The
basic approach is to model the way in which interface
programs interact with different library services, and
develop protocols and infrastructure general enough to
implement the model. A general service client connects to
a library service proxy which acts as a gateway,
translating messages into formats that can be understood
by the library service.

Review. A library service proxy is created for each
different library service protocol (for example, Knight-
Ridder’s Dialog information service, World Wide Web
information sources, Z39.50, and Oracle’s ConText
summarization tool). The service client connects to the
appropriate library service proxy using Stanford’s digital
library interoperability protocol. This protocol is
implemented using CORBA objects.2 Each library service
proxy contains an object that implements a standard set of
methods, for example open session, open database, search
and quit. The proxy utilizes the polymorphism in object-
oriented languages to implement methods that take
appropriate action for the particular protocol that the
library service is using. For example, a call to open
session on a TELNET library service proxy would open a
TELNET connection to the requested service, whereas, a
call to open session on a Z39.50 library service proxy
would open a Z39.50 connection to the requested service.
Using this abstraction, a service client can connect to any
library service as long as there is a library service proxy
that can translate to the appropriate protocol.

This interoperability is intended to shield users from
the underlying details of communication with diverse
networked resources, allowing them to navigate
“information space” in a uniform way.

Comparison. The biggest disadvantage of this
scheme is that a library service protocol must be built for
each service that a user wants to connect to—this becomes
a problem with the quickly expanding World Wide Web
where services multiply daily, each one using different
conventions. Although the Stanford architecture seems at
first to be quite different to the NZDL, they do exhibit
some similarities. Both use objects to accommodate
diversity—the InfoBus deals with heterogeneous
communications protocols, the NZDL deals with
heterogeneous indexes and media types. In fact it would be
possible to use the search program like a library service
proxy and derive classes which connect to a stateless
service like a commercial Web search engine, for

2 CORBA is a distributed object standard developed by the Object

Management Group.

instance—although this would be inefficient for state-
based protocols like Z39.50. Again, there seems to be no
indication of how well the architecture can handle
document types other than text.

6 Conclusion

We have described a new architecture for digital
libraries, one that is flexible enough to deal with many
different collections served through a wide variety of
searching or indexing engines. We take the collection as
our basic unit and assume that any given collection is
served through a particular search discipline. The search
engine is encapsulated within a searcher program that
provides important additional facilities over and above
search itself: facilities both for the interface program with
which it communicates (such as what query options are
supported, their possible values and default values), and
for the user (such as target documents, summaries, and
information about the collection). The searcher
communicates with the interface program that provides the
user interface through a well-defined communication
protocol. Information about the existence of other
collections is also disseminated through this mechanism.
The design is flexible enough to accommodate search
engines for completely different media, and this has been
demonstrated by implementing services for text retrieval
and for music melody retrieval.

This work has many points of contact with other
digital library projects, both in aims and in mechanisms.
Like Stanford’s InfoBus it uses objects to achieve
flexibility of functionality and to maximize the use of
common code segments. Like NCSTRL it is distributed,
although in our case it is whole collections, and the
software that accesses them, that is distributed, rather than
parts of a collection. Like HARVEST it is open-ended and
flexible, but care is taken to separate user interface from
searcher so that different interfaces can communicate with
the same search mechanism. Studying these earlier
systems has enabled us to design and implement a new
and powerful architecture, one that is already simplifying
collection building and maintenance, and is expected to
provide an effective testbed for user interface design and for
the creation of novel library services within the New
Zealand Digital Library.

References

[1] Apté, C., Damerau, R. and Weiss, S. (1994) “Automated
learning of decision rules for text categorization.” ACM
Trans Office Information Systems 1 2 (3), 233–251.

[2] Bowman, C. M., Danzig, P. B., Hardy, D. R., Manber, U.
and Schwartz, M. F. (1995) “The Harvest information
discovery and access system.” Computer Networks and
ISDN Systems 2 8 , 119–125.

[3] Davis, J. R. (1995) “Creating a networked computer
science technical report library.” D-Lib Magazine,
September 1995, http://www.dlib.org/dlib/
september95/09davis.html.

[4] McNab, R.J., Smith, L.A. and Witten, I.H. (1996a)
“Signal processing for melody transcription.”
Australasian Computer Science Conference, 301–307,
Melbourne, Australia; January.

[5] McNab, R.J., Smith, L.A., Witten, I.H., Henderson, C.L.
and Cunningham, S.J. (1996b) “Toward the digital music
library: tune retrieval from acoustic input.” Proc Digital
Libraries ’96, 11–18.

[6] National Information Standards Organization (1995)
Information retrieval (Z39.50): Application service
definition and protocol specification. ANSI/NISO,
Bethesda, Md.

[7] Paepcke, A., Cousins, S. B., Garcia-Molina, H., Hassan,
S. W., Ketchpel, S. P., Röscheisen, M. and Winograd, T.
(1996) “Using distributed objects for digital library
interoperability.” IEEE Computer 2 9 (5), 61–68.

[8] Smith, J. R. and Chang, S.-F. (1996) “VisualSEEK: a
fully automated content-based image query system.”
ACM Multimedia Conference, Boston, MA; November.

[9] Witten, I.H., Cunningham, S.J. and Apperley, M.D.
(1996) “The New Zealand Digital Library project.” New
Zealand Libraries 4 8 (8), 146–152.

[10]Witten, I.H., Moffat, A. and Bell, T.C. (1994) Managing
gigabytes. Van Nostrand Reinhold.

[11]Yan, T. W. and Garcia-Molina, H. (1995) “SIFT — A tool
for wide-area information dissemination.” Proceedings
of the 1995 USENIX Technical Conference, 177–186.

