
Multiclass Alternating Decision Trees

Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby,
Eibe Frank and Mark Hall

Department of Computer Science
University of Waikato

Hamilton, New Zealand
{geoff, bernhard, rkirkby, eibe, mhall}@cs.waikato.ac.nz

Abstract. The alternating decision tree (ADTree) is a successful clas-
sification technique that combines decision trees with the predictive ac-
curacy of boosting into a set of interpretable classification rules. The
original formulation of the tree induction algorithm restricted atten-
tion to binary classification problems. This paper empirically evaluates
several wrapper methods for extending the algorithm to the multiclass
case by splitting the problem into several two-class problems. Seeking
a more natural solution we then adapt the multiclass LogitBoost and
AdaBoost.MH procedures to induce alternating decision trees directly.
Experimental results confirm that these procedures are comparable with
wrapper methods that are based on the original ADTree formulation in
accuracy, while inducing much smaller trees.

1 Introduction

Boosting is now a well established procedure for improving the performance
of classification algorithms. AdaBoost [8] is the most commonly used boosting
procedure, but others have gained prominence [3, 10]. Like many classification
algorithms, most boosting procedures are formulated for the binary classifica-
tion setting. Schapire and Singer generalize AdaBoost to the multiclass setting
producing several alternative procedures of which the best (empirically) is Ad-
aBoost.MH [14]. This version of AdaBoost covers the multilabel setting where
an instance can have more than one class label as well as the multiclass setting
where an instance can have a single class label taken from a set of (more than
two) labels.

Alternating decision trees are induced using a real-valued formulation of Ad-
aBoost [14]. At each boosting iteration three nodes are added to the tree. A
splitter node that attempts to split sets of instances into pure subsets and two
prediction nodes, one for each of the splitter node’s subsets. The position of this
new splitter node is determined by examining all predictor nodes choosing the
position resulting in the globally best improvement of the purity score.

Essentially, an ADTree is an AND/OR graph. Knowledge contained in the
tree is distributed as multiple paths must be traversed to form predictions. In-
stances that satisfy multiple splitter nodes have the values of prediction nodes

that they reach summed to form an overall prediction value. A positive sum rep-
resents one class and a negative sum the other in the two-class setting. The result
is a single interpretable tree with predictive capabilities that rival a committee
of boosted C5.0 trees [7].

An additional attractive feature of ADTrees, one that is not possible with
conventional boosting procedures, is their ability to be merged together. This is
a particularly useful attribute in the context of multiclass problems as they are
often re-formulated in the two-class setting using one or more classes against the
others. In such a setting ADTrees can be combined into a single classifier.

In their original exposition on ADTrees, Freund and Mason [7] note that
because alternating trees can be defined as a sum of simple base rules it is
a simple matter to apply any boosting algorithm to the problem of inducing
ADTrees. For the multiclass setting one possible candidate is AdaBoost.MH.
In this paper we also explore and compare two other solutions. The first is to
adapt the original two-class ADTree algorithm to the multiclass setting using a
variety of wrapper methods. The second is to use the multiclass LogitBoost [10]
procedure as the underlying boosting algorithm. This algorithm is a natural
choice as it is directly applicable to multiclass problems.

The paper is organized as follows. In Section 2 we review ADTrees and the
LogitBoost procedure. Section 3 describes our attempts to cast ADTrees to the
multiclass setting. Section 4 describes the new algorithm that induces ADTrees
using LogitBoost. Section 5 contains experimental results that compare both
the LogitBoost and AdaBoost.MH methods with the best of the adaptations of
the original algorithm on some benchmark datasets. Section 6 summarizes the
contributions made in this paper.

2 Background

In this section we first summarize the original algorithm for inducing ADTrees.
As Freund and Mason [7] argue that any boosting method is applicable to
ADTree induction, it is natural to suppose that AdaBoost.MH would provide
a good setting for the multiclass extension (given that AdaBoost works so well
in the two-class setting). A similar argument can be made for an alternative
framework based on LogitBoost, and this is discussed in the final part of this
section.

2.1 ADTrees

Alternating decision trees provide a mechanism for combining the weak hypothe-
ses generated during boosting into a single interpretable representation. Keeping
faith with the original implementation, we use inequality conditions that com-
pare a single feature with a constant as the weak hypotheses generated during
each boosting iteration. In [7] some typographical errors and omissions make the
algorithm difficult to implement so we include below a more complete descrip-
tion of our implementation. At each boosting iteration t the algorithm maintains

two sets, a set of preconditions and a set of rules, denoted Pt and Rt, respec-
tively. A further set C of weak hypotheses is generated at each boosting iteration.

1. Initialize Set the weights wi,t associated with each training instance to 1. Set
the first rule R1 to have a precondition and condition which are both true. Cal-
culate the prediction value for this rule as a = 1

2 ln W+(c)
W−(c) where W+(c), W−(c)

are the total weights of the positive and negative instances that satisfy condition
c in the training data. The initial value of c is simply True.

2. Pre-adjustment Reweight the training instances using the formula wi,1 =
wi,0e

−ayt (for two-class problems, the value of yt is either +1 or -1).

3. Repeat for t = 1, 2, . . ., T

(a). Generate the set C of weak hypotheses using the weights associated
with each training instance wi,t

(b). For each base precondition c1 ∈ Pt and each condition c2 ∈ C calculate

Zt(c1, c2) = 2

(√
W+(c1 ∧ c2)W−(c1 ∧ c2) +

√
W+(c1 ∧ ¬c2)W−(c1 ∧ ¬c2)

)
+W (¬c1)

(c). Select c1, c2 which minimize Zt(c1, c2) and set Rt+1 to be Rt with the
addition of the rule rt whose precondition is c1, condition is c2 and two
prediction values are:

a =
1
2

ln
W+(c1 ∧ c2) + ε

W−(c1 ∧ c2) + ε
, b =

1
2

ln
W+(c1 ∧ ¬c2) + ε

W−(c1 ∧ ¬c2) + ε

(d). Set Pt+1 to be Pt with the addition of c1 ∧ c2 and c1 ∧ ¬c2.

(e). Update the weights of each training example according to the equation

wi,t+1 = wi,te
−rt(xi)yt

4. Output the classification rule that is the sign of the sum of all the base rules
in RT+1:

class(x) = sign

(T∑
t=1

rt(x)
)

In terms of parameter settings for implementations described in this paper,
we set the value of ε to 1, and vary the value of T for stopping the induction in
fixed increments (namely, 10, 20, 50 and 100). Determining an optimal setting
for T is still an open research question.

2.2 LogitBoost

As mentioned above, the underlying learning algorithm for ADTrees is Ad-
aBoost. Friedman et al. [10] analyze AdaBoost from a statistical perspective
and find that it can be viewed as a stage-wise estimation procedure for fitting
an additive logistic regression model according to an exponential loss function.
This finding enables them to derive a stage-wise boosting procedure, implement-
ing an adaptive Newton algorithm, that optimizes the (more standard) binomial
likelihood instead of the exponential loss function used in AdaBoost. They call
this algorithm LogitBoost. They also describe a generalized version of LogitBoost
that optimizes the multinomial likelihood. This algorithm is directly applicable
to multiclass problems. Compared to AdaBoost.MH (see Section 3.2), the gen-
eral form of LogitBoost (which we call LT1PC later) has the advantage that it
can be wrapped around any numeric predictor without any modifications. Ad-
aBoost.MH, on the other hand, requires serious modification to the weak learner
so that it can produce a separate prediction for each class value and also deal
with class specific weights.

3 Multiclass ADTrees

When extending any algorithm from binary to multiclass classification there are
two options. The simplest approach is to transform the multiclass problem into
several binary classification problems. This general approach can be applied to
any classification algorithm, resulting in a set of voting models. Typically, this
approach leads to a large number of models. Alternatively, we can attempt to
induce a single tree capable of predicting each of the class labels directly.

3.1 Multiclass as multiple two-class problems

Transforming ADTrees to map multiple class labels to two classes can be ap-
proached in several ways. As ADTrees can be merged, the resulting multiclass
model can be a single tree derived from the set of two-class voting trees.

A standard method [6] is to treat a subset of class labels as class A, and
the set of remaining labels as class B, thus reducing the problem to two classes
from which a model can be built. This is then repeated for different subsets
and the models vote towards the class labels they represent. Provided there is
sufficient class representation and separation between the subsets, the vote tallies
for individual class labels can be collected to form a reasonable prediction.

We experimented with a number of subset generation schemes:

1-against-1 [9, 1]: generate a tree for every pair of classes, where subset A con-
tains only the first class and subset B contains only the second. An advantage
of this approach is that each tree need only be trained with a subset of the
data, resulting in faster learning [11].

1-against-rest: one tree per class, where subset A contains the class, and subset
B contains the remaining classes.

random: randomly generate a unique subset, creating twice as many trees as
there are classes. Random codes have good error-correcting properties [13].

exhaustive: every unique subset possible.

Note that the exhaustive method is not computationally practical as class
numbers increase (in our experiments this occurs when there are more than 16
class labels).

3.2 Direct Induction

The AdaBoost.MH algorithm is almost identical to AdaBoost. The major differ-
ence is that instead of generating weak hypotheses ht that map the input space
X to either a discrete set [−1,+1] or by extension R, the weak hypotheses map
X × Y to R, where Y is a finite set of class labels.

It would appear that the correct interpretation of AdaBoost.MH is not im-
mediately obvious, for example, Friedmann et al [10] interpret the method as a
variant of 1-against-rest and build a distinct classifier per class. Many of the crit-
icisms of AdaBoost.MH in [10] are based on this mis-interpretation. Our results
suggest that AdaBoost.MH and LogitBoost actually share much in common in
terms of both predictive performance and computational complexity.

In fact, AdaBoost.MH constructs a single tree per iteration. To construct
an ADTree using AdaBoost.MH we need to change predictor nodes to handle a
vector of predictions (one per class) and splitter nodes to compute a Z value per
class label. At each iteration the test that minimises the sum of Z scores over
all class labels is added to the tree.

To perform prediction using this tree we sum all contributions at each predic-
tor node that is satisfied by the example, to form a prediction vector containing
a single prediction per class. We choose the maximum value from this vector as
the single output class.

4 LADTree Algorithm

We follow Friedmann et al [10] in defining the multiclass context. Namely, that
for an instance i and a J class problem, there are J responses y∗ij each taking
values in {−1, 1}. The predicted values, or indicator responses, are represented by
the vector Fj(x) which is the sum of the responses of all the ensemble classifiers
on instance x over the J classes. The class probability estimate is computed from
a generalization of the two-class symmetric logistic transformation to be:

pj(x) =
eFj(x)∑J
k=1 e

Fk(x)
,
J∑
k=1

Fk(x) = 0 (1)

The LogitBoost algorithm can be fused with the induction of ADTrees in
two ways, which will be explained in the following subsections. In the first, more
conservative approach called LT1PC we grow separate trees for each class in
parallel. In the second approach called LT, only one tree is grown predicting all
class probabilities simultaneously.

4.1 LT1PC: inducing one tree per class

The LADTree learning algorithm applies the logistic boosting algorithm in order
to induce an alternating decision tree. As with the original algorithm, a single
attribute test is chosen as the splitter node for the tree at each iteration. Stored
with each training instance is a working response and weights on a per-class ba-
sis. The aim is to fit the working response to the mean value of the instances, in
a particular subset, by minimising the least-squares value between them. When
choosing tests to add to the tree we look for the maximum gain, that is, the
greatest drop in the least squares calculation. Note, in the algorithm below the
fmj(x) vector is equivalent to the single prediction weight of a predictor node in
the original ADTree algorithm. The algorithm is as follows:

1. Initialize Create a root node with Fj(x) = 0 and Pj(x) = 1
J ∀j

2. Repeat for m = 1, 2, . . . , T :
(a) Repeat for j = 1, . . . , J :

(i) Compute working responses and weights in the jth class
zij = y∗ij−pij

pij(1−pij) wij = y∗ij−pij
zij

(ii) Add the single test to the tree that best fits fmj(x) by a weighted
least-squares fit of zij to xi with weights wij

(b) Add prediction nodes to the tree by setting
fmj(x)← j−1

J (fmj(x)− 1
J

∑J
k=1 fmk(x)), and

Fj(x)← Fij(x) + fmj(x)
(c) Update pj(x) via Equation 1 above

3. Output Output the classifier argmaxjFj(x)

With this algorithm, trees for the different classes are grown in parallel. Once
all of the trees have been built, it is then possible to merge them into a final
model. If the structure of the trees is such that few tests are common, the merged
tree will mostly contain subtrees affecting only one class. The size of the tree
cannot outgrow the combined size of the individual trees. The merging operation
involves searching for identical tests on the same level of the tree. If such tests
exist then the test and its subtrees can be merged into one. The additive nature
of the trees means that the prediction values for the same class can be added
together when merged.

4.2 LT: directly inducing a single tree

We can make a simple adjustment to this algorithm within Step 2 by moving
Step (a)(ii) out to become Step (b). We then obtain a single directly induced
tree, as follows:

2. Repeat for m = 1, 2, . . . , T :
(a) Repeat for j = 1, . . . , J :

(i) Compute working responses and weights in the jth class
zij = y∗ij−pij

pij(1−pij) wij = y∗ij−pij
zij

(b) Add the single test to the tree that best fits fmj(x) by a weighted
least-squares fit of zij to xi with weights wij
(c) Add prediction nodes to the tree by setting

fmj(x)← j−1
J (fmj(x)− 1

J

∑J
k=1 fmk(x)), and

Fj(x)← Fij(x) + fmj(x)
(d) Update pj(x) via Equation 1 above

The major difference to LT1PC is that in LT we attempt to simultaneously
minimise the weighted mean squared error across all classes when finding the
best weak hypothesis for the model.

5 Experimental Results

The datasets and their properties are listed in Table 1. The first set of ten
datasets are used to compare ADTrees with LT as an algorithm for solving
two-class problems. The remainder are used in multiclass experiments, ordered
incrementally from the smallest number of classes (3) to the largest (26). Most
of the datasets are from the UCI repository [2], with the exception of half-letter.
Half-letter is a modified version of letter, where only half of the class labels (A-M)
are present.

In the case of the multiclass datasets, on the first nine having less than
eight classes, accuracy estimates were obtained by averaging the results from 10
separate runs of stratified 10-fold cross-validation. In other words, each scheme
was applied 100 times to generate an estimate for a particular dataset. For these
datasets, we speak of two results as being “significantly different” if the difference
is statistically significant at the 5% level according to a paired two-sided t-test,
each pair of data points consisting of the estimates obtained in one ten-fold
cross-validation run for the two learning schemes being compared.

On the datasets with more than eight classes, a single train and test split
was used. Statistical significance was measured by the McNemar [5] test.

NA (for not available) in the results table signifies that the learning scheme
did not finish training. If learning could not complete within the time period
of a week then it was terminated and marked NA. It is not surprising that the
exhaustive method did not finish above 16 classes when one considers the number
of permutations required. Due to the presence of these unfinished experiments
the averages for all methods listed in this table exclude the last four datasets.
Thus a fair comparison is possible.

Table 2 shows that LT is comparable to ADTree over ten boosting itera-
tions on two-class datasets. There is little change to this result when raising the
number of boosting iterations to 100.

Table 1. Datasets and their characteristics

Dataset Classes Instances (train/test) Attributes Numeric Nominal

breast-wisc 2 699 9 9 0
cleveland 2 303 13 6 7
credit 2 690 15 6 9
hepatitis 2 155 19 6 13
ionosphere 2 351 34 34 0
labor 2 57 16 8 8
promoters 2 106 57 0 57
sick-euthyroid 2 3163 25 7 18
sonar 2 208 60 60 0
vote 2 435 16 0 16

iris 3 150 4 4 0
balance-scale 3 625 4 4 0
hypothyroid 4 3772 29 7 22
anneal 6 898 38 6 32
zoo 7 101 17 1 16
autos 7 205 25 15 10
glass 7 214 9 9 0
segment 7 2310 19 19 0
ecoli 8 336 7 7 0
led7 10 1000/500 7 0 7
optdigits 10 3823/1797 64 64 0
pendigits 10 7494/3498 16 16 0
vowel 11 582/462 12 10 2
half-letter 13 8000/1940 16 16 0
arrhythmia 16 302/150 279 206 73
soybean 19 307/176 35 0 35
primary-tumor 22 226/113 17 0 17
audiology 24 200/26 69 0 69
letter 26 16000/4000 16 16 0

Table 2. Two-class problems: ADTree vs. LT

dataset ADTree(10) LT(10)

breast-wisc 95.61 95.65
cleveland 81.72 80.36 −
credit 84.86 85.04
hepatitis 79.78 77.65
ionosphere 90.49 89.72
labor 84.67 87.5 +
promoters 86.8 87.3
sick-euthyroid 97.71 97.85 +
sonar 76.65 74.12 −
vote 96.5 96.18 −
+, − statistically significant difference

Table 3. Wrapping two-class ADTree results

dataset 1vs1 1vsRest Random Exhaustive

iris 95.13 95.33 95.33 95.33
balance-scale 83.94 85.06 + 85.06 + 85.06 +
hypothyroid 99.61 99.63 99.64 99.64
anneal 99.01 98.96 99.05 99.19 +
zoo 90.38 93.45 + 95.05 + 95.94 +
autos 78.48 77.51 77.98 79.99 +
glass 75.90 74.33 − 73.79 − 76.76
segment 96.74 95.94 − 95.91 − 96.62
ecoli 83.31 83.96 84.69 + 85.95 +
led7 75.40 74.40 76.40 75.60
optdigits 92.49 90.26 − 92.21 − 93.82
pendigits 94.11 91.48 − 86.16 − 89.54 −
vowel 47.40 41.13 − 48.48 + 50.65
half-letter 88.71 80.77 − 76.13 − 80.98 −
arrhythmia 68.00 66.00 − 66.00 68.00
soybean 89.36 89.10 89.36 NA
primary-tumor 46.90 43.36 − 46.90 NA
audiology 76.92 80.77 84.62 NA
letter 85.98 70.63 − 65.20 − NA

average 84.57 83.21 83.46 84.87

+, − statistically significant difference to 1vs1

Given the large number of options for solving multiclass problems using
ADTrees we designed the following experiments to provide useful comparisons.
First, we determine the best multiclass ADTree method by treating the induc-
tion as a two-class problem (Table 3). Second, we compare this method with the
AdaBoost.MH and the two LADTree methods described in the last section.

Generally, it is difficult to compare all of these methods fairly in terms of
the number of trees produced. For example, the 1-against-1 method produces
J(J−1)

2 trees, 1-against-rest J , random 2 ∗ J , and exhaustive 2J−1 trees. LT1PC
produces J trees while AdaBoost.MH and LT induce a single tree. Thus, it can
be the case that the number of trees is greater than the number of boosting
iterations, for example, the average number of trees produced by 1-against-1
over all nineteen multiclass datasets is 79. Unless otherwise stated, in all tables
we compare methods against a fixed number of boosting iterations (10).

Table 3 allows us to compare the results of each method on an overall basis
through the average and on a pair-wise basis through the significance tests. Note
that the significance tests are all performed with respect to the first column in
the table. On both scales the exhaustive method is the best. As the exhaus-
tive method is not practical for large class datasets we chose the 1-against-1
method to compare against LADTrees, as this method is very similar in overall
performance.

Table 4 compares the “winner” of Table 3 (1-against-1) to AdaBoost.MH and
both versions of LADTrees of various sizes. It demonstrates the improvements

that can be made by increasing the number of boosting iterations for the single
tree methods LT and AdaBoost.MH as they generate tree sizes closer to the
number generated by 1-against-1.

The 1-against-1 method defeats each of the small tree methods at 10 boosting
iterations. But when the number of iterations is increased to 100 tests each, we
notice a dramatically different picture: all methods are outperforming the 1-
against-1 method.

Consider the 100 iteration case: 1-against-1 is boosted 10 times but produces
J(J−1)

2 trees, which represents an average tree size of 790 (tests). LT and Ad-
aBoost.MH outperform this method on average after 100 iterations (i.e. using
trees with 100 tests). Table 4 shows that LT(100) outperforms most of the early
datasets (class sizes 3-13) but struggles against two of the later datasets. For
soybean 1-against-1 uses a tree of size 1710, and for primary-tumor it uses a
tree of size 2310. Perhaps the most remarkable result is for half-letter where 1-
against-1 using 780 tests has an accuracy of 88.71% whereas LT(100) achieves
92.16% using only 100 tests.

Clearly, both on an overall average and on a per dataset basis, AdaBoost.MH
and LT are comparable methods. There are no obvious performance differences
between these methods at 10 and 100 iterations.

Table 4 also compares the two logistic methods. Due to the number of trees
used by LT1PC it outperforms LT both on average and on pairwise tests. But
these differences seem to disappear as the number of iterations increases: at 10
boosting iterations LT1PC wins on 11 datasets and has 4 losses; at 100 boosting
iterations LT1PC has only 4 significant wins and 3 losses.

6 Conclusions

This paper has presented new algorithms for inducing alternating decision trees
in the multiclass setting. Treating the multiclass problem as a number of binary
classification problems and using the two-class ADTree method produces accu-
rate results from large numbers of trees. Although ADTrees can be merged, the
size of the combined tree prohibits its use as a practical method, especially if
interpretable models are a requirement.

Using AdaBoost.MH for multiclass problems was thought to be problematic.
The theoretical objections to this method presented in [10] appear to be based
on a mis-interpretation of AdaBoost.MH. Our experimental results demonstrate
that this method is competitive with LogitBoost in the multiclass setting, at
least for ADTrees.

Two new algorithms, LT1PC and LT, for inducing ADTrees using LogitBoost
are presented. One method induces a single tree per class, the other a single tree,
optimised across all classes. In experimental results comparing these methods to
1-against-1, the best of the wrapper methods, both LADTree methods LT1PC
and LT and AdaBoost.MH show significant promise, especially when we consider
the relative sizes of the induced trees.

Table 4. LADTree and AdaBoost.MH results

dataset 1PC(10) LT(10) MH(10) 1PC(100) LT(100) MH(100)

iris 95.07 94.20 − 94.93 95.13 95.13 95.13
balance-scale 88.80 + 84.50 84.21 86.53 + 90.40 + 90.82 +
hypothyroid 99.49 − 99.59 99.57 − 99.55 − 99.62 99.63
anneal 99.44 + 98.50 − 97.41 − 99.62 + 99.66 + 99.72 +
zoo 92.95 + 94.34 + 94.55 + 92.35 + 94.53 + 94.34 +
autos 81.12 + 64.57 − 69.92 − 82.71 + 82.43 + 82.69 +
glass 71.81 − 67.95 − 66.65 − 77.05 75.51 73.97 −
segment 96.68 92.27 − 93.14 − 97.99 + 97.84 + 97.72 +
ecoli 82.44 84.64 + 84.40 84.27 + 83.54 83.99
led7 75.20 77.60 72.80 75.00 73.60 74.00
optdigits 91.32 78.63 − 77.69 − 95.77 + 94.94 + 94.49 +
pendigits 91.65 − 78.53 − 78.24 − 96.74 + 96.51 + 96.00 +
vowel 39.61 − 34.85 − 34.85 48.05 46.54 46.54
half-letter 83.92 − 66.80 − 65.36 − 95.00 + 92.16 + 91.65 +
arrhythmia 70.00 64.67 64.67 68.67 66.67 67.33
soybean 90.43 81.38 − 79.79 − 85.90 83.51 − 92.82 +
primary-tumor 34.51 − 43.36 42.48 33.63 − 42.48 − 45.13
audiology 80.77 80.77 88.46 76.92 76.92 80.77
letter 76.78 − 50.53 − 44.25 − 93.25 + 86.78 84.80 −
average 81.16 75.67 75.44 83.38 83.09 83.77

+, − statistically significant difference to 1vs1

From a different point of view one can also argue that the LADTree and
AdaBoost.MH methods are the first direct induction methods for multiclass
option trees, a hitherto unsolved problem. Previous attempts [4, 12] were plagued
by the need to specify multiple parameters, and also seemed to contradict each
other in their conclusion of why and where in a tree options (i.e. alternatives)
were beneficial. Contrary to these attempts, the LADTree and AdaBoost.MH
methods have only a single parameter, the final tree size, and automatically add
options where they seem most beneficial.

A research problem that deserves attention is the determination of the stop-
ping condition T for boosting methods. Freund and Mason [7] use cross-validation
with some success but this method is impractical for large datasets. One possi-
ble solution is to use out-of-bag samples to determine if adding new tests will
continue to increase performance. This will be a topic of future work.

Acknowledgements

We would like to thank the anonymous referees for making us re-address the
results we had earlier achieved with our first implementation of AdaBoost.MH.
This uncovered what appears to be a common misunderstanding of how to im-
plement this method.

References

1. Erin Allwein, Robert Schapire, and Yoram Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning Research,
1:113–141, 2000.

2. C. Blake, E. Keogh, and C.J. Merz. UCI repository of machine learning databases.
Technical report, University of California, Department of Information and Com-
puter Science, Irvine, CA, 1998. [www.ics.uci.edu/˜mlearn/MLRepository.html].

3. Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.
4. Wray Buntine. Learning classification trees. Statistics and Computing, 2:63–73,

1992.
5. Thomas G. Dietterich. Approximate statistical test for comparing supervised clas-

sification learning algorithms. Neural Computation, 10(7):1895–1923, 1998.
6. Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via

error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–
286, 1995.

7. Yoav Freund and Llew Mason. The alternating decision tree learning algorithm.
In Proc. 16th Int. Conf. on Machine Learning, pages 124–133. Morgan Kaufmann,
1999.

8. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In Proc. 13th Int. Conf. on Machine Learning, pages 148–156. Morgan Kaufmann,
1996.

9. Jerome Friedman. Another approach to polychotomous classification. Technical
report, Stanford University, Department of Statistics, 1996.

10. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-
sion: a statistical view of boosting. The Annals of Statistic, 28(2):337–374, 2000.

11. Johannes Fürnkranz. Round robin classification. Journal of Machine Learning
Research, 2:721–747, 2002.

12. Ron Kohavi and Clayton Kunz. Option decision trees with majority votes. In
Proc. 14th Int. Conf. on Machine Learning, pages 161–169. Morgan Kaufmann,
1997.

13. Robert E. Schapire. Using output codes to boost multiclass learning problems. In
Proc. 14th Int. Conf. on Machine Learning, pages 313–321. Morgan Kaufmann,
1997.

14. Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. In Proc. 11th Conf. on Computational Learing The-
ory, pages 80–91. ACM Press, 1998.

