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Abstract

In this article we demonstrate that, when evaluating a method for determin-
ing prediction intervals, interval size matters more than coverage because the
latter can be fixed at a chosen confidence level with good reliability. To achieve
the desired coverage, we employ a simple non-parametric method to compute
prediction intervals by calibrating estimated prediction errors, and we extend
the basic method with a continuum correction to deal with small data sets.

In our experiments on a collection of several NIR data sets, we evaluate sev-
eral existing methods of computing prediction intervals for partial least-squares
(PLS) regression. Our results show that, when coverage is fixed at a chosen
confidence level, and the number of PLS components is selected to minimize
squared error of point estimates, interval estimation based on the classic ordi-
nary least-squares method produces the narrowest intervals, outperforming the
U-deviation method and linearisation, regardless of the confidence level that is
chosen.
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1. Introduction

In [1], Zhang and Garcia-Munoz made a case for the importance of consid-
ering prediction intervals when performing analysis of NIR data using PLS, and
several methods were compared. However, when evaluating the quality of pre-
diction intervals, [1] only considered observed coverage for a given user-specified
confidence level, that is, the proportion of spectra in which the observed target
value (i.e. end point) is within the prediction interval. For example, when a
95% prediction interval is desired, the criterion for acceptability of an interval
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estimator is that for at least 95% of all spectra the target value is within the pre-
dicted interval. Based on this criterion alone, it was found that several methods
produce satisfactory intervals.

However, the size of the interval estimates is obviously also of significant
concern in real-world applications and this criterion was not considered in the
evaluation in [1]. In this article, we evaluate interval estimators based on in-
terval size. It is clear that achieving a desired coverage level is crucial, but,
assuming it can be obtained reliably, methods can be compared based on the
size of the intervals produced. We present a simple non-parametric method for
calibrating prediction intervals to achieve a desired level of coverage. Based on
this simple method, a specific coverage level can be achieved reliably on the data
we investigated, and interval size then becomes the primary issue of concern.

In our experimental set up, we do not use a single train/test split to train
and evaluate an interval estimator because this method does not provide any
information about the sensitivity of the performance estimates regarding the
particular training and test sets that were chosen. Also, single train/test splits
make replication of results, an important issue in any scientific undertaking,
hard to accomplish since a slightly different split can result in significantly dif-
ferent outcomes [2]. Instead, we use repeated cross-validation in all our experi-
ments, which makes it possible to test for statistically significant differences in
observed performance estimates and provides a much higher replicability than
single train/test splits.

In the following section, we describe the theory of some common methods
used for PLS-based prediction intervals for NIR. Section 3 describes experimen-
tal design, including data sets and details of the experiments. Section 4 contains
the results of the experiments and discusses the implications, ending in a short
concluding summary.

2. Theory

In this article, we treat NIR analysis as a regression problem. We assume
that the NIR machine produces a spectrum that (after appropriate filtering
and smoothing) can be represented by a vector X, and we are interested in
determining a quantity of interest y, such as the freezing temperature of fuel or
the nitrogen content in soil samples. To build a predictive model, we gather a
set of n training samples (Xi, yi), i ∈ [1...n], where x = {X1, . . . ,Xn} are the
vectors representing the spectra, and y = {y1, . . . , yn} are the accompanying
target values. The regression problem consists of predicting a value y∗ for a
new spectrum X∗.

2.1. Prediction intervals for PLS regression

In ordinary least-squares regression, we predict y∗ by finding the regression
coefficient vector β that fits

y = Xβ + �
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such that the squared length of the residuals vector |�|2 =
�n

i=1 �
2
i is minimized.

Here, and in the remainder of the article, we assume that y and X are centered
so that their mean value is zero. The β that minimizes the squared error on the
training data is given by β̂ = (XTX)−1XTy.

Minimizing the squared error on the training data does not necessarily yield
the best linear regression model because and ordinary least-squares regression
can over-fit the training data. The error on new data is what is important. In
NIR analysis in particular, it is common to filter the spectra first by performing
dimensionality reduction using partial least squares (PLS), which applies a linear
transformation of X based on a weight matrix R that is chosen to minimize the
least squares error (see [3] for further technical details). In PLS regression, the
coefficient vector used for prediction is then estimated as follows:

β̂ = (RTR)−1XTy

Note that PLS regression is equivalent to ordinary least-squares regression
when all PLS components are used in R. In practice, it is common to choose
an appropriate number of components by measuring predictive performance on
validation data (e.g. using cross-validation) to combat over-fitting.

The focus on this article is on interval estimates rather than point estimates.
The literature contains several methods for computing prediction intervals using
PLS regression (see [1]). We now briefly review the ones we evaluate in our
empirical comparison.

2.1.1. Ordinary least squares

After filtering through PLS, the original n training vectors X are mapped
into n filtered vectors R. We can apply least squares regression on the resulting
data set R, yielding the above expression for the coefficient vector. In the same
manner, the ordinary least-squares (OLS) method for computing prediction in-
tervals can be applied to the PLS-filtered data. Prediction intervals are then
estimated as

{ŷ∗ − tα/2,n−dfs, ŷ
∗ + tα/2,n−dfs} (1)

where ŷ∗ is the OLS prediction for spectrum X∗, α is the significance level for
the interval, t.,. is the Student-t distribution, n is the number of spectra in the
training set, and df represents the degrees of freedom.

In this expression, we can choose α based on the desired confidence level,
and, for ordinary least squares, the value of df is the number of coefficients.
Then, s is estimated as

s = σ

�

1 + h0 +
1

n

where σ the standard error on the training data, based on the df value, and

h0 = X∗T (XXT )−1X∗
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2.1.2. U-deviation

The U-deviation method is an empirically obtained formula used in Unscram-
bler, a popular chemometrics software package. We refer to the manual [4] (page
342) for a detailed description of the method. Suppose we want to predict the
value for spectrum X∗. Let h0 = X∗T (XXT )−1X∗. The standard deviation is
estimated using

s =

�
σ̂y

2

�
h0 +

σX∗

σX
+

1

n

�

where σ̂y is the residual variance of the prediction y on the training data, σX

is the average variance in the training data and σX∗ is the average variance in
the sample spectrum.

It has been found that this approach can result in intervals that are smaller
than is desirable, leading to lower than expected coverage. A version that uses
a correction factor for the number of PLS components performs better [5, 6]

s =

�

σ̂test

�
1 −

A + 1

n

��
h0 +

σX∗

σX,test
+

1

n

�

where A is the number of PLS components, σ̂X∗ the variance on training data,
and σX,test on test data. This is the version we use in our empirical evaluation.
To obtain the interval, s is substituted in Equation (1).

2.1.3. Linearization

Because the PLS-filtered data may contain non-linear components, it can be
argued that β is not a linear function of y and a better approximation is to use
a Taylor expansion around the data (X0, y0). For pragmatic reasons, only the
first term in the Taylor expansion is used, and β is estimated as

β̂(y) = β̂(y0) + J(y − y0)

where J is the Jacobian matrix of the elements of β̂ wrt the elements of y. We
refer to [7, 1] for details and references. To calculate the prediction error, the
variance can be approximated by taking the variance on both sides of the above
equation, giving var(β̂) ≈ JJTσ2, and the prediction interval can be obtained

with s = σ
√
JJT substituted in Equation (1).

One of the drawbacks is the extra computational effort required to perform
this Taylor expansion. In fact, the expansion took too long to make repeated
cross-validation experiments feasible. Denham [8] designed a method that is
computationally more efficient than the standard Taylor expansion, but unfortu-
nately it was still too computationally expensive for our experiments. However,
Serneel et al. [7] designed an algorithm that efficiently calculates the Jacobian
matrix that is required and this is what we used in our experiments.

2.2. Prediction Interval by Error Estimation

Above, we briefly reviewed some methods for computing prediction intervals
in the case of PLS regression, which are all based on the assumption that the un-
derlying distribution of errors is normal. Under this assumption, the prediction
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interval can be estimated using Eq (1). An essential component for achieving
reliable coverage is the number of degrees of freedom df. In [1] various meth-
ods were examined, for example, the naive approach which sets df equal to the
number of PLS components, and the so-called pseudo degrees of freedom, which
incorporate the model fit and predictive error. It was found that the so-called
generalized degrees of freedom (GDF), proposed in [9], produces acceptable re-
sults. GDF requires choosing a method for a weighted estimate of the variance,
requires performing a number of iterations, and assumes normally distributed
error.

We propose and evaluate a much simpler alternative approach to achieve
acceptable coverage. Given some estimate of prediction error, such as the value
of s in Section 2.1.1, there is a very simple, non-parametric way to determine
prediction intervals empirically. This is done by using the distribution of ob-
served prediction errors to estimate a scaling parameter that can then be used
to rescale predicted errors so that they yield prediction intervals with a specified
coverage.

In addition to avoiding the need for assumptions regarding the distribution of
errors, a further advantage of this approach is that the technique is independent
of the regression method applied and it works for PLS regression in the same way
as for any other regression method, for instance Gaussian processes or neural
networks.

We now describe the details of the specific method we apply. For every
spectrum Xi (1 ≤ i ≤ n) in the calibration data, we produce a prediction
and measure the observed error ei, which is the absolute value of the difference
between the predicted value and the actual target value in the data. We also
calculate the predicted error pi, which could, for example, be s from above. The
value αi = ei/pi represents the factor required to scale the predicted error to the
actual error. In order to guarantee a certain coverage (i.e. prediction intervals
such that P percent of the actual target values are in the prediction interval)
we need to find the value α such that P percent of the αi are lower and the
remainder higher than α. This value is found by sorting the αi, denoted as αs

i .
Then, out of the n sorted α values we take α = αs

Pn/100 as the multiplication
factor for the error. Thus, the prediction interval for a spectrum with prediction
m and predicted error p is [m − αp,m + αp].

However, for spectra with target values close to the extremes of the target
range such a prediction interval can occasionally exceed the target range by a
large margin, resulting in unnecessarily large intervals. So, during training, the
range of the target is measured. Let cmin be the lowest target value observed
and cmax be the highest. Then we calculate the actual prediction interval using

[max(cmin,m − αp),min(cmax,m + αp)]

Note that we can not use the training data, used to train the predictive
model, to obtain the error values ei. Independent calibration data must be used
instead. Hence, to obtain the actual errors ei and the predicted errors, we use
k-fold cross validation, splitting the full training set into k equally sized subsets,
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and make predictions on each one of these subsets based on a predictor trained
on the remaining subsets.

In practice, we observed that actual coverage after calibration can in some
cases be marginally lower than the pre-specified confidence level.This is due to
the following effect. With small data sets, the index Pn/100 from which we
obtain α = αs

Pn/100 can deviate from the desired value due to rounding errors

(since Pn/100 is not always an integer). To address this problem, we apply a
continuum correction. Let f = Pn/100−�Pn/100�. We can apply a continuum
correction by calculating α as follows

α = (1 − f)αs
Pn/100 + fαs

Pn/100+1

Note that the calibration method for interval estimation we just described
does not depend on any particular prediction method. In fact, different methods
can be used to obtain point estimates to calculate the ei on the one hand, and
the predicted error values pi on the other hand.

3. Experimental design

To evaluate the different interval estimation methods discussed above, we
performed a large number of experiments with real-world NIR data. All results
were obtained using m times k-fold cross validation. Here, the data set is ran-
domly split into k approximately equal parts and every part is used as test set
for a model trained on the remaining k − 1 parts. This process is repeated m
times and performance measures (like mean squared error) are averaged over all
test sets. Performing 10 times 10-fold cross validation balances accuracy, repli-
cability and computational effort [2]. Note that it generates the same number
of samples as Monte Carlo cross-validation [10] with 100 repetitions.

3.1. Data description

Experiments across multiple domains are necessary to establish reliable re-
sults. To this end, we considered four NIR data sets in our experiments:

• Diesel data: Publicly available data1 of NIR spectra of diesel fuels along
with various properties of those fuels. Table 1 provides an overview of the
various properties. There are a total of 784 spectra, but not all properties
(i.e. target values) were measured for all spectra. The second column in
Table 1 shows the number of spectra for which a measurement is available.
For each property we created a data set containing only those spectra for
which the property was measured.

• Corn data: The corn data set1 is a very small data set of just 80 spectra
with measurements of moisture, oil, protein and starch content. Each
spectrum has 700 values. Three different NIR instruments were used, but
only spectra of the first instrument were used in the experiments.

1Available from http://software.eigenvector.com/Data/index.html.
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Table 1: Data description.

Property # spectra Description

Diesel data

BP50 395 boiling point at 50% recovery
CN 381 cetane number (like octane number only for diesel)
FLASH 395 flash point temperature of the fuel
FREEZE 395 freezing temperature of the fuel
TOTAL 395 total aromatics, mass %
VISC 395 viscosity, cSt, at 40 degree C

Corn data

moisture 80 moisture content of corn
oil 80 oil content of corn
protein 80 protein content of corn
starch 80 starch content of corn

Grass data

carbon 141 carbon content of grass
FERT 141 fertilizer level of grass
nitrogen 141 nitrogen content of grass
sulfur 141 sulfur content of grass

Soil data

Lactic 255 lactic acid content
Storig 414 soil data
SS 895 soil data
OMD 1010 soil data

• Grass data: The grass data set from a 1998 competition contains 141 spec-
tra with powdered (dry ground) grass samples for which carbon, nitrogen,
and sulfur content were determined, and level of fertilization (0, 50, 250
and 500 ppm of nitrogen) was recorded.2 There are multiple measure-
ments for carbon, nitrogen and sulfur content, and only the last of the
measurements was used in this experiment. The others were very close.
Each spectrum consists of 1050 recorded values.

• Soil data: Soil sample spectra with targets called lactic, storig, SS, and
OMD were produced with an NIR machine that outputs 700 values per
spectrum. This spectrum was Savitzky-Golay smoothed with a window
size of 15 and down-sampled (every 4th wavenumber), resulting in a 171
value spectrum. All spectra were measured independently from each other,
and data set sizes vary from 255 to 1010 spectra (see Table 1 for details).

2See http://kerouac.pharm.uky.edu/asrg/cnirs/shootout1998/shootout1998.html for
details.
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Figure 1: Root relative squared error (on y-axis) for 4 to 50 PLS components (on x-axis) with
10 times 10 fold cross validation (i.e. based on 100 data samples) for corn data.

3.2. Tuning PLS

In a first preliminary experiment, an appropriate number of PLS components
for each group of data sets was determined by applying PLS regression with 10
times 10-fold cross-validation, with the number of components varying between
4 and 50. The final number was selected by taking the number of components
with the minimal root relative squared error (RRSE), averaged across the data
sets concerned. The RRSE is based on the root mean squared error, but scaled
with the average error obtained by predicting the mean of the target value.
This measure is useful because it shows how much the predictor improves on
predicting the average target value in the training data, and is expressed as
percentage. An RRSE larger than 100% indicates that it would be better to
simply use the average, while RRSE values close to 0% indicate the predictor
performs well.

Figures 1 to 4 shows the observed RRSE for various amounts of PLS com-
ponents, calculated as the average over 10 times 10 fold cross validation for the
four data sets.

3.3. Performance of PLS-based interval prediction methods

Having selected parameters that yield satisfactory point estimation perfor-
mance, we can now consider the performance of the different interval estimators.
First, we evaluate the PLS-based methods regarding the size of their prediction
intervals: U-deviation, ordinary least squares, and linearisation using Serneel’s
methods. Bootstrapping [11] and linearisation through Phatak’s and Denham’s
methods [12] turned out to be too slow to be practical for evaluation on a larger
scale, so these methods are not considered.
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Figure 2: As Figure 1 for diesel data.

Figure 3: As Figure 1 for grass data.
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Figure 4: As Figure 1 for soil data.

To fairly compare interval size, we fixed the coverage at a pre-specified level.
More specifically, we scaled the predicted intervals to achieve exactly 95% cov-
erage of the test cases in a 10-fold cross validation experiment. This is possible
because all methods considered first calculate an estimate of error siwhich they
then scale into a prediction interval based on the Student-t distribution. The
key observation is that this scaling factor is constant per training set. We can
thus replace it by a scaling factor that is empirically determined to achieve the
desired coverage level. Then, given that coverage levels are empirically fixed to
achieve the desired level, we can fairly compare interval size.

More specifically, we consider the standard deviation si to be an error esti-
mate for property yi and pool all error estimates for a 10-fold cross-validation
into a single set. Then, a multiplier α is calculated such that exactly 95% of the
time αsi > ei where ei is the observed residual of PLS regression. This multi-
plier is easily calculated by sorting ei/si, giving a sorted sequence q1, . . . , qn and
setting α = q�0.95n�. Based on this multiplier, we can then calculate the average
size of the prediction intervals as

�n
i=1 αsi. We repeated the process ten times

with different randomizations of the data—i.e. we performed 10-times 10-fold
cross-validation—so that we can calculate both mean interval size and variance.

4. Results and discussion

We now discuss the experimental results obtained, first comparing the differ-
ent PLS-based interval prediction methods based on their prediction sizes before
moving on to evaluating the coverage of prediction intervals when adjusted by
our calibration method.
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4.1. Performance of PLS-based interval prediction methods

Table 2 shows average size for coverage fixed at 80%, 90% and 95%, for
U-deviation, OLS, and linearisation using Serneel’s method. We considered
Denham’s method for linearisation as well, but do not include results. Due
to its computational complexity, on average, it took a week to perform the
experiment on a single data set and only a few results were obtained. For those
results that were obtained the outcomes were very close to those of OLS.

The main feature of the table is that OLS intervals tend to be smaller than
intervals produced with the other methods. Furthermore, Serneels’ method
tends to result in large variability of the interval size. We suspect some numeric
instability in the algorithm, since theoretically the outcomes should be very
similar to those obtained using Denham’s method, which were far less variable.
Note that it is possible that this problem would not show up in a single train/test
split: on examination we found that for some splits the method behaves quite
well, but with 10-times 10-fold cross validation a large number of splits show very
large error estimates. Note that, we used the original Matlab implementation
from [7] for Serneels’ method, which ensures this is not an implementation issue.

Also noteworthy is the size of intervals produced with the U-deviation method.
It has been known that this method tends to produce intervals with lower than
desirable coverage (see, e.g. [1]). Correspondingly, by fixing the coverage to a
desired level, the interval size is larger than that of the OLS method for most in-
stances, sometimes statistically significantly so at the 5% significance level (e.g.
for diesel flash at 90% coverage). Hence, we can confirm there are problems
with the method’s performance compared to OLS prediction intervals.

4.2. Coverage

Where the previous experiment explored interval sizes, we now consider how
reliably we can obtain desired coverage level using the error calibration method
described in Section 2.2.3 We consider all the data sets and set the desired
coverage to 80%, 90% and 95%. Table 3 shows the observed coverage averaged
over 10 times 10 fold cross validation. Let us consider the data sets one by one.

For the diesel data sets we used 20 fold cross validation for calibration,
and the coverage is very close to the desired 90% and 95% levels and the only
measurements below the desired level (total diesel for 95% coverage) is within
a quarter of a percent of the desired level. Note that there are 395 instances,
so a quarter of a percent equals one instance, in other words, on average less
than one instance is not covered. The coverage for 80% desired coverage is very
close to 80%, only exceeding the 80% level by a few percentage points. However,
coverage never substantially decreases below the desired target coverage.

For the corn data sets, we found that coverage was considerably elevated
when doing 10 fold cross validation for calibrating interval sized. This can be
explained by the fact that corn data only contains 80 samples. Training takes

3The method was implemented in the Weka software [13] and is available from the first
author on request.
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Table 2: Size of intervals (normalized by range of target value) at 80%, 90% and 95% coverage
for U-deviation method, standard linear regression, and linearization averaged over 10 times
10-fold cross-validation.

Property Method 80% 90% 95%

BP50 U-deviation 7.743 ± 0.189 9.842 ± 0.380 12.288 ± 0.331
OLS 7.025 ± 0.220 9.693 ± 0.268 12.524 ± 0.320
Linearized 8.316 ± 1.203 10.736 ± 1.737 13.723 ± 2.338

CN U-deviation 22.838 ± 0.475 31.105 ± 0.522 39.200 ± 1.026
OLS 20.610 ± 0.301 27.116 ± 0.620 37.153 ± 0.987
Linearized 36.151 ± 43.166 47.250 ± 58.035 61.034 ± 71.782

FLASH U-deviation 22.868 ± 0.803 32.014 ± 0.569 42.925 ± 1.449
OLS 20.560 ± 0.585 28.903 ± 0.885 38.282 ± 0.710
Linearized 32.649 ± 26.177 46.076 ± 39.073 56.531 ± 43.861

FREEZE U-deviation 16.353 ± 0.342 22.984 ± 0.818 29.279 ± 0.586
OLS 14.934 ± 0.218 20.549 ± 0.657 28.411 ± 0.684
Linearized 15.396 ± 0.305 20.132 ± 0.584 26.337 ± 1.141

TOTAL U-deviation 4.238 ± 0.149 5.557 ± 0.176 7.084 ± 0.244
OLS 3.858 ± 0.087 5.297 ± 0.137 6.436 ± 0.222
Linearized 4.129 ± 0.463 5.444 ± 0.634 6.889 ± 0.802

VISC U-deviation 11.242 ± 0.202 15.403 ± 0.462 19.942 ± 0.648
OLS 10.151 ± 0.273 14.415 ± 0.352 18.689 ± 0.644
Linearized 16.976 ± 13.968 23.560 ± 19.473 30.150 ± 25.325

oil U-deviation 10.250 ± 0.992 13.106 ± 0.653 15.323 ± 1.166
OLS 10.106 ± 0.663 12.482 ± 0.812 14.732 ± 0.876
Linearized 23.969 ± 15.844 34.251 ± 23.954 40.067 ± 26.502

protein U-deviation 9.130 ± 0.922 11.762 ± 1.531 15.079 ± 1.789
OLS 9.332 ± 0.943 12.359 ± 1.191 16.019 ± 2.016
Linearized 25.172 ± 44.538 36.571 ± 64.716 46.614 ± 77.544

starch U-deviation 8.255 ± 1.132 12.017 ± 1.517 15.059 ± 0.987
OLS 8.431 ± 1.126 12.304 ± 1.704 14.679 ± 1.210
Linearized 34.494 ± 45.731 51.323 ± 71.235 61.849 ± 81.516

carbon U-deviation 17.070 ± 0.648 22.922 ± 1.098 27.872 ± 1.425
OLS 16.230 ± 0.476 20.974 ± 1.022 27.968 ± 2.343
Linearized 20.987 ± 3.873 26.637 ± 4.811 33.761 ± 5.999

nitrogen U-deviation 9.925 ± 0.435 13.108 ± 0.558 15.196 ± 0.588
OLS 9.643 ± 0.435 13.186 ± 0.486 16.545 ± 0.941
Linearized 12.890 ± 3.275 18.378 ± 5.243 23.638 ± 8.259

sulfur U-deviation 28.716 ± 1.599 40.335 ± 1.756 49.652 ± 2.403
OLS 27.470 ± 1.022 39.720 ± 1.692 48.872 ± 2.052
Linearized 35.830 ± 12.470 52.095 ± 16.648 68.856 ± 25.618

FERT U-deviation 53.817 ± 2.703 75.934 ± 2.595 92.027 ± 3.129
OLS 50.902 ± 1.361 69.797 ± 1.923 83.339 ± 2.430
Linearized 50.821 ± 0.934 69.681 ± 2.043 82.719 ± 2.438

Lactic U-deviation 44.022 ± 0.763 58.377 ± 0.949 74.085 ± 1.772
OLS 36.873 ± 1.065 51.110 ± 0.951 62.604 ± 1.417
Linearized 36.873 ± 1.029 51.142 ± 0.857 62.619 ± 1.633

Storig U-deviation 13.738 ± 0.331 21.472 ± 0.557 27.535 ± 0.762
OLS 10.430 ± 0.324 13.964 ± 0.209 17.010 ± 0.494
Linearized 11.631 ± 0.909 15.675 ± 1.371 19.672 ± 1.405

SS U-deviation 8.140 ± 0.087 10.869 ± 0.223 13.378 ± 0.232
OLS 7.339 ± 0.095 9.946 ± 0.166 12.202 ± 0.241
Linearized 9.037 ± 2.199 12.385 ± 3.181 15.387 ± 3.871

OMD U-deviation 13.342 ± 0.178 17.714 ± 0.288 21.731 ± 0.407
OLS 12.401 ± 0.105 17.018 ± 0.224 21.693 ± 0.305
Linearized 86.365 ± 101.433 120.270 ± 140.579 152.178 ± 177.830

Total U-deviation 0 0 1
OLS 10 9 7
Linearized 1 2 3
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place on 90% of the data in a 10 fold cross validation experiment, which leaves
just 72 instances. For the 10 fold cross validation for calibration, this means
just 90% of 72, or just 65 instances are left. When increasing the number of
folds, we observed that coverage gets closer to the desired levels. Table 3 shows
results for 72 fold cross validation for calibration, which is the same as leave
one out cross validation. Coverage is very close to the desired levels in all cases,
considering one instance equals 1.25% of cases.

The grass data sets also showed slightly elevated coverage at 10 fold cross
validation, which can be explained by the size of the data set. Table 3 shows
results for 30 fold cross validation and again we found that coverage got close
to desired coverage when increasing the number of folds, but never became
substantially lower than desired coverage.

For the soil data, which has a considerable number of instances in the data
sets, we found coverage very close to desired levels at 10 fold cross validation.
Furthermore, the variance in the estimates shows a decreasing trend with in-
creasing data set sizes. This experiment shows that the error estimation method
produces acceptable coverage for prediction intervals, with increasingly accurate
coverage when increasing computational effort and decreasing variance in cov-
erage with increasing data set sizes.

5. Conclusions

A main goal of this article was to emphasize that interval size is an im-
portant consideration when evaluating methods for interval estimation: good
coverage is a necessary requirement, but not a sufficient one. As a case study,
we have evaluated several different methods for PLS-based interval estimation,
and considered interval size at a fixed coverage level. We also showed that a
simple non-parametric method can be used to obtain acceptable coverage levels.
We can summarize our empirical findings and recommendations as follows:

• The U-deviation method for PLS-based prediction intervals yields larger
intervals than OLS-based interval prediction. Therefore it is recommended
to use OLS-based interval predictions rather than the U-deviation method.

• Interval prediction based on linearisation produces intervals of similar size
compared to OLS. However, in our experiments we found that the com-
putationally efficient method of Serneel is numerical unstable and should
be used with caution. Other linearisation methods we have considered
appear computationally too expensive to be practical.

• Simple non-parametric interval estimation by calibrating error estimates
produces intervals with coverage close to the desired level of confidence.
We recommend it as a pragmatic method for interval estimation.

We would like to stress that careful experimental design is necessary for
evaluating the performance of interval estimators: tuning methods to a few
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Table 3: Coverage of prediction intervals for PLS-based linear regression with the proposed
error calibration method. The desired coverage is 80%, 90% and 95%. Average and standard
deviation over 10 times 10 fold cross validation.

Diesel Data 80% Coverage 90% Coverage 95% Coverage
BP50 81.79 ± 6.10 90.52 ± 4.97 95.03 ± 3.65
CN 80.29 ± 6.78 90.53 ± 4.56 94.86 ± 3.70
FLASH 80.93 ± 6.52 90.20 ± 4.94 95.13 ± 3.62
FREEZE 80.38 ± 6.43 90.70 ± 4.98 95.26 ± 3.96
TOTAL 80.64 ± 5.90 90.05 ± 4.49 94.78 ± 3.28
VISC 80.07 ± 6.85 90.04 ± 4.80 95.14 ± 3.56
Corn Data 80% Coverage 90% Coverage 95% Coverage
moisture 82.00 ± 13.80 91.63 ± 10.21 95.25 ± 7.70
oil 82.75 ± 13.96 92.38 ± 10.50 95.50 ± 7.22
protein 79.63 ± 15.86 90.75 ± 10.15 95.38 ± 7.25
starch 81.75 ± 13.35 91.00 ± 11.11 95.88 ± 6.89
Grass Data 80% Coverage 90% Coverage 95% Coverage
carbon 80.78 ± 10.80 90.85 ± 8.23 95.47 ± 5.92
FERT 81.29 ± 11.41 90.54 ± 9.08 94.87 ± 6.66
nitrogen 80.85 ± 11.29 90.69 ± 7.88 95.02 ± 5.59
sulfur 80.83 ± 11.02 89.95 ± 8.60 94.77 ± 6.46
Soil Data 80% Coverage 90% Coverage 95% Coverage
Lactic 81.00 ± 9.34 89.97 ± 7.34 94.43 ± 5.16
Storig 80.52 ± 6.54 90.85 ± 4.67 95.68 ± 3.27
SS 80.15 ± 3.91 90.28 ± 3.42 95.10 ± 2.47
OMD 80.20 ± 4.17 90.02 ± 3.16 95.09 ± 2.39
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data sets, perhaps based on a single train/test split in each case, can yield
misleading results.

One way to get more reliable results is by averaging over repeated cross-
validation estimates. By performing 10-times 10-fold cross-validation we found
that Serneel’s linearisation method can suffer from numerical instability. Ap-
plying this evaluation procedure balances accuracy of estimates, replicability of
results, and computational effort.

It is also important to consider a broad range of data sets. Unfortunately,
there are very few publicly available NIR data sets, mainly due to commer-
cial sensitivities, which can make replication of results by other practitioners
cumbersome or even impossible.

In future work, we aim to explore generalized regression methods that can
deal with non-linearities in spectral data. The PLS component graph may give
an indication that we are dealing with non-linearity of the data by showing an
increase in observed error with an increase in the number of components after
some minimum. Preliminary results indicate that Gaussian process regression
yields promising performance compared to OLS regression, both in terms of
the quality of the point estimates obtained and in terms of the quality of the
corresponding prediction intervals.
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