
Modular finite-state machine analysis

Simon Ware

Supervisor: Robi Malik

October 15, 2007

Abstract

Physical systems can be modelled as a system of finite state automata running
in parallel. When a system is represented in this way it can be verified whether
or not the given system conforms to given specifications by composing the syn-
chronous product of the system[17]. However composing the synchronous prod-
uct requires time and memory which is exponential in the number of automata
in the system thus making it impractical for more complicated system. One of
the methods for getting around this is the modular technique of controllability
checking[3], but unfortunately this is also subject to in the worst case requiring
time and memory which is exponential in the number of automata in the sys-
tem. This project has developed new techniques for checking the controllability
of systems which have even made it possible to check the controllability of a
system which had previously been unsolved.

Contents

1 Introduction 2

2 Preliminaries 4

2.1 Languages . 4
2.2 Automata . 4
2.3 Running in Parallel . 6
2.4 Language Inclusion . 6
2.5 Controllability Checking . 8

3 Modular Checker 11

3.1 Algorithm . 11
3.2 Results . 13

4 Parallel Checker 23

4.1 Algorithm . 23
4.2 Results . 23

5 Culling Checker 28

5.1 Algorithm . 28
5.2 Results . 28

6 Projecting Checker 36

6.1 Automata Transformation . 36
6.2 Projection . 40
6.3 Iterative Projection . 41
6.4 Extracting Traces . 43
6.5 Projecting Checker . 44
6.6 Caching . 45
6.7 Results . 46

7 Related Work 60

8 Conclusion 61

1

Chapter 1

Introduction

In industry it is frequently required to be able to verify that within a system
such as a factory, certain states are unreachable (for example for the system
of an elevator it might be useful to verify that it is impossible for the doors
on the first floor to open when the elevator is currently on a different floor).
These states can be referred to as “Bad States”. Reasons for confirming that
these “Bad States” are unreachable can range from loss of money to possible
loss of life. Physical systems can be modelled as a set of Finite State Automata
running in parallel. Once modelled in this form whether or not it is possible
for the system to reach any “Bad State” can be checked by generating the
synchronous product of the entire set of automata [17]. Unfortunately, this has
the drawback that generating the synchronous product of a system takes time
proportional to the number of reachable states in the composed system, which
in turn grows exponentially with the number of automata in the system. For
more complicated models this can be more states than could be realistically
processed. Several methods to combat this have been developed. All of these
methods seem to be superior for certain systems but inferior for others.

One of these is the modular method [3]. This method has shown great
promise when verifying certain extremely large models. It is for this reason that
we chose to investigate this method in this project. In this project we have
managed to implement the modular method of controllability checking as well
to design and implement several variants of this approach. In addition to this,
we have designed a method of automatically simplifying models such that they
may have orders of magnitude less reachable states. Yet it can be provably
shown that there will exist at least one “Bad State” in this simplified model,
if and only if there exists a “Bad State” in the original model. To do this we
designed and implemented a method of transforming the original model into a
new model which is equivalent in terms of the behaviour we are verifying [7],
as well as a method for continuously using projection [17, 9] to simplify this
model. Also if a “Bad State” is found in the simplified model we have also
designed and implemented a method for translating the cause of a “Bad State”
in the simplified model to its cause in the original model. This method has been

2

developed to be used in conjunction with the modular method. It has however
shown promise when used independently of it. All of these checkers have been
integrated into the WATERS toolkit and have been tested on a large set of
models of varying sizes, some of them extremely large.

This thesis is be composed of the following chapters.
In Chapter 2 we discuss some of the underlying theory required to understand

this thesis. In Chapter 3 we discuss the modular checker implemented in this
paper and how it compares original implemented in Valid [3]. In Chapter 4 we
discuss the a variant of the Modular Checker called the Parallel Checker and
how well it works. In Chapter 5 we discuss another variant of the Modular
Checker called the Culling Checker and how well it works. In Chapter 6 we
discuss various algorithms for using projection in model checker. In Chapter 7
we discusses related work.

3

Chapter 2

Preliminaries

To make the contents of the rest of this report more readily understandable, it
is useful to give definitions for some of the more important terms.

2.1 Languages

Languages are made up of an alphabet and words. The alphabet of a language
is the set of symbols which can possibly occur within that language’s words. A
word is a sequence of symbols. A language contains a set of words.

When expressing a discrete event system as a language the alphabet of the
language is the set of all events which can possibly occur in the system. The
set of words of the language is the set of all possible sequences of events which
could possibly occur in that system. A sequence of events can also be referred
to as a trace through the system.

2.2 Automata

Figure 2.1 shows an example of an automaton. This example consists of circles
called states and arrows between states called transitions. Each state has a
label associated with it representing its state name. Likewise each transition
has a label associated with it representing the event required to travel along
that edge. Transitions can be written as p

α
→ q where p is the source state, α

is the event, and q is the target state. In addition, we can see that the state S0
has an arrow pointing to it from nowhere. This marks it as the initial state of
the automaton.

Now that it has been explained what makes up an automaton it can be ex-
plained how an automaton can be used to represent a language. An automaton
will accept a trace σ1 . . . σn if and only if there exists a sequence of transi-
tions p1

α1→ q1, . . . , pn
αn→ qn through the automaton which fulfils the following

requirements.

4

S0

S1

S2

S3

a

c

b
c

b

Figure 2.1: An example automaton

1. For each transition the event labelled on it matches the corresponding
event in the trace.

∀i ∈ 1..n; σi = αi

2. The source state of each transition matches the target state of the previous
transition.

∀i ∈ 1..n − 1; qi = pi+1

3. In the case of the first transition, its source state must be in the set of
initial states.

From this we can define the language L(A) of the automaton A to be equal
to the set all the event sequences which the automaton accepts. Here are two
example traces for the automaton given in figure 2.1.

1. For the trace abcacba the automaton would have the possible sequence of
transitions

S0
a
→ S1

b
→ S3

c
→ S0

a
→ S1

c
→ S2

b
→ S0

a
→ S1

2. Whereas for the sequence abbcacba would only have a trace up to

S0
a
→ S1

b
→ S3

and the automaton would reject the trace.

For the automaton given, none of the states have been marked as accepting
states, because for the purpose of this report it is good enough to consider all
states as accepting.

5

2.3 Running in Parallel

When modelling discrete event systems they are generally represented as a set
of automata running in parallel. This is because designing just one automaton
representing the entirety of a system is impractical due to the complexity of
most system’s.

When automata run in parallel they essentially all run at the same time. This
means that the system can only receive those events which are allowed to occur
in the current state of each automaton and that the state of each automaton is
updated concurrently. It should also be noted that for every automaton, there
is implicitly a selfloop for every event not contained in the alphabet of that
automaton on every state in the automaton. Selfloops are transitions for which
both the source and target state are the same.

If we have a set of automata running in parallel we can build an automaton
which represents the language of the entire system running in parallel. This is
called the synchronous product of the system.

Figure 2.2 is an example of a factory with two machines [17] called small
factory. Both machines start in the Idle state (I) and can enter a Running state
(R) by receiving a start event (s1 or s2). Then when they are Running they
can either receive a finish event (f1 or f2) meaning that they have finished doing
their job and return to the Idle state (I), or they can receive a break event
(b1,b2) which causes the automaton to break down and enter the Broken state
(B), in which they can be repaired(r1,r2) and return to the Idle state (I). In
addition to this there is a buffer between the two machines. This buffer starts
out as being Empty (E) but when Machine1 finishes (f1) it takes the product
from Machine1 and becomes Full (F). Then when Full (F), if Machine2 starts
(s1), it takes the product and works on it making the buffer Empty (E) again.

Figure 2.3 is the synchronous product of Figure 2.2. When looking at the
state labels of this automaton we can see that they contain three names sepa-
rated by commas. The significance of these three names is that the first name
corresponds to the state of machine1 the second state corresponds to the state
of the buffer and the third name corresponds to the state of machine2. Thus, if
this automaton is in the state R,F,I then machine1 is Running (R), Machine2
is Idle (I) and the buffer is Full (F). From the diagram, it is possible to see
that machine1 cannot finish when the buffer is Full (F) and machine2 cannot
start when the buffer is Empty (E). Also when looking at figure 2.3, we can see
that even a simple system such as small factory produces a rather complex and
messy synchronous product.

2.4 Language Inclusion

Language inclusion can be used to check to see if the language of a system is
more restrictive than the language of a given automaton. Such an automaton
is called a property or requirement. We say that a set of automata A satisfies a
requirement R if and only if every trace t which is in the language of A is also

6

I

W Bb1

f1
r1

s1

E

F

s2 f1

BW

I

s2
r2

f2

b2

Machine1 Buffer Machine2

Figure 2.2: Small factory

B.E.B

I.F.B

W.F.W

W.E.B

B.E.I

I.E.W

W.E.I

I.F.I

I.E.B

B.E.W

W.E.W

W.F.I

I.F.W

B.F.B

W.F.B

B.F.I

I.E.I

B.F.W

b2

s2
r2

r1

r2
r2

r2

s1

b1

r1

r2

b2

b2

r1

s1

r1

r1

r2

s1

f2

b2

b1

f1

b1

f1

s2

f2

b2

s2

b1

b1

s1 f2

f2
s1

s1

r1

f2

f2
b2

f1

b1

Figure 2.3: Synchronous product of small factory

7

Uncontrollable

Sensors

Actuator

Controllable

Controller Plant

Figure 2.4: Figure of Controllability

in the language of R [1].

∀t : t ∈ L(A) → t ∈ L(R)

The standard algorithm for checking if a set of automata A satisfies the
requirement R is to construct the synchronous product A and R and then to
check to see that for all states in the synchronous product that whenever all
the automata in A allows a given event to occur R will also allow that event to
occur.

This is useful because it can often be easier to define aspects of high-level
system behaviour in a property without having to talk about low-level aspects
of the system, and then check to see that the actual system which has to deal
with the low-level details still conforms to this.

2.5 Controllability Checking

For controllability a system can be divided up into a controller and a plant. The
controller is capable of sending controllable events to the plant telling the plant
what to do, whereas the plant is capable of sending uncontrollable events back
to the controller telling the controller what has happened to it. This relationship
is shown in figure 2.4.

8

Automata are defined as being either plants which are part of the Plant, or
controllers which are part of the Controller.

The language of the Plant is the intersection of the languages of all the plants
in the system and represents all the possible sequences of events the Plant could
go through.

The language of the Controller is likewise the intersection of the languages
of all the controllers in the system and represents all the sequences of events the
Controller would allow the system to go through.

From this we define a Plant P as being controllable with respect to a Con-
troller C, if and only if, there exists no trace t for which, if it had an uncontrol-
lable event υ appended to it’s end, it would be accepted by the language of the
plant but not the controller.

∀t, υ : tυ ∈ L(P) ∧ t ∈ L(C) → tυ ∈ L(C)

The standard algorithm for checking for controllability in a system is similar
to that of checking language inclusion. We simply to construct the synchronous
product of the system and check that in every state of the system that whenever
all the plants in P allows a given uncontrollable event to occur all the automata
in C also allow that uncontrollable event to occur [17]. This approach to con-
trollability is called the Monolithic approach.

Now we can revisit the example automaton given in Figure 2.2 where we
now state that machine1 and machine2 are both plants as they represents how
the system behaves. Buffer however is a specification as it has no control over
when machine1 and machine2 stop. We further go on to state that starting
and repairing a machine are both controllable, whereas a machine finishing or
breaking is uncontrollable. A machine finishing is said to be uncontrollable
as once the process starts there is no way to delay the process finishing. The
item produced in the process must be removed from the machine as soon as
it finishes lest either the machine or the object be damaged. Now if we look
at the synchronous product of this system given in Figure 2.3 we can see that
machine1 and machine2 are not in fact controllable with respect to buffer, as in
the state Running,Full,Idle, the buffer would not allow the uncontrollable event
of machine1 finishing (f1) to occur whereas both machine1 and machine2 would.

The small factory example can be made controllable by replacing its buffer
controller by the one given in Figure 2.5 as can be seen by the fact that there
is no state in the synchronous product of this new system given in figure 2.6,
where machine1 is never allowed to finish when the buffer would not allow it to.

It should also be noted that the Language Inclusion problem referred to in
the previous section can be converted into a Controllability problem simply by
stating that all specifications are plants, all properties are specifications, and all
events are uncontrollable [1].

9

E

F

s2 f1

s1

Figure 2.5: Modified buffer

I.E.B

B.E.B

B.E.W

W.E.W

I.F.B

W.E.B

B.E.I

I.F.W

I.E.W

W.E.II.E.I
I.F.I

f1

s2
b1

b2

b1

b1

f2

s1
f1

r1

b2

r1

r2

b2

s1

f2

r2

r2

f2

r2

b2

f1

s1

r1 f2

Figure 2.6: Synchronous product of Small factory with modified buffer

10

Chapter 3

Modular Checker

The monolithic method of checking controllability in a system has the major
drawback that the construction of the synchronous product of a system takes
time which is exponentially proportional to the number of automata in the
system, this makes it unfeasible to use on larger systems.

The method of modular controllability checking [3] attempts to solve the
problem of verifying controllability, in less time. It does this by exploiting
the fact that the synchronous product of a system is the intersection of all
languages in the system. Thus if a subset of the automata in the system do
not contain a trace which is a counterexample for a given controller, then the
entire system must not contain a counterexample for the given controller, as
adding extra automata to the synchronous product will not add any new traces
to the synchronous product. Therefore, it is possible in many instances to prove
a specification without having to compose the entire system of automata.

3.1 Algorithm

The modular checker described in [3] was implemented in the WATERS frame-
work. The algorithm is detailed in Figure 3.1. We pick a controller to prove
controllable with respect to the plant. Then we use a controllability checker
to find a counterexample for the controller. Then we pick a plant or controller
which doesn’t permit said counterexample, and add it to the composition with
the original controller, then repeat the process by checking the controllability
of the system with the extra automaton. This process course end under one
of two conditions first, we may come to a situation where we find a counterex-
ample which no plants or controllers in the system are capable of rejecting, in
which case the counterexample must be a counterexample for the model as a
whole, and as such the model is not controllable. Alternatively, we may come
to a point where the controllability checker finds no counterexample for the
composition, in which case we know that there is in fact no counterexample for
the controllers currently in the composition [3], and we can now treat them as

11

C equals the set of Controller automata in the model and P the set of Plant
automata, and S is the set of automata composed so far.

1. Set the set S as being empty.

2. If C is empty the model has been proven controllable; otherwise take an
automaton from the set C and add it to S.

3. Check controllability of S using the monolithic method. Consider au-
tomata which are elements of C as controllers and automata which are
elements of P as plants.

4. If no counterexample for S was found go to 7. Otherwise set t to be the
counterexample found by the controllability check.

5. Set the set N to contain all automata in P and C which do not accept
the counterexample t. Take into consideration for all automata in C that
specifications in addition to not accepting t, must also not consider t as
being a counterexample to their controller.

6. If N is empty, then the model has been proven not controllable and t
represents a counterexample in the system. Otherwise, pick a subset of N
to add to S, then go to 3.

7. For all elements of S, if they are also an element of C, remove them from
C and add them to P . Then go to 1.

Figure 3.1: Modular Controllability checking algorithm

plants (as we have proven that under no circumstances can an uncontrollable
event occur when the controller would not allow it). At this point we go on to
prove any controllers which have yet to be proven in the same way as above.
Once all controllers have been proven, we can say that the model is controllable.

If we look at the algorithm for modular controllability checking in Figure 3.1,
it can be noticed that for both steps 1 and 6, it has not been adequately specified
just exactly which automata to pick at each of these steps. This is because for
both of these steps there is more than one way of choosing these automata,
and which one is best can be different for any given model. Firstly for step 1
there are two ways of selecting which specification to prove. The first is to use
the comparator described in Figure 3.2 to find the smallest specification in S
and to use that one, The rationale is that it will most likely be easier to prove
the smallest specifications first, and once proved they can be treated as plant
automata, thus helping to prove all subsequent specifications. The second is to
compare all the specifications in exactly the same manner as above, but instead
of taking the smallest to take the largest, hoping that either largest is either
more likely to have a counterexample, or that, when proven, it will be more
helpful as a plant for the purpose of proving subsequent specifications.

12

Then for step 6, there are many heuristics which can be used to choose an
automaton to add to the composition. The heuristics are as follows.

All add all automata in N into C.

EarlyNotAccept Add the automaton in N which rejected t the after the
fewest number of steps through t.

LateNotAccept Add the automaton in N which rejected t the after the great-
est number of steps through t.

MaxCommonEvents Add the automaton in N which has the maximum num-
ber of events in common with C.

MaxCommonUncontrollable Add the automaton in N which has the max-
imum number of Uncontrollable events in common with C.

MaxStates Add the automaton in N which has the largest number of states.

MinEvents Add the automaton in N which has the smallest number of events.

MinNewEvents Add the automaton in N which has the smallest number of
events which are not currently contained in C.

MinStates Add the automaton in N which has the smallest number of states.

MinTransitions Add the automaton in N which has the smallest number of
Transitions.

One Arbitrarily take the first automaton found in N .

RelMaxCommonEvents Add the automaton in N which has the highest
proportion of its events in contained in C.

In addition each of these heuristics can be run in two modes. They can
either consider all automata as being equal or they can consider plant automata
as being superior to controller automata thus always choosing a plant automata
over a controller automata if at all possible. The reasoning behind this is that
whenever we add in an extra controller automaton to the composition we also
add in new possible counterexamples which must be ruled out.

3.2 Results

This section contains tables of results for both the original modular controlla-
bility checker implemented in Valid [3], as well as the results for the checker
implemented in WATERS. The results from Valid show the total number of
states which had to be explored, whereas for the new implementation the num-
ber of seconds required to solve the model is also shown. For all cases, when
the model checker was run it was set up so that whenever the model checker
attempted to construct the synchronous product of a set of automata and the

13

The first automaton is A1 and the second automata A2.

1. If A1 has more states than A2, then A1 is bigger.

2. If both A1 and A2 have the same number of states then, if A1 has more
transitions than A2, A1 is bigger.

3. If both A1 and A2 have the same number of transitions then, if A1 has
more events than A2, A1 is bigger.

4. If both A1 and A2 have the same number of events then, if A1 has a bigger
name than A2, A1 is bigger.

Figure 3.2: Comparator for automata

number of states which it has explored in that synchronous product becomes
greater than two million states, then the model checker stops to prevent itself
from running out of memory, in which case there will be a blank entry in the
table where the number of states should be.

Here follows a description of the models used for testing.

• big cmft kl50, big fh cmftreq1, big manual cmft, bigcmft reg, big fh cmftreq0,
big bmw are models describing the BMW E65 CAS window lift controller
[6, 13].

• fzelle, ftechnik, ftechnik-nocoll, represent a case study of a production cell
[11, 12].

• models beginning with profisafe represent the PROFIsafe field bus protocol
[14, 15, 16].

• rhone alps, rhone tough, represent an AIP automated manufacturing sys-
tem [2, 4, 10].

• tbed uncont, tbed nocoll, tbed noderail, tbed ctct, tbed valid, represent
a train testbed [10].

• verriegel4 vrprop, verriegel4 erprop, verriegel4, represent a central locking
system.

All of these models represent real world systems and have state spaces which
are to large to be explored by a monolithic controllability checker.

It can be seen between the two sets of tables, there can be in some cases quite
marked differences in results between the two implementations. This can most
likely be put down to the fact that both implementations use different methods
of choosing which specification to prove first, both have different methods to
break ties when a heuristic considers two automata equally desirable, and it
is quite possible that in some cases the specific counterexample found at each
iteration by either method could be different.

14

If we look at the differences in states required for any particular heuristic to
solve a problem it can be seen that, for most heuristics, their performance is in
fact comparable with the one heuristic. This is to say the performance of most
heuristics is in fact comparable to just arbitrarily picking an automaton to add
to the composition. The notable exceptions to this are MaxCommonEvents,
MaxCommonUncontrollable, and RelMaxCommonEvents which have the capa-
bility of solving the controllable models in the tbed series of problems when
having no preference for plants. From the test data it looks like MaxCommon-
Events is the best bet for solving most problems as it shows the most consistency
in requiring to look through a low number of states. Also when we look at the
difference in performance in heuristics when comparing a preference for plants
to no preference, we can see that for most models a preference for plants seems
to give mildly better results, whereas for the tbed series of models no preference
works a lot better. Finally, when we look at the difference between checking
the larger specifications first or the smaller, it seems that with the exception of
big bmw for most models the strategy of solving the largest automata first is
the better choice.

In addition one of the test cases used to benchmark the original algorithm
were transferlines of varying sizes. The transferline model of an arbitrary num-
ber of functional blocks which can be combined into a large system with a
regular structure [18].

The original algorithm was shown to be capable of solving the transferline
model by exploring a number states which was linearly proportional to the
number of blocks in the model. Thus as a test we also ran the modular checker
implemented in this project using the MaxCommonEvents heuristic, on trans-
ferlines with numbers of functional blocks between 1 and 230 and plotted the
number of states explored against the number of functional blocks in the trans-
ferline. The chart of this can be seen in Figure 3.3 and clearly shows a linear
relationship between states explored and the size of the transferline.

15

Table 3.1

ORIGINAL MODULAR LANGUAGE INCLUSION CHECK

Model Modular Language Inclusion

All Early Late MaxCommon Min Min Min Min One RelMax

NotAccept NotAccept Events Events NewEvents States Transitions Common

Name Aut States States States States States States States States States States

big cmft kl50 32 753 118 77 1669 3868 1309 53 118 3305 432

big fh cmftreq1 32 23 7 7 7 52 2684 7 7 52 52

big manual cmft 32 765 6323 40 60 438 8789 13 40 1178 438

ftechnik nocoll 42 271242 4309 2666552

profisafe i4 host to 76 419 13571 2409 277605 77038 41148

profisafe i4 slave 76 24612 475262 4450 11496 36377 274723 64953 454711 12635

profisafe o4 host to 85 436 13575 2454 277160 77044 40899

profisafe o4 slave 85 2907 1690 10611 1079247 17662

tbed nocoll 109 5144173 335791

tbed noderail 96 112 3287 8395939 623 4273 1245

verriegel4 vrprop 66 34326 23709 23709 22614 23709 23709 11000 23709 11000 23709

big cmft req 32 1465 1548 1572 1548 1572 1385 1572 1572 1548 1572

big fh cmftreq0 32 2296 3584 5809 3851 3851 6261 6276 3894 4715 3851

verriegel4 erprop 66 538 759 759 759 1716 1716 759 759 1571 700

Table 3.2

ORIGINAL MODULAR CONTROLLABILITY CHECK PREFERRING PLANTS

Model Modular controllability, not preferring plants

All Early Late MaxCommon MaxCommon Min Min Min One RelMax

NotAccept NotAccept Events Uncontr NewEvents States Transitions Common

Name Aut States States States States States States States States States States

big bmw 31 1096 190 190 411 223 1281 190 190 190 5219

fzelle 67 7793 18385 5366 4072 4072 7101 8990 8732 4901 3394

profisafe i4 75 688 351 245 155 160 369 244 245 160 224

profisafe o4 84 691 354 248 158 163 372 247 248 163 227

rhone alps 35 224616 1035198 16021 224838 16432 16063 903 903 955 1037531

tbed ctct 84 119934 29092 18522 18522 3557956

tbed valid 84 609040 3733989

verriegel4 65 32027 655 23142 1730 19103 7859 7859 75704 2956

ftechnik 36 159118 9879 221 221 221 6557213 6571455 4547036 683

tbed uncont 58 821906 310893 5772225 2158804 1536444 999512

Table 3.3

ORIGINAL MODULAR CONTROLLABILITY CHECK NOT PREFERRING

PLANTS

Model Modular controllability, preferring plants

All Early Late MaxCommon MaxCommon Min Min Min One RelMax

NotAccept NotAccept Events Uncontr NewEvents States Transitions Common

Name States States States States States States States States States States

big bmw 31 346 190 190 223 223 339 190 190 190 1110

fzelle 67 9711 9733 7799 6316 6826 7882 8990 8732 4901 5658

profisafe i4 75 688 351 245 155 160 369 244 245 160 224

profisafe o4 84 691 354 248 158 163 372 247 248 163 227

rhone alps 35 224614 903 16021 8367 8333 16063 903 903 955 37030

tbed ctct 84 119934 29092 18522 18522 3557956

tbed valid 84

verriegel4 65 1227894 31666 7859 9454 8956 42931 7859 7859 75704 16605

ftechnik 36 1089179 2376834 6568826 3428725 3429005 6783622 6557213 6571455 4547036 5854300

tbed uncont 58 281589 6517643 1536444

16

Table 3.4

MODULAR LANGUAGE INCLUSION CHECK

Model Modular Language Inclusion

All Early Late MaxCommon Max Min

NotAccept NotAccept Events States Events

Name Aut States Time States Time States Time States Time States Time States Time

profisafe i4 slave 15 13179 0.15 927 0.16 16969 0.32 11515 0.24 16958 0.31 1238 0.18

profisafe o4 slave 17 10426 0.19 668 0.2 18806 0.5 16428 0.37 12414 0.43 8214 0.36

big bmw 32 1465 0.03 1548 0.04 1874 0.06 1548 0.06 1548 0.06 1572 0.06

ftechnik 37 71973 3.95 12.51 20.25 42.19 16.6 20.2

tbed nocoll 85 33.28 38.97 38.96 3639 0.94 2835 14.14 32.4

tbed noderail 85 14.38 57.66 32.52 27.15 56.7 24.27

verriegel4 66 580 0.02 805 0.04 1680 0.05 805 0.03 1680 0.05 1680 0.05

profisafe i4 host 29 2155 0.18 2758 0.22 1418 0.21 2491 0.22 1671 0.22 1532 0.19

profisafe o4 host 31 2155 0.18 2758 0.22 1418 0.21 2491 0.23 1671 0.22 1532 0.19

profisafe i5 host 29 2462 0.22 3294 0.26 1616 0.25 2893 0.26 1869 0.25 1823 0.22

profisafe o5 host 31 2462 0.21 3294 0.27 1616 0.25 2893 0.27 1869 0.25 1823 0.22

profisafe i6 host 29 2769 0.24 3830 0.32 1814 0.28 3295 0.31 2067 0.3 2114 0.26

profisafe o6 host 31 2769 0.25 3830 0.32 1814 0.28 3295 0.31 2067 0.29 2114 0.26

Model Min Min Min One RelMax

NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time

profisafe i4 slave 15 18831 0.31 867 0.14 927 0.14 16969 0.31 17929 0.31

profisafe o4 slave 17 25202 0.49 28063 0.47 14167 0.35 23820 0.47 6359 0.33

big bmw 32 1572 0.03 1572 0.03 1572 0.04 1548 0.05 1572 0.03

ftechnik 37 20.62 65.95 52.52 10.59 23.92

tbed nocoll 85 38.78 51.71 29.61 64.51 23.19

tbed noderail 85 25.97 50.47 26.27 27.38 14.31

verriegel4 66 1680 0.05 805 0.03 805 0.03 1680 0.05 805 0.03

profisafe i4 host 29 2223 0.24 2170 0.23 1532 0.19 1648 0.22 2223 0.23

profisafe o4 host 31 2223 0.24 2170 0.23 1532 0.19 1648 0.22 2223 0.24

profisafe i5 host 29 2530 0.28 2477 0.27 1514 0.21 1846 0.25 2530 0.28

profisafe o5 host 31 2530 0.28 2477 0.27 1514 0.21 1846 0.25 2530 0.29

profisafe i6 host 29 2837 0.32 2784 0.31 1712 0.24 2044 0.29 2837 0.32

profisafe o6 host 31 2837 0.32 2784 0.31 1712 0.24 2044 0.29 2837 0.32

17

Table 3.5

MODULAR CONTROLLABILITY CHECK PREFERRING PLANTS, LARGEST

CONTROLLER FIRST

Model Modular controllability, preferring plants, largest controller first

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 4931 0.11 5036 0.1 5447 0.09 5032 0.09 5013 0.08 5463 0.1

fzelle 67 7922 0.17 1421 0.15 1249 0.15 1545 0.16 2212 0.17 2122 0.15

rhone alps 35 17319 0.1 10041 0.16 16327 0.11 842 0.04 10293 0.09 16755 0.11

tbed ctct 84 119806 0.41 18391 0.12 34.07 18391 0.12 22298 0.13 26.68

tbed nocoll 84 19.42 47.39 31.83 14.64 14.64 30.88

tbed noderail 84 19.77 55.94 45 14.82 14.79 35.04

verriegel4 65 26428 0.27 30341 0.37 1310 0.12 2488 0.15 16250 0.23 33318 0.37

profisafe i4 80 56 0.09 124 0.12 63 0.09 41 0.08 63 0.1 41 0.08

profisafe i4 host 28 48 0.07 112 0.09 58 0.08 36 0.06 58 0.08 36 0.05

profisafe i4 slave 14 8 0.02 12 0.04 5 0.03 5 0.03 5 0.02 5 0.03

profisafe i5 88 56 0.1 124 0.14 63 0.11 41 0.1 63 0.11 41 0.09

profisafe i5 host 28 48 0.07 112 0.1 58 0.09 36 0.06 58 0.09 36 0.07

profisafe i6 94 56 0.12 124 0.16 63 0.14 41 0.1 63 0.14 41 0.11

profisafe i6 host 28 48 0.09 112 0.12 58 0.1 36 0.07 58 0.1 36 0.07

profisafe inclusion i4host 78 184 0.08 143 0.11 52 0.07 66 0.07 276 0.13 130 0.09

profisafe inclusion o4host 84 184 0.09 143 0.11 52 0.08 66 0.08 276 0.13 130 0.09

profisafe inclusion o4slave 84 184 0.09 143 0.11 52 0.08 66 0.08 276 0.13 130 0.09

profisafe o4 90 56 0.09 124 0.13 63 0.11 41 0.08 63 0.11 41 0.08

profisafe o4 host 30 48 0.06 112 0.09 58 0.08 36 0.06 58 0.08 36 0.06

profisafe o4 slave 16 8 0.03 12 0.04 5 0.04 5 0.03 5 0.03 5 0.03

profisafe o5 99 56 0.11 124 0.15 63 0.13 41 0.1 63 0.13 41 0.1

profisafe o5 host 30 48 0.08 112 0.11 58 0.09 36 0.06 58 0.09 36 0.06

profisafe o6 106 56 0.13 124 0.18 63 0.14 41 0.12 63 0.15 41 0.12

profisafe o6 host 30 48 0.09 112 0.12 58 0.1 36 0.08 58 0.1 36 0.07

ftechnik 36 45.01 177113 1.19 98.31 587588 2.87 30.92 101.97

rhone tough 61 20.53 21.09 33.27 32.99 8.75 21.6

tbed uncont 84 19.48 47.43 31.93 26.02 25.87 30.69

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 5317 0.08 5317 0.09 5613 0.08 5317 0.09 5056 0.09 5013 0.09

fzelle 67 1735 0.17 1653 0.16 3184 0.2 2959 0.19 2311 0.16 1625 0.16

rhone alps 35 1158 0.05 872 0.05 1158 0.05 1158 0.05 1158 0.05 872 0.04

tbed ctct 84 33.59 28 3563784 20.36 18.09 24.17 219497 0.82

tbed nocoll 84 26.85 30.35 58.96 71.43 34.89 16.71

tbed noderail 84 29.27 30.63 59.09 74.02 51.78 16.85

verriegel4 65 1915 0.13 1209 0.12 1209 0.12 1112 0.12 33118 0.34 1209 0.12

profisafe i4 80 63 0.09 41 0.08 69 0.11 70 0.1 63 0.09 41 0.08

profisafe i4 host 28 36 0.06 36 0.06 64 0.08 36 0.05 58 0.08 36 0.05

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 12 0.03 5 0.02 5 0.03

profisafe i5 88 70 0.13 41 0.09 69 0.12 70 0.13 63 0.1 41 0.09

profisafe i5 host 28 36 0.06 36 0.06 64 0.1 36 0.06 58 0.09 36 0.06

profisafe i6 94 70 0.14 41 0.11 69 0.15 70 0.14 63 0.13 41 0.11

profisafe i6 host 28 36 0.07 36 0.07 64 0.12 36 0.07 58 0.1 36 0.07

profisafe inclusion i4host 78 1728 0.16 324 0.12 761 0.17 72 0.09 333 0.13 252 0.1

profisafe inclusion o4host 84 1721 0.16 324 0.13 761 0.18 72 0.1 333 0.14 252 0.1

profisafe inclusion o4slave 84 1728 0.17 324 0.14 761 0.18 72 0.11 333 0.14 252 0.11

profisafe o4 90 63 0.11 41 0.09 69 0.12 70 0.11 63 0.1 41 0.08

profisafe o4 host 30 36 0.06 36 0.06 64 0.09 36 0.05 58 0.08 36 0.05

profisafe o4 slave 16 5 0.03 5 0.03 5 0.03 12 0.04 5 0.03 5 0.03

profisafe o5 99 41 0.1 41 0.1 69 0.14 48 0.11 63 0.12 41 0.1

profisafe o5 host 30 36 0.06 36 0.07 64 0.1 36 0.06 58 0.09 36 0.06

profisafe o6 106 41 0.12 41 0.12 69 0.16 48 0.13 63 0.14 41 0.11

profisafe o6 host 30 36 0.07 36 0.07 64 0.12 36 0.07 58 0.1 36 0.08

ftechnik 36 82.48 82.47 115.13 150.36 15.95 534861 2.67

rhone tough 61 11.92 11.92 8.39 8.77 8.71 22.01

tbed uncont 84 26.74 30.28 59.43 71.68 34.99 17

18

Table 3.6

MODULAR CONTROLLABILITY CHECK NOT PREFERRING PLANTS,

LARGEST CONTROLLER FIRST

Model Modular controllability, not preferring plants, largest controller first

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 1031 0.04 5036 0.08 4326 0.07 422 0.05 168 0.04 5463 0.08

fzelle 67 7922 0.16 23619 0.22 1249 0.14 1545 0.15 2212 0.17 2122 0.15

rhone alps 35 17792 0.11 25217 0.15 16327 0.11 16018 0.09 10293 0.09 16857 0.11

tbed ctct 84 119806 0.42 18391 0.13 17.66 18391 0.13 22298 0.14 26.09

tbed nocoll 84 18.59 57.29 26.98 107872 0.61 76.86 41.71

tbed noderail 84 18.87 57.2 30.07 111581 0.62 66.67 44.34

verriegel4 65 15625 0.19 31306 0.39 688 0.12 24642 0.3 12479 0.2 32858 0.39

profisafe i4 80 44 0.08 124 0.12 63 0.09 41 0.07 41 0.09 41 0.07

profisafe i4 host 28 36 0.05 112 0.32 58 0.08 36 0.06 36 0.07 36 0.05

profisafe i4 slave 14 8 0.02 12 0.04 5 0.03 5 0.02 5 0.03 5 0.03

profisafe i5 88 44 0.1 124 0.13 63 0.12 41 0.09 41 0.1 41 0.09

profisafe i5 host 28 36 0.07 112 0.1 58 0.09 36 0.06 36 0.08 36 0.06

profisafe i6 94 44 0.11 124 0.15 63 0.14 41 0.11 41 0.12 41 0.11

profisafe i6 host 28 36 0.07 112 0.12 58 0.1 36 0.08 36 0.1 36 0.07

profisafe inclusion i4host 78 164 0.07 143 0.1 52 0.07 66 0.08 214 0.11 130 0.08

profisafe inclusion o4host 84 164 0.08 143 0.11 52 0.07 66 0.08 214 0.13 130 0.09

profisafe inclusion o4slave 84 164 0.08 143 0.11 52 0.08 66 0.08 214 0.13 130 0.09

profisafe o4 90 44 0.09 124 0.12 63 0.11 41 0.08 41 0.1 41 0.08

profisafe o4 host 30 36 0.05 112 0.09 58 0.08 36 0.06 36 0.07 36 0.05

profisafe o4 slave 16 8 0.03 12 0.04 5 0.03 5 0.03 5 0.03 5 0.03

profisafe o5 99 44 0.1 124 0.15 63 0.13 41 0.1 41 0.12 41 0.1

profisafe o5 host 30 36 0.06 112 0.11 58 0.09 36 0.06 36 0.08 36 0.06

profisafe o6 106 44 0.12 124 0.18 63 0.14 41 0.12 41 0.14 41 0.12

profisafe o6 host 30 36 0.07 112 0.12 58 0.1 36 0.07 36 0.1 36 0.07

ftechnik 36 31.9 177113 1.18 89.16 560434 2.76 21.24 67.03

rhone tough 61 9.3 24.76 11.82 12.7 8.69 20.78

tbed uncont 84 18.43 57.22 26.93 30.74 38.73 41.5

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 1046 0.06 168 0.04 168 0.04 168 0.05 5056 0.07 168 0.05

fzelle 67 61907 0.37 1653 0.16 71229 0.39 94487 0.45 2311 0.15 1625 0.16

rhone alps 35 1158 0.05 872 0.05 1158 0.05 1158 0.05 1158 0.05 872 0.04

tbed ctct 84 17.68 13.51 20.79 41.93 24 1951443 8.01

tbed nocoll 84 36.48 21.99 68.89 26.1 34.76 624389 2.33

tbed noderail 84 30.96 23.25 68.58 15.12 51.52 30.31

verriegel4 65 1915 0.13 587 0.11 587 0.11 587 0.11 33118 0.34 587 0.11

profisafe i4 80 17 0.07 17 0.07 39 0.09 24 0.07 63 0.09 17 0.07

profisafe i4 host 28 12 0.05 12 0.05 34 0.08 12 0.04 58 0.07 12 0.05

profisafe i4 slave 14 5 0.03 5 0.02 5 0.03 12 0.03 5 0.03 5 0.03

profisafe i5 88 24 0.09 17 0.08 39 0.12 24 0.09 63 0.11 17 0.08

profisafe i5 host 28 12 0.05 12 0.06 34 0.08 12 0.05 58 0.09 12 0.06

profisafe i6 94 24 0.11 17 0.09 39 0.12 24 0.11 63 0.12 17 0.09

profisafe i6 host 28 12 0.06 12 0.06 34 0.1 12 0.06 58 0.1 12 0.06

profisafe inclusion i4host 78 22 0.07 76 0.08 34 0.07 32 0.07 333 0.12 24 0.06

profisafe inclusion o4host 84 15 0.06 76 0.09 34 0.09 32 0.08 333 0.14 24 0.07

profisafe inclusion o4slave 84 22 0.07 76 0.09 34 0.09 32 0.08 333 0.13 24 0.07

profisafe o4 90 17 0.08 17 0.08 39 0.1 24 0.08 63 0.1 17 0.08

profisafe o4 host 30 12 0.05 12 0.05 34 0.07 12 0.05 58 0.08 12 0.05

profisafe o4 slave 16 5 0.03 5 0.03 5 0.03 12 0.04 5 0.03 5 0.03

profisafe o5 99 17 0.08 17 0.09 39 0.12 24 0.1 63 0.12 17 0.09

profisafe o5 host 30 12 0.05 12 0.06 34 0.09 12 0.05 58 0.09 12 0.06

profisafe o6 106 17 0.1 17 0.1 39 0.14 24 0.12 63 0.14 17 0.1

profisafe o6 host 30 12 0.06 12 0.06 34 0.1 12 0.06 58 0.1 12 0.06

ftechnik 36 54.51 67.04 78.65 383559 100.32 15.86 1.92

rhone tough 61 17.26 17.76 9.32 8.77 8.64 13.11

tbed uncont 84 36.11 19.74 68.53 26.08 34.69 33.85

19

Table 3.7

MODULAR CONTROLLABILITY CHECK PREFERRING PLANTS, SMALLEST

CONTROLLER FIRST

Model Modular controllability, preferring plants, smallest controller first

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 393 0.06 407 0.06 403 0.06 403 0.06 161 0.05 407 0.05

fzelle 67 9951 0.19 14748 0.3 6267 0.24 4168 0.19 4470 0.18 4485 0.2

rhone alps 35 308992 1.21 1066042 4.9 12031 0.08 8951 0.08 12031 0.08 8951 0.08

tbed ctct 84 119806 0.41 18391 0.13 22.37 18391 0.12 22298 0.14 33.73

tbed nocoll 84 21.96 51.91 28.94 31.32 31.56 67.33

tbed noderail 84 22.56 52.58 36.26 32.11 32.2 46.26

verriegel4 65 21271 0.2 25219 0.25 519 0.09 1165 0.1 12497 0.19 33306 0.35

profisafe i4 80 41 0.09 51 0.1 38 0.09 24 0.07 48 0.09 48 0.09

profisafe i4 host 28 33 0.06 39 0.07 33 0.06 19 0.05 43 0.07 43 0.07

profisafe i4 slave 14 8 0.03 12 0.03 5 0.03 5 0.03 5 0.03 5 0.02

profisafe i5 88 41 0.1 51 0.11 38 0.1 24 0.08 48 0.11 48 0.11

profisafe i5 host 28 33 0.07 39 0.08 33 0.07 19 0.06 43 0.08 43 0.08

profisafe i6 94 41 0.12 51 0.13 38 0.37 24 0.09 48 0.12 48 0.12

profisafe i6 host 28 33 0.08 39 0.1 33 0.08 19 0.07 43 0.1 43 0.1

profisafe inclusion i4host 78 94 0.08 139 0.1 32 0.07 37 0.07 195 0.11 253 0.13

profisafe inclusion o4host 84 94 0.09 139 0.1 32 0.08 37 0.08 195 0.13 253 0.14

profisafe inclusion o4slave 84 94 0.09 139 0.1 32 0.07 37 0.08 195 0.13 253 0.14

profisafe o4 90 41 0.1 51 0.11 38 0.09 24 0.08 48 0.1 48 0.1

profisafe o4 host 30 33 0.06 39 0.07 33 0.06 19 0.05 43 0.07 43 0.07

profisafe o4 slave 16 8 0.04 12 0.04 5 0.03 5 0.03 5 0.03 5 0.03

profisafe o5 99 41 0.11 51 0.13 38 0.11 24 0.09 48 0.12 48 0.12

profisafe o5 host 30 33 0.07 39 0.09 33 0.07 19 0.06 43 0.08 43 0.08

profisafe o6 106 41 0.13 51 0.14 38 0.13 24 0.11 48 0.13 48 0.14

profisafe o6 host 30 33 0.09 39 0.1 33 0.08 19 0.07 43 0.1 43 0.09

ftechnik 36 1663577 12.28 4180499 30.49 16.03 5511458 39.84 37.44 27.89

rhone tough 61 10.45 9.82 13.31 8.47 8.9 10.2

tbed uncont 84 21.84 51.95 28.88 31.42 31.55 67.22

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 161 0.05 161 0.04 161 0.05 161 0.04 363 0.05 161 0.05

fzelle 67 7132 0.23 4936 0.19 13670 0.27 14470 0.27 4722 0.18 5059 0.19

rhone alps 35 12029 0.07 986 0.04 320169 1.25 320169 1.25 12029 0.08 986 0.04

tbed ctct 84 15.85 32.01 34.52 11.31 25.75 1951443 7.55

tbed nocoll 84 23.52 14.13 58.24 37.08 20.73 31.42

tbed noderail 84 23.02 14.31 58.57 46.31 40.95 32.03

verriegel4 65 1933 0.14 597 0.1 597 0.11 597 0.1 33136 0.34 485 0.09

profisafe i4 80 24 0.07 24 0.07 54 0.1 31 0.08 48 0.09 24 0.07

profisafe i4 host 28 19 0.05 19 0.05 49 0.08 19 0.06 43 0.07 19 0.05

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 12 0.03 5 0.02 5 0.03

profisafe i5 88 31 0.09 24 0.08 54 0.12 31 0.09 48 0.11 24 0.08

profisafe i5 host 28 19 0.06 19 0.06 49 0.1 19 0.06 43 0.08 19 0.06

profisafe i6 94 31 0.1 24 0.09 54 0.14 31 0.11 48 0.12 24 0.09

profisafe i6 host 28 19 0.07 19 0.07 49 0.11 19 0.07 43 0.09 19 0.07

profisafe inclusion i4host 78 29 0.07 83 0.08 49 0.09 47 0.08 252 0.12 31 0.07

profisafe inclusion o4host 84 22 0.07 83 0.09 49 0.09 47 0.09 252 0.14 31 0.08

profisafe inclusion o4slave 84 29 0.08 83 0.09 49 0.09 47 0.09 252 0.14 31 0.08

profisafe o4 90 24 0.08 24 0.08 54 0.11 31 0.09 48 0.1 24 0.08

profisafe o4 host 30 19 0.05 19 0.05 49 0.09 19 0.06 43 0.08 19 0.05

profisafe o4 slave 16 5 0.03 5 0.03 5 0.03 12 0.04 5 0.03 5 0.03

profisafe o5 99 24 0.09 24 0.09 54 0.13 31 0.1 48 0.12 24 0.09

profisafe o5 host 30 19 0.06 19 0.06 49 0.1 19 0.06 43 0.09 19 0.06

profisafe o6 106 24 0.11 24 0.11 54 0.15 31 0.12 48 0.13 24 0.11

profisafe o6 host 30 19 0.07 19 0.07 49 0.11 19 0.07 43 0.09 19 0.07

ftechnik 36 25.2 21.69 3465198 25.3 23.89 37.05 21.59

rhone tough 61 13.28 9.22 25.93 29.75 8.96 9.18

tbed uncont 84 23.49 14.17 58.33 36.96 20.86 31.43

20

Table 3.8

MODULAR CONTROLLABILITY CHECK NOT PREFERRING PLANTS,

SMALLEST CONTROLLER FIRST

Model Modular controllability, not preferring plants, largest controller first

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 1728 0.05 407 0.05 403 0.04 435 0.05 161 0.04 8758 0.09

fzelle 67 7719 0.14 29194 0.28 3652 0.18 1839 0.13 1927 0.13 2026 0.12

rhone alps 35 225231 0.89 1066042 4.91 12031 0.07 9009 0.07 12161 0.1 9849 0.08

tbed ctct 84 119806 0.4 18391 0.13 22.21 18391 0.13 22298 0.14 33.77

tbed nocoll 84 25.71 57.07 21.1 613031 2.19 1754041 6.91 25.44

tbed noderail 84 25.89 56.73 72.4 657923 2.33 1775027 7.08 23.46

verriegel4 65 19.44 24576 0.28 519 0.1 24530 0.29 12497 0.2 32773 0.38

profisafe i4 80 56 0.09 124 0.12 38 0.08 41 0.07 48 0.1 41 0.07

profisafe i4 host 28 48 0.06 112 0.09 33 0.06 36 0.05 43 0.08 36 0.05

profisafe i4 slave 14 8 0.03 12 0.03 5 0.03 5 0.03 5 0.03 5 0.02

profisafe i5 88 56 0.1 124 0.14 38 0.1 41 0.09 48 0.11 41 0.08

profisafe i5 host 28 48 0.08 112 0.1 33 0.07 36 0.06 43 0.09 36 0.07

profisafe i6 94 56 0.12 124 0.16 38 0.11 41 0.1 48 0.13 41 0.11

profisafe i6 host 28 48 0.08 112 0.12 33 0.08 36 0.07 43 0.1 36 0.07

profisafe inclusion i4host 78 184 0.08 143 0.1 32 0.07 66 0.07 195 0.12 130 0.08

profisafe inclusion o4host 84 184 0.09 143 0.1 32 0.08 66 0.08 195 0.13 130 0.09

profisafe inclusion o4slave 84 184 0.09 143 0.1 32 0.08 66 0.08 195 0.13 130 0.09

profisafe o4 90 56 0.1 124 0.13 38 0.09 41 0.08 48 0.1 41 0.08

profisafe o4 host 30 48 0.06 112 0.09 33 0.07 36 0.05 43 0.07 36 0.05

profisafe o4 slave 16 8 0.04 12 0.04 5 0.03 5 0.03 5 0.03 5 0.03

profisafe o5 99 56 0.11 124 0.15 38 0.11 41 0.1 48 0.13 41 0.1

profisafe o5 host 30 48 0.07 112 0.1 33 0.07 36 0.06 43 0.09 36 0.06

profisafe o6 106 56 0.13 124 0.17 38 0.13 41 0.12 48 0.14 41 0.12

profisafe o6 host 30 48 0.08 112 0.11 33 0.08 36 0.07 43 0.1 36 0.07

ftechnik 36 159004 1.23 21063 0.16 128 0.04 128 0.03 128 0.03 336808 1.11

rhone tough 61 11.39 15.75 15.89 11.14 33.37 14.58

tbed uncont 84 25.69 56.48 21.05 30.72 54.33 77.84

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 161 0.04 161 0.04 161 0.04 161 0.04 363 0.04 161 0.04

fzelle 67 7132 0.24 2765 0.14 30054 0.29 30731 0.3 4722 0.16 2609 0.13

rhone alps 35 12029 0.08 986 0.04 320169 1.25 320169 1.25 12029 0.08 986 0.04

tbed ctct 84 15.77 31.76 34.19 11.25 25.68 1951443 7.52

tbed nocoll 84 20.02 14.17 60.31 20 20.78 581749 2.25

tbed noderail 84 22.94 29.46 60.34 36.01 40.73 549120 2.1

verriegel4 65 1933 0.13 597 0.11 597 0.11 597 0.11 33136 0.34 485 0.09

profisafe i4 80 24 0.07 24 0.07 54 0.1 31 0.09 48 0.09 24 0.07

profisafe i4 host 28 19 0.05 19 0.05 49 0.08 19 0.05 43 0.07 19 0.05

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 12 0.03 5 0.03 5 0.02

profisafe i5 88 31 0.1 24 0.08 54 0.13 31 0.1 48 0.11 24 0.09

profisafe i5 host 28 19 0.06 19 0.06 49 0.1 19 0.06 43 0.09 19 0.06

profisafe i6 94 31 0.11 24 0.1 54 0.14 31 0.11 48 0.12 24 0.1

profisafe i6 host 28 19 0.07 19 0.07 49 0.11 19 0.07 43 0.1 19 0.07

profisafe inclusion i4host 78 29 0.07 83 0.08 49 0.09 47 0.09 252 0.13 31 0.07

profisafe inclusion o4host 84 22 0.07 83 0.09 49 0.09 47 0.09 252 0.13 31 0.08

profisafe inclusion o4slave 84 29 0.08 83 0.09 49 0.1 47 0.09 252 0.14 31 0.07

profisafe o4 90 24 0.08 24 0.08 54 0.12 31 0.09 48 0.1 24 0.08

profisafe o4 host 30 19 0.05 19 0.05 49 0.09 19 0.05 43 0.07 19 0.05

profisafe o4 slave 16 5 0.03 5 0.03 5 0.03 12 0.04 5 0.03 5 0.03

profisafe o5 99 24 0.1 24 0.09 54 0.14 31 0.11 48 0.12 24 0.09

profisafe o5 host 30 19 0.06 19 0.06 49 0.1 19 0.06 43 0.08 19 0.06

profisafe o6 106 24 0.11 24 0.11 54 0.16 31 0.12 48 0.13 24 0.11

profisafe o6 host 30 19 0.07 19 0.07 49 0.11 19 0.07 43 0.1 19 0.07

ftechnik 36 18.94 128 0.03 26.16 14.45 36.91 128 0.03

rhone tough 61 13.09 48.03 26.06 43.19 8.95 21.27

tbed uncont 84 20.07 14.16 59.89 20.13 20.81 36.69

21

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250

S
ta

te
s

E
x
p
lo

re
d

Functional Blocks of TransferLine

Size of TransferLine vs States Explored

Figure 3.3

22

Chapter 4

Parallel Checker

The parallel checker instead of trying to prove that each controller is control-
lable one after the other instead tries interleave the process of proving each
controller with proving every other controller. This is for two basic reasons.
Firstly, because if there is one specification in the model for which it is easy
to prove that it is not controllable, the parallel checker should be capable of
discovering this relatively quickly, whereas the standard approach may have to
waist time proving other specifications first. Secondly, if the system as a whole
is controllable, it may be useful to use solve those specifications which, can be
proved quickly, early on, so as to aid in proving the harder specifications.

4.1 Algorithm

The algorithm is detailed in Figure 4.1. This algorithm behaves like the standard
modular algorithm detailed in Figure 3.1. The main difference is that, instead
of just picking a controller to prove and then sticking with it, we instead for
each controller do one iteration to attempt to prove it, and then proceed to do
an iteration for the next controller down the line. In addition, if we manage
to prove a controller controllable, we proceed to look through all the other
compositions and remove from them any automata which were added after the
proven automata. This is because now that the controller can be considered as
a plant, it is quite likely that many counterexamples disappear and thus some
of the plants added afterwards could very well be completely unnecessary.

4.2 Results

Most of what was stated in the results section for the modular controllability
checker is also true here. The only thing of any particular significance is how
efficient the parallel checker seems to be at solving the ftechnik example espe-
cially considering how much trouble the standard modular checker has trying
to solve it. The reason for this is that ftechnik has a counterexample which

23

C equals the set of Controller automata in the model and P the set of Plant
automata, and S is the queue of sets of composed automata.

1. Set the queue S as being empty.

2. For every controller Ci create the list Si. Add Ci to the front of it and
add it to S

3. If S is empty the model has been proven controllable. Otherwise, remove
Si from the front of S.

4. Check controllability of SI using the monolithic method. Consider all
automata which are elements of C as controllers and all automata which
are elements of P as plants.

5. If no counterexample for S was found go to 9. Otherwise set t to be the
counterexample found by the controllability check.

6. Set the set N to contain all automata in P and C which would not accept
the counterexample t. Take into consideration for all automata in C that
specifications in addition to not accepting t must also not consider t as
being a counterexample to their controller.

7. If N is empty then the model has been proven uncontrollable and t rep-
resents a counterexample in the system. Otherwise pick a subset of N to
add to the end of Si.

8. Add Si on to the end of S then go to 3.

9. For all elements Cj of Si if they are also an element of C, remove them
from C and add them to P , also for all lists in S remove all automata
added after Ci if it is present. Then go to 3.

Figure 4.1: Modular Controllability checking algorithm

24

is only one event long, and thus can be found very quickly. Thus the paral-
lel checker has an extreme advantage here in that it can start looking at the
controller which speaks of this counterexample right of the bat without going
to much effort trying to prove the other controllers. This however represents
an extreme case which is not indicative of most models. Thus it would have
been good if we had more uncontrollable models which were harder but not as
hard as tbed uncont or rhone tough to test to see if this same effect can come
in handy on less extreme cases as well.

It should be noted that language inclusion is not looked at here as for most
language inclusion problems we only consider one property at a time. Thus, the
parallel checker is unlikely to give interesting results.

25

Table 4.1

PARALLEL CONTROLLABILITY CHECKER PREFERRING PLANTS

Model Parallel controllability, preferring plants

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 1065 0.07 207 0.06 350 0.05 442 0.06 167 0.05 5479 0.11

fzelle 67 7885 0.19 9670 0.31 2240 0.18 2405 0.19 2311 0.19 2122 0.16

rhone alps 35 225113 0.9 1040434 4.92 1720 0.06 1544 0.06 3440 0.07 1926 0.07

tbed ctct 84 119806 0.43 18391 0.14 27.16 18391 0.14 22298 0.15 52.13

tbed nocoll 84 24.14 267.03 41.64 52.25 65.13 107.54

tbed noderail 84 24.39 267.11 233.02 50.75 75.25 78.47

verriegel4 65 3511 0.17 25888 0.34 597 0.14 6335 0.22 12575 0.24 33713 0.43

profisafe i4 80 51 0.11 61 0.12 38 0.1 48 0.11 48 0.1 48 0.11

profisafe i4 host 28 43 0.08 49 0.1 33 0.07 43 0.08 43 0.08 43 0.08

profisafe i4 slave 14 8 0.03 12 0.04 5 0.03 5 0.02 5 0.03 5 0.03

profisafe i5 88 51 0.13 61 0.14 38 0.11 48 0.13 48 0.14 48 0.12

profisafe i5 host 28 43 0.1 49 0.11 33 0.08 43 0.1 43 0.09 43 0.09

profisafe i6 94 51 0.14 61 0.17 38 0.13 48 0.15 48 0.15 48 0.14

profisafe i6 host 28 43 0.11 49 0.13 33 0.09 43 0.11 43 0.11 43 0.11

profisafe inclusion i4host 78 184 0.09 177 0.1 59 0.09 88 0.1 195 0.13 137 0.11

profisafe inclusion o4host 84 184 0.1 177 0.12 59 0.1 88 0.11 195 0.14 137 0.11

profisafe inclusion o4slave 84 184 0.1 177 0.12 59 0.1 88 0.12 195 0.14 137 0.11

profisafe o4 90 51 0.12 61 0.14 38 0.12 48 0.12 48 0.12 48 0.12

profisafe o4 host 30 43 0.08 49 0.09 33 0.07 43 0.08 43 0.09 43 0.09

profisafe o4 slave 16 8 0.04 12 0.04 5 0.04 5 0.04 5 0.04 5 0.04

profisafe o5 99 51 0.14 61 0.16 38 0.13 48 0.14 48 0.14 48 0.13

profisafe o5 host 30 43 0.1 49 0.11 33 0.09 43 0.1 43 0.1 43 0.09

profisafe o6 106 51 0.17 61 0.18 38 0.14 48 0.16 48 0.16 48 0.16

profisafe o6 host 30 43 0.11 49 0.13 33 0.09 43 0.11 43 0.11 43 0.11

ftechnik 36 113 0.05 113 0.05 113 0.04 113 0.05 113 0.04 113 0.05

rhone tough 61 13.54 28.74 32.97 23.09 9.1 28.24

tbed uncont 84 24.03 267 41.48 205.83 170.16 188.66

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 174 0.05 174 0.05 174 0.05 174 0.04 381 0.05 174 0.05

fzelle 67 5681 0.26 2574 0.18 7266 0.3 10792 0.31 4464 0.22 2670 0.18

rhone alps 35 1697 0.07 1720 0.06 17100 0.12 17077 0.12 1720 0.05 1720 0.06

tbed ctct 84 45.84 41.28 40.88 16.34 12.45 1951443 7.69

tbed nocoll 84 62.23 64.08 158.22 67.25 155.68 55.7

tbed noderail 84 170.83 202.59 157.93 177.41 160.45 56.03

verriegel4 65 2011 0.17 675 0.15 675 0.15 675 0.14 33214 0.39 563 0.13

profisafe i4 80 38 0.09 38 0.09 54 0.12 45 0.11 48 0.1 38 0.09

profisafe i4 host 28 33 0.08 33 0.07 49 0.09 33 0.07 43 0.08 33 0.07

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 12 0.03 5 0.03 5 0.03

profisafe i5 88 45 0.12 38 0.11 54 0.14 45 0.12 48 0.12 38 0.11

profisafe i5 host 28 33 0.08 33 0.08 49 0.11 33 0.08 43 0.09 33 0.08

profisafe i6 94 45 0.14 38 0.13 54 0.16 45 0.14 48 0.14 38 0.13

profisafe i6 host 28 33 0.09 33 0.09 49 0.12 33 0.09 43 0.1 33 0.1

profisafe inclusion i4host 78 90 0.1 83 0.09 49 0.09 56 0.11 252 0.14 31 0.08

profisafe inclusion o4host 84 83 0.1 83 0.1 49 0.11 56 0.11 252 0.15 31 0.09

profisafe inclusion o4slave 84 90 0.1 83 0.1 49 0.1 56 0.11 252 0.15 31 0.09

profisafe o4 90 38 0.1 38 0.1 54 0.14 45 0.11 48 0.12 38 0.1

profisafe o4 host 30 33 0.07 33 0.07 49 0.1 33 0.07 43 0.08 33 0.08

profisafe o4 slave 16 5 0.04 5 0.04 5 0.04 12 0.05 5 0.04 5 0.04

profisafe o5 99 38 0.13 38 0.12 54 0.16 45 0.13 48 0.13 38 0.13

profisafe o5 host 30 33 0.08 33 0.09 49 0.1 33 0.08 43 0.09 33 0.08

profisafe o6 106 38 0.14 38 0.15 54 0.17 45 0.15 48 0.15 38 0.14

profisafe o6 host 30 33 0.09 33 0.09 49 0.12 33 0.09 43 0.11 33 0.09

ftechnik 36 113 0.05 113 0.05 113 0.04 113 0.05 113 0.04 113 0.05

rhone tough 61 11.95 21.71 15.29 11.19 10.01 36.87

tbed uncont 84 62.59 64.53 158.55 67.3 156.23 140.03

26

Table 4.2

PARALLEL CONTROLLABILITY CHECKER NOT PREFERRING PLANTS

Model Parallel checker, not preferring plants

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 1065 0.06 207 0.05 350 0.05 442 0.06 167 0.05 5479 0.09

fzelle 67 7919 0.2 16054 0.43 2240 0.19 2245 0.18 2311 0.2 2122 0.17

rhone alps 35 225085 0.9 1040434 4.88 56859 0.27 1544 0.06 11853 0.12 56173 0.25

tbed ctct 84 119806 0.43 18391 0.14 27.25 18391 0.14 22298 0.15 52.09

tbed nocoll 84 22.06 478.75 142.36 184691 1.03 337945 1.57 231.03

tbed noderail 84 22.37 480.16 100.15 188302 1.06 339078 1.58 429.99

verriegel4 65 3799 0.18 23384 0.33 597 0.13 23399 0.33 12575 0.25 32833 0.42

profisafe i4 80 56 0.11 124 0.13 38 0.1 41 0.09 48 0.1 41 0.09

profisafe i4 host 28 48 0.08 112 0.1 33 0.07 36 0.07 43 0.08 36 0.06

profisafe i4 slave 14 8 0.03 12 0.03 5 0.03 5 0.03 5 0.03 5 0.02

profisafe i5 88 56 0.12 124 0.16 38 0.11 41 0.11 48 0.13 41 0.1

profisafe i5 host 28 48 0.1 112 0.11 33 0.08 36 0.07 43 0.1 36 0.08

profisafe i6 94 56 0.14 124 0.18 38 0.13 41 0.12 48 0.15 41 0.12

profisafe i6 host 28 48 0.1 112 0.13 33 0.1 36 0.09 43 0.12 36 0.08

profisafe inclusion i4host 78 184 0.1 143 0.11 23 0.08 66 0.08 195 0.14 130 0.1

profisafe inclusion o4host 84 184 0.11 143 0.12 23 0.08 66 0.09 195 0.14 130 0.11

profisafe inclusion o4slave 84 184 0.11 143 0.12 23 0.08 66 0.09 195 0.14 130 0.1

profisafe o4 90 56 0.11 124 0.15 38 0.11 41 0.1 48 0.12 41 0.1

profisafe o4 host 30 48 0.08 112 0.1 33 0.08 36 0.06 43 0.08 36 0.06

profisafe o4 slave 16 8 0.04 12 0.04 5 0.04 5 0.04 5 0.04 5 0.04

profisafe o5 99 56 0.14 124 0.18 38 0.13 41 0.12 48 0.14 41 0.12

profisafe o5 host 30 48 0.09 112 0.12 33 0.08 36 0.07 43 0.1 36 0.08

profisafe o6 106 56 0.16 124 0.2 38 0.15 41 0.14 48 0.16 41 0.13

profisafe o6 host 30 48 0.11 112 0.13 33 0.1 36 0.09 43 0.11 36 0.09

ftechnik 36 113 0.06 113 0.05 113 0.05 113 0.05 113 0.04 113 0.05

rhone tough 61 17.38 77.38 33.2 23.09 9.11 28.6

tbed uncont 84 22.01 479.59 142.31 169.32 128.65 231.22

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 174 0.05 174 0.04 174 0.05 174 0.05 381 0.05 174 0.05

fzelle 67 6183 0.28 2574 0.18 19728 0.48 16174 0.47 4464 0.22 2510 0.18

rhone alps 35 2134 0.08 1022 0.06 1308 0.07 1308 0.06 1720 0.06 1022 0.06

tbed ctct 84 46.1 41.07 40.97 16.33 12.42 1951443 7.69

tbed nocoll 84 17.95 40.62 299.94 61.9 155.23 306856 1.48

tbed noderail 84 235.13 281.84 300.34 403.78 160.95 300259 1.38

verriegel4 65 2011 0.18 675 0.15 675 0.16 675 0.15 33214 0.38 563 0.13

profisafe i4 80 24 0.09 24 0.09 54 0.12 31 0.09 48 0.1 24 0.09

profisafe i4 host 28 19 0.06 19 0.06 49 0.09 19 0.06 43 0.08 19 0.05

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 12 0.04 5 0.02 5 0.03

profisafe i5 88 31 0.11 24 0.1 54 0.14 31 0.11 48 0.12 24 0.1

profisafe i5 host 28 19 0.07 19 0.07 49 0.11 19 0.07 43 0.09 19 0.08

profisafe i6 94 31 0.13 24 0.12 54 0.16 31 0.13 48 0.14 24 0.12

profisafe i6 host 28 19 0.09 19 0.08 49 0.12 19 0.08 43 0.11 19 0.08

profisafe inclusion i4host 78 29 0.08 83 0.1 49 0.1 47 0.09 252 0.14 31 0.08

profisafe inclusion o4host 84 22 0.08 83 0.11 49 0.1 47 0.11 252 0.14 31 0.09

profisafe inclusion o4slave 84 29 0.09 83 0.1 49 0.11 47 0.1 252 0.15 31 0.09

profisafe o4 90 24 0.09 24 0.09 54 0.14 31 0.1 48 0.11 24 0.1

profisafe o4 host 30 19 0.06 19 0.06 49 0.1 19 0.05 43 0.08 19 0.06

profisafe o4 slave 16 5 0.04 5 0.04 5 0.04 12 0.04 5 0.04 5 0.04

profisafe o5 99 24 0.12 24 0.12 54 0.15 31 0.12 48 0.13 24 0.12

profisafe o5 host 30 19 0.07 19 0.08 49 0.11 19 0.08 43 0.09 19 0.07

profisafe o6 106 24 0.14 24 0.13 54 0.18 31 0.14 48 0.16 24 0.13

profisafe o6 host 30 19 0.08 19 0.08 49 0.13 19 0.08 43 0.11 19 0.08

ftechnik 36 113 0.04 113 0.05 113 0.04 113 0.05 113 0.04 113 0.05

rhone tough 61 73.51 46.84 13.47 10.24 9.96 36.71

tbed uncont 84 17.99 46.79 299.72 62.05 155.88 107.95

27

Chapter 5

Culling Checker

As can be seen in the previous sections, what heuristic we use to decide which
new automata to add to the composition can have a drastic effect on how long
it will take to prove a model controllable and even on whether we will be able
to prove a model as being controllable before running out of memory. This
shows that it is important that, when we choose automata to be added into
the composition, we choose the right ones. Thus, the idea behind the culling
controllability checker is that, as we build up the composition of automata that
we check for controllability, we also second guess some of the choices we made
earlier on and attempt to remove from the composition those automata which
aren’t particularly good choices.

5.1 Algorithm

This algorithm is detailed in Figure 5.1. The basic concept here is that we
use a regular modular controllability checker, but that, whenever we add a new
automaton into the composition, we remember all the other automata which
could have been added into the composition instead. This is so that whenever
we add a new automata to the composition we can check to see if that automaton
could have been used previously, and if it could, whether or not it would be worth
while to remove the automaton we previously added into the composition.

5.2 Results

Again most of the things related to heuristics and such stated with respect to
the standard modular checker apply here also. From looking at the results it
seems that most of the time this checker does worse than the standard checker
with the same heuristic and the same order of proving automata. There is
however the notable exception of MaxCommonEvents and MaxCommonUncon-
trollable for tbed nocoll and tbed noderail. In Tables 3.8 and 5.2 we can see that
the standard modular approach took more states than it needed to because of

28

C equals the set of Controller automata in the model and P the set of Plant
automata, S is the set of composed automata, and O is the set of automata we
could of added to the composition at each step.

1. Set the set S and O as being empty.

2. if C is empty the model has been proven controllable. Otherwise, take an
automaton from the set C and add it to S.

3. Check controllability of S using the monolithic method. Consider au-
tomata which are elements of C as controllers and all automata which are
elements of P as plants.

4. If no counterexample for S was found go to 9. Otherwise set t to be the
counterexample found by the controllability check.

5. Set the set N to contain all automata in P and C which would not accept
the counterexample t. Take into consideration for all automata in C that
specifications in addition to not accepting t must also not consider t as
being a counterexample to their controller.

6. If N is empty then the model has been proven not controllable, and t
represents a counterexample in the system. Otherwise pick an automaton
n in N to add to S.

7. For all elements in O (a, mo) if n ∈ mo then check to see if the synchronous
product of S is smaller without a if it is remove a from S and (a, mo) from
O. In addition set N to equal the intersection of N and mo.

8. Add (n, N) to the list O then go to 3.

9. For all elements of S if they are also an element of C remove them from
C and add them to P . Then go to 2.

Figure 5.1: Modular Controllability checking algorithm

29

choosing unnecessary automata and the culling approach did manage to remove
unnecessary automata from the composition, taking significantly fewer states,
and qsuggesting there may be some merits to this approach. However, there is
still the unfortunate drawback that this approach can take significantly longer
than others to work out that it will in fact fail.

30

Table 5.1

CULLING LANGUAGE INCLUSION

Model Culling language inclusion

All Early Late MaxCommon Max Min

NotAccept NotAccept Events States Events

Name Aut States Time States Time States Time States Time States Time States Time

profisafe i4 slave 15 10519 0.95 1753 0.25 19377 1.14 12689 0.57 23441 1.24 1660 0.27

profisafe o4 slave 17 7674 1.09 1664 0.43 23227 1.29 25475 1.09 28701 1.43 3243 0.68

big bmw 32 1637 0.08 1637 0.06 2197 0.09 1637 0.09 1637 0.09 1985 0.07

ftechnik 37 17.79 4460133 119.07 136.2 445.22 63.2 147.92

tbed nocoll 85 273.88 158.39 253.06 2301 1.6 2255 95.97 88.18

tbed noderail 85 305.45 36.51 125.55 194.72 91.55 151.25

verriegel4 66 1680 0.06 1201 0.05 1680 0.06 1201 0.05 1680 0.06 1680 0.06

profisafe i4 host 29 2730 0.71 5022 0.82 2321 0.51 4666 0.54 3081 0.76 2942 0.42

profisafe o4 host 31 2730 0.7 5022 0.82 2321 0.52 4666 0.54 3081 0.77 2942 0.42

profisafe i5 host 29 2928 0.82 5503 0.96 2519 0.6 5342 0.64 3368 0.89 3443 0.5

profisafe o5 host 31 2928 0.81 5503 0.97 2519 0.6 5342 0.64 3368 0.89 3443 0.51

profisafe i6 host 29 3126 0.93 5984 1.09 2717 0.69 6018 0.73 3655 1.02 3944 0.58

profisafe o6 host 31 3126 0.93 5984 1.1 2717 0.69 6018 0.74 3655 1.03 3944 0.59

Model Min Min Min One RelMax

NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time

profisafe i4 slave 15 3636 0.45 1413 0.36 1753 0.26 10519 0.95 4190 0.71

profisafe o4 slave 17 5051 0.65 22822 1.32 24632 1 7674 1.08 12240 1.36

big bmw 32 1985 0.05 1985 0.04 1985 0.06 1637 0.07 1985 0.05

ftechnik 37 117.52 410.73 757.87 17.75 123.87

tbed nocoll 85 110.38 208.46 128.6 271.88 48.93

tbed noderail 85 108.32 110.12 83.86 304.9 139.91

verriegel4 66 1680 0.06 2103 0.07 2103 0.07 1680 0.06 2103 0.07

profisafe i4 host 29 2101 0.52 2219 0.48 2942 0.42 2730 0.69 2101 0.52

profisafe o4 host 31 2101 0.52 2219 0.48 2942 0.42 2730 0.7 2101 0.52

profisafe i5 host 29 2337 0.59 2455 0.57 2066 0.4 2928 0.81 2337 0.58

profisafe o5 host 31 2337 0.59 2455 0.56 2066 0.4 2928 0.81 2337 0.6

profisafe i6 host 29 2573 0.66 2691 0.64 2302 0.46 3126 0.92 2573 0.67

profisafe o6 host 31 2573 0.67 2691 0.66 2302 0.46 3126 0.92 2573 0.67

31

Table 5.2

CULLING CONTROLLABILITY CHECKER PREFERRING PLANTS, LARGEST

CONTROLLER FIRST

Model Culling checker, preferring plants, largest controller first

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 10929 0.12 13970 0.17 13139 0.15 12017 0.13 11011 0.12 13160 0.14

fzelle 67 2392 0.23 1451 0.18 1309 0.2 1660 0.21 2293 0.22 2263 0.21

rhone alps 35 1142 0.06 4970 0.14 16231 0.13 842 0.04 5254 0.14 16912 0.14

tbed ctct 84 159.07 21503 0.17 167.65 21503 0.17 22670 0.22 63.19

tbed nocoll 84 81.65 327.97 47.43 130.3 318.06 232.36

tbed noderail 84 200.47 450.92 47.72 84.74 343.47 233.33

verriegel4 65 28906 0.46 29611 0.52 923 0.13 2247 0.17 12888 0.29 28929 0.49

profisafe i4 80 94 0.13 86 0.13 94 0.13 41 0.09 94 0.12 41 0.09

profisafe i4 host 28 89 0.1 77 0.09 89 0.11 36 0.05 89 0.1 36 0.06

profisafe i4 slave 14 5 0.02 9 0.03 5 0.02 5 0.03 5 0.03 5 0.03

profisafe i5 88 94 0.15 86 0.15 94 0.15 41 0.1 94 0.15 41 0.09

profisafe i5 host 28 89 0.12 77 0.11 89 0.12 36 0.07 89 0.12 36 0.07

profisafe i6 94 94 0.17 86 0.18 94 0.17 41 0.12 94 0.18 41 0.11

profisafe i6 host 28 89 0.13 77 0.13 89 0.13 36 0.08 89 0.13 36 0.08

profisafe inclusion i4host 78 554 0.34 104 0.11 48 0.08 62 0.08 342 0.22 118 0.1

profisafe inclusion o4host 84 554 0.74 104 0.12 48 0.09 62 0.09 342 0.23 118 0.1

profisafe inclusion o4slave 84 554 0.36 104 0.12 48 0.08 62 0.09 342 0.24 118 0.11

profisafe o4 90 94 0.14 86 0.14 94 0.14 41 0.09 94 0.14 41 0.09

profisafe o4 host 30 89 0.1 77 0.1 89 0.11 36 0.06 89 0.11 36 0.06

profisafe o4 slave 16 5 0.03 9 0.04 5 0.04 5 0.03 5 0.03 5 0.04

profisafe o5 99 94 0.17 86 0.56 94 0.17 41 0.11 94 0.17 41 0.11

profisafe o5 host 30 89 0.12 77 0.49 89 0.12 36 0.07 89 0.12 36 0.07

profisafe o6 106 94 0.2 86 0.19 94 0.19 41 0.13 94 0.19 41 0.13

profisafe o6 host 30 89 0.13 77 0.13 89 0.13 36 0.08 89 0.14 36 0.08

ftechnik 36 45.9 253964 3.34 580.29 688070 4.54 146.88 173.8

rhone tough 61 8.74 21.23 46.27 51.86 8.81 33.29

tbed uncont 84 60.18 326.51 86.8 38.79 39.13 232.53

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 11797 0.13 11797 0.13 14265 0.18 11797 0.13 10929 0.1 11011 0.12

fzelle 67 1633 0.24 1586 0.23 2251 0.27 2096 0.24 2392 0.21 1544 0.22

rhone alps 35 1142 0.06 842 0.05 1142 0.06 1142 0.06 1142 0.06 842 0.04

tbed ctct 84 90.53 51.89 5520413 30.36 44.58 158.07 328595 1.6

tbed nocoll 84 315.55 140.13 139.4 697.72 81.1 296.62

tbed noderail 84 227.38 147.47 129.35 826.56 200.72 296.29

verriegel4 65 1665 0.16 882 0.14 882 0.13 837 0.13 28906 0.44 882 0.14

profisafe i4 80 94 0.13 41 0.09 94 0.12 98 0.14 94 0.13 41 0.08

profisafe i4 host 28 36 0.06 36 0.06 89 0.11 36 0.06 89 0.1 36 0.06

profisafe i4 slave 14 5 0.03 5 0.03 5 0.02 9 0.04 5 0.02 5 0.03

profisafe i5 88 98 0.16 41 0.1 94 0.15 98 0.16 94 0.14 41 0.1

profisafe i5 host 28 36 0.07 36 0.07 89 0.12 36 0.07 89 0.12 36 0.07

profisafe i6 94 98 0.18 41 0.12 94 0.18 98 0.19 94 0.16 41 0.12

profisafe i6 host 28 36 0.08 36 0.08 89 0.14 36 0.08 89 0.13 36 0.08

profisafe inclusion i4host 78 1891 0.4 714 0.31 844 0.25 93 0.12 554 0.32 272 0.13

profisafe inclusion o4host 84 1887 0.42 714 0.32 844 0.27 93 0.13 554 0.32 272 0.13

profisafe inclusion o4slave 84 1891 0.42 714 0.32 844 0.26 93 0.13 554 0.33 272 0.14

profisafe o4 90 94 0.13 41 0.1 94 0.14 98 0.15 94 0.13 41 0.09

profisafe o4 host 30 36 0.06 36 0.06 89 0.11 36 0.06 89 0.1 36 0.06

profisafe o4 slave 16 5 0.04 5 0.03 5 0.03 9 0.04 5 0.03 5 0.03

profisafe o5 99 41 0.11 41 0.11 94 0.17 45 0.11 94 0.16 41 0.12

profisafe o5 host 30 36 0.07 36 0.07 89 0.12 36 0.07 89 0.12 36 0.07

profisafe o6 106 41 0.13 41 0.13 94 0.19 45 0.14 94 0.18 41 0.13

profisafe o6 host 30 36 0.08 36 0.08 89 0.16 36 0.08 89 0.14 36 0.08

ftechnik 36 483.01 183.51 743.3 669.58 45.72 422917 3.59

rhone tough 61 11.88 11.89 8.64 8.71 8.78 65.82

tbed uncont 84 315.69 140.47 139.62 696.67 60.02 94.26

32

Table 5.3

CULLING CONTROLLABILITY CHECKER NOT PREFERRING PLANTS,

LARGEST CONTROLLER FIRST

Model Culling checker, not preferring plants, largest controller first

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 10929 0.1 4825 0.11 9718 0.1 355 0.06 168 0.04 13160 0.15

fzelle 67 2392 0.24 27576 0.31 1309 0.2 1660 0.22 2293 0.24 2263 0.22

rhone alps 35 1142 0.06 20214 0.19 16231 0.13 16086 0.11 5254 0.14 16986 0.14

tbed ctct 84 157.87 21503 0.17 20.63 21503 0.17 22670 0.22 63.23

tbed nocoll 84 81.62 571.92 106.39 143639 1.15 410.83 224.93

tbed noderail 84 201.48 586.78 146.09 144789 1.19 467.51 223.76

verriegel4 65 28906 0.47 33960 0.55 628 0.13 21431 0.35 11203 0.27 33138 0.52

profisafe i4 80 94 0.17 86 0.13 94 0.13 41 0.08 47 0.11 41 0.08

profisafe i4 host 28 89 0.1 77 0.09 89 0.1 36 0.06 42 0.09 36 0.06

profisafe i4 slave 14 5 0.02 9 0.03 5 0.03 5 0.02 5 0.03 5 0.03

profisafe i5 88 94 0.15 86 0.23 94 0.15 41 0.1 47 0.13 41 0.09

profisafe i5 host 28 89 0.11 77 0.11 89 0.12 36 0.07 42 0.1 36 0.07

profisafe i6 94 94 0.17 86 0.19 94 0.18 41 0.12 47 0.15 41 0.11

profisafe i6 host 28 89 0.13 77 0.12 89 0.14 36 0.08 42 0.11 36 0.08

profisafe inclusion i4host 78 554 0.34 104 0.11 48 0.08 62 0.09 323 0.2 118 0.09

profisafe inclusion o4host 84 554 0.34 104 0.12 48 0.09 62 0.09 323 0.22 118 0.1

profisafe inclusion o4slave 84 554 0.34 104 0.12 48 0.09 62 0.09 323 0.22 118 0.1

profisafe o4 90 94 0.15 86 0.12 94 0.13 41 0.09 47 0.13 41 0.09

profisafe o4 host 30 89 0.1 77 0.1 89 0.11 36 0.06 42 0.09 36 0.06

profisafe o4 slave 16 5 0.03 9 0.04 5 0.03 5 0.04 5 0.03 5 0.03

profisafe o5 99 94 0.15 86 0.21 94 0.16 41 0.11 47 0.14 41 0.11

profisafe o5 host 30 89 0.15 77 0.11 89 0.12 36 0.07 42 0.1 36 0.07

profisafe o6 106 94 0.21 86 0.19 94 0.19 41 0.13 47 0.16 41 0.13

profisafe o6 host 30 89 0.14 77 0.13 89 0.14 36 0.08 42 0.11 36 0.08

ftechnik 36 45.95 235864 3.24 1033.98 2156487 10.49 31549956 158.24 259.57

rhone tough 61 8.76 24.83 50.63 81.83 8.8 14.01

tbed uncont 84 60.41 573.15 105.87 200.49 93.64 143.35

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 2058 0.07 168 0.04 168 0.05 168 0.04 10929 0.1 168 0.05

fzelle 67 62259 0.51 1586 0.24 71847 0.55 71041 0.54 2392 0.21 1544 0.22

rhone alps 35 1142 0.06 842 0.05 1142 0.06 1142 0.06 1142 0.06 842 0.05

tbed ctct 84 37.43 18.83 74.24 208.01 157.74 2060309 8.1

tbed nocoll 84 188.52 189.94 109.15 170.97 81.33 893607 4.22

tbed noderail 84 45.54 287.14 109.03 419.47 201.62 61.47

verriegel4 65 1665 0.17 587 0.13 587 0.13 587 0.13 28906 0.46 587 0.52

profisafe i4 80 17 0.07 17 0.07 44 0.1 21 0.08 94 0.13 17 0.07

profisafe i4 host 28 12 0.05 12 0.05 39 0.08 12 0.05 89 0.1 12 0.05

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 9 0.03 5 0.03 5 0.03

profisafe i5 88 21 0.09 17 0.08 44 0.12 21 0.1 94 0.14 17 0.09

profisafe i5 host 28 12 0.06 12 0.06 39 0.09 12 0.05 89 0.11 12 0.06

profisafe i6 94 21 0.11 17 0.1 44 0.14 21 0.11 94 0.16 17 0.1

profisafe i6 host 28 12 0.07 12 0.07 39 0.1 12 0.07 89 0.13 12 0.07

profisafe inclusion i4host 78 19 0.07 87 0.09 38 0.09 33 0.09 554 0.31 29 0.08

profisafe inclusion o4host 84 15 0.07 87 0.1 38 0.09 33 0.09 554 0.32 29 0.09

profisafe inclusion o4slave 84 19 0.08 87 0.1 38 0.09 33 0.09 554 0.32 29 0.09

profisafe o4 90 17 0.08 17 0.08 44 0.11 21 0.1 94 0.14 17 0.08

profisafe o4 host 30 12 0.05 12 0.05 39 0.09 12 0.04 89 0.1 12 0.05

profisafe o4 slave 16 5 0.04 5 0.03 5 0.03 9 0.04 5 0.03 5 0.04

profisafe o5 99 17 0.1 17 0.1 44 0.14 21 0.1 94 0.16 17 0.1

profisafe o5 host 30 12 0.06 12 0.06 39 0.09 12 0.05 89 0.12 12 0.06

profisafe o6 106 17 0.11 17 0.11 44 0.16 21 0.12 94 0.18 17 0.11

profisafe o6 host 30 12 0.07 12 0.07 39 0.11 12 0.07 89 0.14 12 0.07

ftechnik 36 416.33 677.16 629.97 908.02 45.84 1539941 8.58

rhone tough 61 24.59 28.03 9.55 8.73 8.78 25.55

tbed uncont 84 187.71 79.48 108.86 170.25 60.1 69.13

33

Table 5.4

CULLING CONTROLLABILITY CHECKER PREFERRING PLANTS,

SMALLEST CONTROLLER FIRST

Model Culling checker, preferring plants, smallest controller first

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 407 0.06 451 0.06 447 0.06 447 0.07 161 0.04 451 0.06

fzelle 67 6190 0.29 18506 0.54 8618 0.41 4976 0.28 5157 0.27 5200 0.27

rhone alps 35 25320 0.15 615983 3.22 15715 0.12 3210 0.08 25306 0.15 3630 0.08

tbed ctct 84 107.17 21503 0.17 36.9 21503 0.17 22670 0.23 115.22

tbed nocoll 84 57.29 287.46 226.58 79.67 61.65 97.81

tbed noderail 84 71.95 239.34 76.64 82.51 62.44 235.96

verriegel4 65 41175 0.57 21867 0.34 563 0.15 21797 0.34 11411 0.32 44791 0.6

profisafe i4 80 54 0.11 48 0.11 44 0.1 24 0.08 54 0.11 54 0.11

profisafe i4 host 28 49 0.09 39 0.08 39 0.08 19 0.05 49 0.09 49 0.09

profisafe i4 slave 14 5 0.02 9 0.03 5 0.03 5 0.03 5 0.03 5 0.02

profisafe i5 88 54 0.14 48 0.13 44 0.12 24 0.09 54 0.13 54 0.14

profisafe i5 host 28 49 0.1 39 0.09 39 0.09 19 0.06 49 0.1 49 0.1

profisafe i6 94 54 0.16 48 0.15 44 0.14 24 0.1 54 0.15 54 0.15

profisafe i6 host 28 49 0.11 39 0.11 39 0.1 19 0.07 49 0.11 49 0.12

profisafe inclusion i4host 78 406 0.24 145 0.13 28 0.07 33 0.08 266 0.17 407 0.24

profisafe inclusion o4host 84 406 0.25 145 0.13 28 0.08 33 0.08 266 0.18 407 0.26

profisafe inclusion o4slave 84 406 0.25 145 0.13 28 0.08 33 0.08 266 0.18 407 0.26

profisafe o4 90 54 0.12 48 0.12 44 0.11 24 0.08 54 0.12 54 0.12

profisafe o4 host 30 49 0.09 39 0.08 39 0.08 19 0.05 49 0.09 49 0.09

profisafe o4 slave 16 5 0.03 9 0.04 5 0.03 5 0.03 5 0.03 5 0.03

profisafe o5 99 54 0.15 48 0.14 44 0.13 24 0.1 54 0.15 54 0.15

profisafe o5 host 30 49 0.1 39 0.09 39 0.09 19 0.06 49 0.1 49 0.1

profisafe o6 106 54 0.17 48 0.16 44 0.15 24 0.12 54 0.17 54 0.16

profisafe o6 host 30 49 0.12 39 0.11 39 0.1 19 0.07 49 0.11 49 0.12

ftechnik 36 399.21 166.16 91.74 674.43 402.85 300.83

rhone tough 61 9.34 10.67 17.82 8.52 9.4 17.13

tbed uncont 84 57.34 288.05 227.27 79.83 61.85 98.18

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 161 0.04 161 0.05 161 0.05 161 0.04 407 0.07 161 0.05

fzelle 67 10431 0.38 5096 0.29 12422 0.41 13999 0.41 6190 0.27 6101 0.28

rhone alps 35 25320 0.15 1108 0.05 429079 1.61 428133 1.58 25320 0.15 1108 0.06

tbed ctct 84 53.61 40.52 51.94 44.35 107.12 2060309 7.92

tbed nocoll 84 61.07 62.89 197.72 72.46 57.03 62.54

tbed noderail 84 28.33 62.9 199.46 179.52 72.19 63.68

verriegel4 65 2471 0.23 751 0.17 751 0.18 751 0.19 41175 0.56 751 0.18

profisafe i4 80 24 0.08 24 0.08 54 0.11 28 0.09 54 0.11 24 0.08

profisafe i4 host 28 19 0.06 19 0.06 49 0.09 19 0.06 49 0.09 19 0.06

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 9 0.03 5 0.03 5 0.03

profisafe i5 88 28 0.1 24 0.09 54 0.14 28 0.1 54 0.13 24 0.09

profisafe i5 host 28 19 0.06 19 0.06 49 0.1 19 0.06 49 0.1 19 0.06

profisafe i6 94 28 0.12 24 0.11 54 0.15 28 0.12 54 0.15 24 0.1

profisafe i6 host 28 19 0.07 19 0.07 49 0.12 19 0.07 49 0.11 19 0.07

profisafe inclusion i4host 78 26 0.08 94 0.1 48 0.09 43 0.09 406 0.24 36 0.08

profisafe inclusion o4host 84 22 0.07 94 0.1 48 0.1 43 0.1 406 0.25 36 0.09

profisafe inclusion o4slave 84 26 0.08 94 0.1 48 0.1 43 0.1 406 0.25 36 0.09

profisafe o4 90 24 0.09 24 0.08 54 0.13 28 0.1 54 0.12 24 0.08

profisafe o4 host 30 19 0.06 19 0.06 49 0.09 19 0.06 49 0.1 19 0.06

profisafe o4 slave 16 5 0.03 5 0.03 5 0.03 9 0.04 5 0.04 5 0.03

profisafe o5 99 24 0.11 24 0.1 54 0.15 28 0.12 54 0.14 24 0.1

profisafe o5 host 30 19 0.06 19 0.06 49 0.1 19 0.06 49 0.1 19 0.07

profisafe o6 106 24 0.12 24 0.12 54 0.17 28 0.13 54 0.16 24 0.12

profisafe o6 host 30 19 0.07 19 0.07 49 0.12 19 0.07 49 0.11 19 0.07

ftechnik 36 327.32 167.67 125961955 758.24 293.29 399.58 168.26

rhone tough 61 18.49 9.76 25.09 29.93 9.39 9.85

tbed uncont 84 60.98 62.99 197.24 72.85 57.39 62.7

34

Table 5.5

CULLING CONTROLLABILITY CHECKER NOT PREFERRING PLANTS,

SMALLEST CONTROLLER FIRST

Model Culling checker, not preferring plants, smallest controller first

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 407 0.06 451 0.06 447 0.06 333 0.06 161 0.05 8213 0.1

fzelle 67 6190 0.3 17298 0.39 3556 0.3 1949 0.17 2006 0.18 2105 0.18

rhone alps 35 25320 0.17 615983 3.23 15715 0.11 3308 0.07 6192 0.1 3992 0.07

tbed ctct 84 107.49 21503 0.17 37.34 21503 0.17 22670 0.23 115.69

tbed nocoll 84 57.58 408.99 35.58 268037 1.69 283815 2.1 142.88

tbed noderail 84 72.21 410.83 252.11 272714 1.77 287397 2.17 56.62

verriegel4 65 41175 0.58 22395 0.34 563 0.16 22379 0.36 11411 0.32 39641 0.61

profisafe i4 80 54 0.12 86 0.12 44 0.1 41 0.08 54 0.12 41 0.08

profisafe i4 host 28 49 0.09 77 0.09 39 0.08 36 0.05 49 0.09 36 0.06

profisafe i4 slave 14 5 0.02 9 0.03 5 0.03 5 0.03 5 0.03 5 0.03

profisafe i5 88 54 0.14 86 0.15 44 0.12 41 0.1 54 0.14 41 0.1

profisafe i5 host 28 49 0.1 77 0.1 39 0.09 36 0.06 49 0.11 36 0.06

profisafe i6 94 54 0.16 86 0.16 44 0.14 41 0.11 54 0.16 41 0.11

profisafe i6 host 28 49 0.2 77 0.11 39 0.1 36 0.07 49 0.11 36 0.07

profisafe inclusion i4host 78 406 0.23 104 0.11 28 0.07 62 0.07 266 0.15 118 0.23

profisafe inclusion o4host 84 406 0.25 104 0.22 28 0.18 62 0.18 266 0.17 118 0.09

profisafe inclusion o4slave 84 406 0.24 104 0.11 28 0.08 62 0.08 266 0.17 118 0.09

profisafe o4 90 54 0.12 86 0.12 44 0.11 41 0.08 54 0.12 41 0.08

profisafe o4 host 30 49 0.08 77 0.09 39 0.08 36 0.05 49 0.09 36 0.05

profisafe o4 slave 16 5 0.03 9 0.04 5 0.03 5 0.03 5 0.03 5 0.03

profisafe o5 99 54 0.16 86 0.16 44 0.13 41 0.11 54 0.15 41 0.11

profisafe o5 host 30 49 0.11 77 0.11 39 0.1 36 0.06 49 0.11 36 0.07

profisafe o6 106 54 0.18 86 0.2 44 0.15 41 0.12 54 0.16 41 0.12

profisafe o6 host 30 49 0.11 77 0.11 39 0.13 36 0.14 49 0.11 36 0.07

ftechnik 36 401.65 105403 0.74 128 0.04 128 0.04 128 0.04 11940 0.11

rhone tough 61 9.52 15.83 25.46 11.61 104 16.05

tbed uncont 84 57.24 411.73 35.72 96.96 116.68 191.67

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 161 0.05 161 0.04 161 0.05 161 0.04 407 0.06 161 0.05

fzelle 67 10431 0.4 1960 0.19 21266 0.48 22843 0.47 6190 0.28 1991 0.17

rhone alps 35 25320 0.16 1108 0.05 429079 1.61 428133 1.59 25320 0.15 1108 0.05

tbed ctct 84 53.78 40.55 51.99 44.48 107.68 2060309 7.95

tbed nocoll 84 127 109.12 182.56 126.99 57.13 471700 2.63

tbed noderail 84 29.28 159.07 181.45 25.2 71.98 405748 2.3

verriegel4 65 2471 0.23 751 0.18 751 0.18 751 0.18 41175 0.56 751 0.18

profisafe i4 80 24 0.08 24 0.08 54 0.12 28 0.09 54 0.11 24 0.08

profisafe i4 host 28 19 0.06 19 0.06 49 0.1 19 0.06 49 0.09 19 0.05

profisafe i4 slave 14 5 0.02 5 0.03 5 0.03 9 0.03 5 0.03 5 0.03

profisafe i5 88 28 0.1 24 0.09 54 0.14 28 0.1 54 0.13 24 0.09

profisafe i5 host 28 19 0.07 19 0.06 49 0.1 19 0.07 49 0.1 19 0.07

profisafe i6 94 28 0.12 24 0.11 54 0.16 28 0.12 54 0.2 24 0.1

profisafe i6 host 28 19 0.07 19 0.07 49 0.11 19 0.09 49 0.11 19 0.09

profisafe inclusion i4host 78 26 0.07 94 0.1 48 0.09 43 0.09 406 0.21 36 0.08

profisafe inclusion o4host 84 22 0.07 94 0.1 48 0.13 43 0.1 406 0.22 36 0.08

profisafe inclusion o4slave 84 26 0.08 94 0.11 48 0.1 43 0.1 406 0.22 36 0.08

profisafe o4 90 24 0.08 24 0.08 54 0.12 28 0.16 54 0.11 24 0.08

profisafe o4 host 30 19 0.05 19 0.05 49 0.13 19 0.05 49 0.08 19 0.05

profisafe o4 slave 16 5 0.03 5 0.04 5 0.03 9 0.04 5 0.03 5 0.03

profisafe o5 99 24 0.11 24 0.12 54 0.15 28 0.12 54 0.15 24 0.11

profisafe o5 host 30 19 0.07 19 0.07 49 0.24 19 0.06 49 0.09 19 0.07

profisafe o6 106 24 0.16 24 0.12 54 0.17 28 0.26 54 0.15 24 0.12

profisafe o6 host 30 19 0.07 19 0.07 49 0.15 19 0.07 49 0.11 19 0.07

ftechnik 36 90.45 128 0.03 151.3 59.66 401.63 128 0.03

rhone tough 61 21.67 79.52 25.05 40.62 9.42 10.83

tbed uncont 84 129.08 110.11 181.71 127.64 58.42 88.84

35

Chapter 6

Projecting Checker

One of the limitations of the modular technique of controllability checking is
that regardless of how well automata are chosen for the composition, it may be
the case that the smallest subset of states which can be used to prove the model
controllable may still have a synchronous product which is too large to handle.

In this chapter we outlined a method of automatically abstracting a model
using projection [?, 9] into a much smaller model, which is controllable if and
only if the original model is controllable and how we can use this method in a
controllability checker to make more models solvable.

This chapter is broken up into several sections. Section 1 discusses the
transformation which we designed to convert a model into a form which we can
use projection on it. Section 2 discusses what exactly projection is and and
how we can use it to simplify the automata in the model. Section 3 details
two algorithms for iteratively using projection to simplify a model and how
to choose which set of automata to project at each step. Section 4 details
algorithm that was designed for converting a counterexample from a projected
model into an equivalent counterexample for the original model. Section 5
discusses two controllability checker which were designed to use projection to
help check controllability. Section 6 discusses areas where caching was used to
improve performance. Finally Section 7 discusses the results achieved by the
various algorithms.

6.1 Automata Transformation

To be able to use projection effectively, it is necessary to convert the standard
controllability problem of asking whether uncontrollable events can happen at
an inopportune time into the much simpler problem of simply whether or not
certain bad events can happen. To do this, we transform the plant P and the
controller C in the original model into a plant P ′ and a controller C′ by adding
new γ events into the model such that if we enumerate all the controllers in
the model Ci and uncontrollable events υj , then the event γi,j can occur only

36

E

F

s2 f1

s1

E

F

s2 f1

s1

γBuffer,f1

Buffer Buffer’

Figure 6.1: Transformation of Buffer

in a situation where υj is allowed by P but not allowed by Ci. Thus, the
controllability equation is converted from

∀t, j : tυj ∈ L(P) ∧ t ∈ L(C) → tυj ∈ L(C) (6.1)

into
∀t, i, j : tγi,j /∈ L(P ′‖C′) (6.2)

Every event γi,j introduced must have the property that it is not mentioned
in the alphabet of any automaton A in the original model and thus is allowable
in every state in the original model.

∀A, t, i, j : t ∈ L(A) → tγi,j ∈ L(A) (6.3)

Next we describe how controllers are transformed from Ci into C′

i. In each
controller Ci for every uncontrollable event υj and for all states s in Ci, if there
is no outgoing transition for υj in s, we add the transition (s, γi,j , s). Thus, for
every trace t through the controller Ci, the event γi,j can occur in the modified
controller C′

i if and only if υj can’t occur in Ci.

∀t, i, j : t ∈ L(Ci) ∧ tυj /∈ L(Ci) ↔ tγi,j ∈ L(C′

i) (6.4)

Also we never add a γ event related to any other controller. Therefore no
controller can block another controller’s γ event.

∀t, i, j : t ∈ L(C′

i) → ∀k 6= i : tγk,j ∈ L(C′

i) (6.5)

Now we can also describe how a plant Pl is converted into its modified
counterpart P ′

l . In each plant Pl for every uncontrollable event υj and for all
states s where there exists an outgoing transition for υj , we add the transition
(s, γi,j , s) for every possible i. Therefore whenever the plant Pl would allow the
event υj it will also allow any γ event related to υj .

∀l, t, i, j : tυj ∈ L(Pl) ↔ tγi,j ∈ L(P ′

l) (6.6)

37

I

W Bb1

f1
r1

s1

I

W Bb1

f1
r1

s1
γBuffer,f1

γBuffer,b1

Machine1 Machine1’

Figure 6.2: Transformation of Machine1

Further only selfloops with γ events are ever added to any automaton A
in the model when converting it into A′, and for each original automaton A
in the model no γ event is ever referred to in its alphabet. Therefore rather
than adding selfloops on states, we are actually deleting the implicit selfloops
which were present on all the other states in A as described in ”Running in
Parallel” in Chapter 2.3. Therefore rather than adding to the language of A
when converting it into A′ we actually restrict its language.

∀a : L(A′) ⊆ L(A) (6.7)

Furthermore, we can infer from (6.6) that tγi,j is in L(P ′) if and only if
tυj is in L(P). This is because tγi,j is in the language of every modified plant
automaton L(P ′

l) if and only if tυj is in the language of each of the original
plant automata L(Pl).

∀t, i, j : tυj ∈ L(P) ↔ tγi,j ∈ L(P ′) (6.8)

Similarly we can infer from (6.4) that tγi,j is in L(C′) if and only if t is in
L(C) and tυj is not in L(C). This is because if t is in L(C) then t is in the
language of all Ck and tυj is not in L(C) only if there is some i for which tυj is
not in L(Ci). Therefore from (6.4), tγi,j must be in L(C′

i), and using the fact
that t is in all L(Ck), we can use (6.5) to infer that all other languages L(C′

k)
also contain tγi,j .

∀t, j : t ∈ L(C) ∧ tυj /∈ L(C) ↔ ∃i : tγi,j ∈ L(C′) (6.9)

To be able to use the modified version of the controllability problem (6.2)
instead of the original controllability problem (6.1) we now prove that, if this
transformation is used, they are equivalent.

Proposition 1. Let P be a plant model and let C be a controller model. Then
(6.1) is equivalent to (6.2)

38

Proof. Firstly let us prove that if (6.1) is true then (6.2) must also be true.
Let us assume that (6.2 is false thus our claim does not hold. Therefore

there must exist a trace tγi,j such that t contains no γ for which

tγi,j ∈ L(P ′‖C′)

Then tγi,j is an element of both L(P ′) and L(C′).

tγi,j ∈ L(P ′) ∧ tγi,j ∈ L(C′) (6.10)

Then from the fact tγi,j is in L(P ′) we can use (6.8) to infer tυj is in L(P).

tυj ∈ L(P) (6.11)

Also seeing as how tγi,j is in the language L(C′), t must also be in the language
L(C′). Therefore we can use (6.7) to infer that t is in L(C)

t ∈ L(C) (6.12)

Then from (6.11) and (6.12) we can use (6.1) to infer that tυj is in L(C)

tυj ∈ L(C) (6.13)

However we can also infer that tυj is not in L(C) using the fact that tγi,j is in
the language L(C′) and (6.9)

tυj /∈ L(C) (6.14)

(6.13) and (6.14) clearly contradict each other. Therefore, if (6.1) is true then
(6.2) is true also.

Now we must also prove that if (6.1) is false then (6.2) is also false.
To prove this we make the observation that (6.1) is only false if there exists

a counterexample which shows that C is not controllable with respect to P .

∃t, j : tυj ∈ L(P) ∧ t ∈ L(C) ∧ tυj /∈ L(C) (6.15)

We can then observe from (6.9) that for such a counterexample, there would
have to exist the a trace tγi,j which is an element of L(C′

i) for some i.

∃i : tγi,j ∈ L(C′

i) (6.16)

Since tυj ∈ L(P) we can infer from (6.8) that there must be a trace tγi,j in
L(P ′) for all i.

∀i : tγi,j ∈ L(P ′) (6.17)

It follows that tγi,j is in both L(P ′) and L(C′), and from that tγi,j is also
in L(C′‖P ′).

tγi,j ∈ L(C′‖P ′) (6.18)

This proves that if (6.1) is false then (6.2) is also false.

39

6.2 Projection

Projection can be used to simplify an automaton by removing certain events
[?, 9]. When we decide to project events out of an automaton, we first select
the set of events Σ′ from the alphabet of the automaton Σ to keep in the
automaton. We then go through all the transitions in the automaton and label
any transition labelled with an event not contained in Σ′ with the non-event
τ . For our purposes, a transition labelled with τ does not require any event to
occur to travel along it. This modifies the language of the automaton such that
for all traces t which are in the language of the original automaton, the trace
πΣ′(t) is in the language of the projected automaton. Here, πΣ′(t) is the trace
t with all events not in Σ′ removed.

Thus for any trace t in the language of an automaton projected with respect
to Σ′, πΣ′(L′), there must also exist a trace s such that s is in the language L
of the automaton before projection, and if s has all the events in Σ′ projected
out of it, it will be equal to t.

∀t : t ∈ πΣ′ (L′) → ∃s : t = πΣ′(s) ∧ s ∈ L (6.19)

Given a model made up of several automata we can select one of the model’s
automata to project with respect to Σ′ preserving (6.3) under two conditions.
Firstly all γ events must be in the set Σ′, as removing a γ event could cause
uncontrollable behaviour to be hidden. Secondly, we may only leave an event
outside the set Σ′, if that event is only mentioned in the alphabet of the au-
tomaton we have chosen to project the events out of. This is so that we don’t
introduce traces into the system which could otherwise be blocked by another
automaton in the model. Unfortunately most events in most models occur in
more than one automaton. Therefore, by the second condition we cannot re-
move them from any automata in the model. However, if an event occurs in only
a few of the automata in the model, it is possible to replace those few automata
in the model with their synchronous product, and then project the event out of
that. For example if a model has 4 automata A, B, C, and D, and the event
β only occurs in A and C then, if we want to project out the event β, we can
compose A and C together so that the model is now made up of A‖C, B, and
D. Then we can project β out of A‖C.

Once events are projected out of an automaton as described above the au-
tomaton is non-deterministic. Therefore we must determinise (convert into a
deterministic automaton) the projected automaton using subset construction
[8]. In most cases, the resultant automaton will be smaller than the original,
in the worst case the resultant automaton could have exponentially more states
than the original. This is rare however and in practice not much of an issue as if
during subset construction we notice that the new automaton we are producing
is getting to large we can simply terminate and try a different set of automata
to compose and project. After this as an optional extra process we can attempt
to minimise the automaton further by running the minimisation algorithm [9]
on this automaton. This minimisation algorithm was chosen as it had the worst

40

case time complexity of O(n log(n)) in the number of states.

6.3 Iterative Projection

If it is required to check the controllability of a model which is made of several
hundred automata, the ability to reduce a single automaton is unlikely to be
enough to have a serious impact on our ability to check it. Fortunately, it is
often possible to continue using projection on further automata in the model.

Consider for example that we have a model which consists of the automata
which follow.

A With the alphabet a, b

B With the alphabet a, b, e

C With the alphabet c, d, f

D With the alphabet b, c, e

E With the alphabet d, e, f

As automata A and B are the only automata with the event a contained in
their alphabet, we can compose these two automata together and then project
out the event a. After doing this we would have a model made up of the
automata πΣ′

1
(A‖B), C, D, E where Σ′

1 = {b, e}. Similarly automata C and E
are the only ones whose alphabet contains d and f so we can compose and
project these two automata so that we have the model πΣ′

1
(A‖B), πΣ′

2
(C‖E), D

where Σ′

2 = {c, e}. Now, we can also notice that πΣ′

1
(A‖B) and D are the only

two automata which contain b thus we can compose and project these two to get
πΣ′

3
(πΣ′

1
(A‖B)‖D), πΣ′

2
(C‖E) where Σ′

3 = {c, e}. It should be noted that the
series of projections given are not the only ones which could have been taken.
For example on the previous step the automaton D could have been composed
with πΣ′

2
(C‖E) instead to remove the event c.

An algorithm for iteratively projecting out events in a model is given in
Figure 6.3.

In this algorithm, we simply find every set of automata for which we can
project out an event. Then we take the set of automata which we believe
will give us the smallest projection. We evaluate a set of automata by the
multiplying the number of states in each automaton together then raising that
value to the power of the number of events which appear in at least one of the
automata in the set but not in every automaton, and then say whichever set
of automata has the smallest value of this is best. The rationale behind this
metric is that the greater the number of states in each automaton, the greater
the potential size of the final synchronous product, and that the more events
which aren’t common to each automata in the set the less related to one another
the automata in the set are. Once we have selected a set of automata we generate
its synchronous product, then calculate the smallest possible set of events for

41

A is the set of automata in the model which we are considering to project events
out of. Γ is the set of γ events introduced in Section 6.1. S is a set of sets of
automata. Every set of automata contained in S represents a minimal set of
automata to cover at least one event.

1. Set attempts to equal 0.

2. For all events σ in Σ except those in Γ find the the set of all automata in
A whose alphabet contains σ and add it to the set S, unless σ occurs in
all automata in A.

3. Sort S such that the set of automata which is likely to be smallest when
projected is listed first.

4. If S is empty then return A.

5. Remove the first set s from S and calculate its synchronous product prod,
unless it is greater than maxstates ∗ 10, in which case go to 11.

6. Let the set of kept events Σ′ be equal to Γ plus all events which occur in
any automata not in s.

7. Create the automaton πΣ′(prod)

8. Set det to equal the determinised version of πΣ′(prod) unless the number
of states exceeds maxstates in which case go to 11.

9. Find the minimal version min of det using a minimisation algorithm.

10. Remove all elements of s from A, then add min to A and go to 1.

11. Increment attempts, then check to see whether attempts is greater than
or equal to maxattempts, in which case return A. Otherwise go to 3.

Figure 6.3: Non-Exhaustive Iterative Projection

Σ′. Then we proceed to project and determinise the synchronous product with
respect to Σ′. Finally we proceed to minimise using a minimisation algorithm
then replace the automata we projected with the minimise automata and start
the process again. However, during either the synchronous product step or the
determinisation step, we may encounter an automaton which is larger than we
are willing to deal with, in which case we try the next best set of automata,
and so on. The stopping conditions are that we have no sets of automata left
to look at, or we have attempted to generate automata which are too large too
many times.

In some cases simply taking the first projection which we were capable of
projecting successfully is not good enough. Thus the modified algorithm in
Figure 6.4 can also be used. In this algorithm instead of guessing which set of

42

automata will give us the smallest automaton after projection and minimisation
we instead compose project and minimise every automaton within a certain
range and choose the one which gave the smallest resulting automata at the
end.

A is the set of automata in the model which we are considering to project events
out of. Γ is the set of γ events introduced in Section 6.1. S is a set of sets of
automata. Every set of automata contained in S represents a minimal set of
automata to cover at least one event.

1. Set smallest and smallset to null.

2. For all events σ in Σ except those in Γ find the the set of all automata in
A whose alphabet contains σ and add it to the set S, unless σ occurs in all
automata in A, or the set contains more automata than maxautomata.

3. If S is empty then go to 10. Otherwise remove the first set s from
S and calculate its synchronous product prod, unless it is greater than
maxstates ∗ 10 in which case go to 3.

4. Set the set of kept events Σ′ to equal Γ plus all events which occur in any
automata not in s.

5. Create the automaton πΣ′(prod).

6. Set det to equal the determinised version of πΣ′(prod), unless the number
of states exceeds maxstates in which case go to 3.

7. Find the minimal version min of det using a minimisation function.

8. If min has less states than smallest or smallest is null replace smallest
with min and smallset with s.

9. Go to 3.

10. Remove all elements of smallset from A then add smallest to A and go
to 1.

Figure 6.4: Exhaustive Iterative Projection

Because of the differences between these two algorithms we call them Non-
Exhaustive Iterative Projection and Exhaustive iterative projection respectively.

6.4 Extracting Traces

If there exists a trace which contains an event in Γ in the model before projection,
there must also exist a trace in the model after projection which contains Γ.
Unfortunately the trace found in the projected model may not be a proper
counterexample for the original system. Fortunately using (6.19) we know that,

43

for any trace t through a projected automaton, there must also exist a trace s
through the original automaton such that t = πΣ′ (s). Therefore we can attempt
to insert events not in the set Σ′ into the trace t in such a way as to find a trace
s which is accepted by the original automaton. It should be pointed out, that
seeing as how any events not in Σ′ do not occur in any other automata, we
can insert them anywhere into the trace without worrying that it might cause
another automaton to reject the trace. Figure 6.5 outlines an algorithm for
finding such a trace. This algorithm basically consists of a breadth first search
through the automaton to find a trace which will both be accepted by the
automaton and is a reverse projection of t. To do this we keep a queue of tuples
of a state we have reached, the number of steps through the original trace t we
have gotten, and the events we followed to get there. To start with the queue
contains a tuple consisting of the initial state, 0 and the empty trace. When we
look through the tuples in this queue we consider whether we can move from
the state in the tuple to another state in the automaton using either the current
event in t or any one of the events not contained in Σ′ and if we can we add
a tuple for the new state we can get to, how many events in the original trace
we have consumed, and the trace to get to this new state on to the end of the
queue. It should be noted that we only ever add a tuple to our queue if we
haven’t already added a tuple with the same state and index into the old trace,
this is because finding a state from which we can consume the next event in t
from a given state is in no way dependant on the trace followed to get to that
state. To save time on string copying instead of creating a new string of events
s for each node we can just represent s as the event we are adding on to the end
of our string plus a pointer to the old string. Because we only look at a node if
we haven’t already explored one with the same state and depth through t. this
algorithm has worst case complexity of O(n ∗ |t| ∗ e). where n is the number of
states in A, |t| is the length of the trace t, and e is the number of events not in
Σ′.

Now if we have a counterexample for a model which has been iteratively
projected, we can use the algorithm in Figure 6.6 to find a correct counterex-
ample. Here we just use the algorithm in Figure 6.5 to find the trace before
projection for the last automaton we projected using either the algorithm in
Figure 6.3 or 6.4. Then we continue to use the new trace with the second to last
automaton and so forth. This algorithm of course requires that we remember
what automata we projected with respect to which events.

6.5 Projecting Checker

Now that we have actually defined what projection is and how to transform the
automata in the model to take advantage of it, we can go into how we use these
facts in an algorithm for checking the controllability of a system. Figure 6.7 is a
description of the Modular Projecting Controllability algorithm. We can notice
that the algorithm is very similar to the algorithm in Figure 3.1 for modular
controllability checking. The main difference being simply that before we check

44

Let t be a counterexample found in the model made of the events σ0, σ1 . . . σn−1

where n is the length of the trace t, also let A be the original automaton before
it was projected let Q be a queue of tuples of states in A, length through t, and
built-up trace, and let S be a set of pairs of state and length through t, and Σ′

be the set of kept events.

1. Add the tuple (initialstate(A), 0, []) to Q and (initialstate(A), 0) to S.

2. Remove the first tuple (state, i, s) in Q.

3. If i = n return s.

4. If there is an outgoing transition from state labelled with σi to next add
(next, i + 1, sσi) to Q and (next, i + 1) to S unless (next, i + 1) ∈ S

5. For every event α not in Σ′, if there is an outgoing transition from state
labelled with α to next, then add (next, i, sα) to Q and (next, i) to S
unless (next, i) ∈ S.

6. Go to 2.

Figure 6.5: Find Trace Algorithm

the controllability of S we now reduce the size of S using projection first and
that because of this whenever we get a counterexample we must also convert it
back into a trace for the original system.

Once again, the methods of choosing automata in 3 and 6 are the same as
those already discussed above in Chapter 3.

An alternative algorithm is to simply use iterative projection on the entire
model to begin with and then use a regular modular controllability checker on
the results. Then if the system is found to be not controllable, the counterex-
ample is converted back.

6.6 Caching

If we look at the algorithm for iterative projection in Figure 6.4, as we have to
project every set of automata in the set S and we do this for every iteration
of the algorithm we will find that on each subsequent iteration we will often
have to compute a projection which we have already calculated on previous
iterations. Clearly, it is wasteful for us to do work which we have already done.
Thus, when we do a projection we cache the results remembering that this
set of automata when projected with respect to this set of events results in this
minimise automaton, or that its resultant automaton will exceed the state limit.
Then, whenever we project a set of automata we can check the cache to see if we
have already attempted this projection before, and if we have, quickly retrieve
the resultant automaton or realise that it is bigger than we are willing to look

45

Let A1, . . . ,An be the automata simplified by iterative projection, and let Σ′

i

be the set of events we projected Ai with respect to, and let t be the projected
trace.

1. set i to equal n

2. If i equals 0 return t

3. find the trace s using the algorithm in Figure 6.5 with Ai and Σ′

i as input.

4. set the new value of t to s, and decrement i, then go to 2

Figure 6.6: Iterative Find Trace Algorithm

at.
Furthermore, if we look at the controllability algorithm outlined in Figure 6.7

we will have to run one of the iterative projection algorithms on every subsequent
composition S. Seeing as how most of the time every subsequent composition
S is the same as the previous composition just with an extra automaton, it also
follows that it is likely that when we run the iterative projection algorithms
on any composition S, that at least some of the projections which will have to
be carried out on S, will have already been done for the previous composition.
Thus, when using either iterative projection algorithm, we can cache the results
of the projections we carried out on the previous composition to help when
projecting the current composition. To save memory, however, it is a good idea
that, after we finish running the iterative projection algorithm on a composition,
to remove from the cache any stored projections which weren’t looked at when
iteratively projecting that composition.

6.7 Results

The algorithms discussed in the previous section have been run to gather data
as to how well the perform under various configurations. For all tables in this
section, when deciding which controller to prove first the largest is always cho-
sen to save time when gathering data and because the trend in previous results
suggested that no interesting results would be found by looking at results for
proving the smallest controller first as well. Further seeing as how all controllers
have been converted into plants into the transformation step in makes no dif-
ference whether we choose the prefer plant mode of the heuristics or the no
preference mode. Also when dealing with non-exhaustive iterative projection
the maximum number of projections we attempt before we give up is always
set to two, and for dealing with exhaustive iterative projection the maximum
number of automata composed is always set to four.

It should be noted that the number of states which had to be explored by
the checker in the tables is not as good an indicator of performance as in the

46

C′ equals the set of modified Controller automata in the model and P ′ the set
of modified Plant automata, and S is the set of composed automata.

1. Set the set S as being empty.

2. If C′ is empty, the model has been proven controllable. Otherwise take an
automaton C′

i from the set C′ and add it to S. Also create a property pi

with only a single state which specifies that no γ event related to Ci can
occur.

3. Use either algorithm in Section 6.3 to convert S into S′

4. Check controllability of S′ with respect to pi using the monolithic method.
consider the automaton pi as being a controller and all other automata as
plants.

5. If no counterexample for S′ was found go to 9. Otherwise set t′ to be the
counterexample found by the controllability check.

6. Use the algorithm in Section 6.6 to convert t′ into t.

7. Set the set N to contain all automata in P and C which would not accept
the counterexample t.

8. If N is empty then the model has been proven not controllable, and t
represents a counterexample in the system. Otherwise pick a subset of N
to add to S then go to 3.

9. For all elements of S if they are also an element of C, remove them from
C and add them to P . Then go to 2.

Figure 6.7: Modular Projecting Controllability Checker Algorithm

previous sections. This is because, for the other checkers the lion’s share of the
work was performed while creating the synchronous product, whereas for the
projecting checker it is quite possible that the majority of the work could be
spent projecting, determinising, or minimising the automata.

Again it appears that all the heuristics are comparable to one another in their
overall effectiveness. When looking at the performance of the algorithm used
to produce Table 6.3 we can see that it has very good performance although
it takes slightly longer than the standard modular controllability checker for
the smaller problem. For example, where the standard modular controllability
checker took 0.05 seconds to prove big bmw the projecting checker took 0.18
seconds. However, for the larger models which the standard checker has trouble
solving, the projecting checker seems to be able to solve faster and furthermore
is capable of solving most of the models in the table regardless of which heuristic
it is using. That said, for the profisafe series of models there are certain cases
in which the projecting checker algorithm takes much longer than it should.

47

C′ equals the set of modified Controller automata in the model, and P ′ the set
of modified Plant automata, and S is the set of automata specifying events in
Γ can’t happen.

1. Set the set S as being empty.

2. For every automaton C′

i in C′ add an automaton with only a single state
which specifies that no γ event related to Ci can occur, to the set S.

3. Use either algorithm in Section 6.3 to convert the union of the sets P ′ and
C′ into projected.

4. Run the modular controllability algorithm outlined in Figure 3.1 using
projected as the set of plant automata and S as the set of controllers.

5. If no counterexample was found, the model has been proven controllable.
Otherwise set t′ to be the counterexample found by the controllability
check.

6. Use the algorithm in Section 6.6 to convert t′ into t.

7. Return t as the counterexample to the system.

Figure 6.8: Modular Controllability Checker using Projection as a Pre-Process

Then looking at Table 6.4, we can see that for the modular projecting checker
algorithm when used in conjunction with the exhaustive iterative projection
algorithm, it doesn’t seem to give any better results. It only seems that in some
case the algorithm takes far longer to complete, suggesting that it should only
really be necessary to use this algorithm when attempting to solve models which
are unsolvable using the non-exhaustive iterative projection algorithm.

Next, we look at using non-exhaustive iterative projection as a pre-process
before giving the problem to a standard modular checker as in Table 6.5. This
seems to either work better than the modular projecting checker or otherwise
work a lot worse. An example of when it works a lot better than the modular
projecting checker is when solving tbed nocoll and tbed noderail with the Early-
NotAccept heuristic here the modular projecting checker took roughly 3 minutes
for both of them whereas the pre-process checker took 10 seconds. However, it
was incapable of solving rhone tough with any heuristic.

Further, we go on to Tables 6.6 and 6.7. These tables show results for solving
controllability problems for both the algorithm modular projection algorithm
and the pre-process algorithm. Both use the non-exhaustive iterative projection
algorithm with varying values for the maximum number of states projected. In
both cases the MaxCommonEvents heuristic is used. Only the tbed series of
models and rhone tough are considered in these tables as these are the models
which require the most effort. From looking at these tables, we see that generally
as we increase maxstates the time required to solve a model increases although

48

for Table 6.6 we see that for rhone tough it is in fact impossible to solve this
problem with the lower state limits for projection and for tbed uncont while it
is possible to be solved with a state limit of 100 it is in fact faster to solve with
a state limit of 200. This suggests that there is a point at which the benefits
of minimising automata using projection are outweighed by its extra overhead
of projecting automata and determinising them. Also when the time taken
seems to remain static it can probably be put down to the fact that projecting
automata that are any larger than a certain maximum number of states never
comes up.

Furthermore in Tables 6.8 and 6.9 we see results for using iterative projec-
tion to simplify a model before giving it to a standard monolithic controllability
checker. The first table used standard iterative projection whereas the second
used exhaustive iterative projection. It should be noted that whereas the mea-
sure of states in the previous tables takes into account those states explored in
the projection steps, these tables only take into account the states explored in
the final exploration of the synchronous product. This is so that we can get an
idea of just how much the total synchronous product has been reduced by the
projection. The results are surprisingly good with it being possible to reduce
many models to the point where they possess one state and no transitions at
all. This is quite impressive given that all of these models are so large as to
be impossible to be solved using a regular controllability checker and thus have
synchronous products which are at least have a total of ten million states most
having significantly more. In the case of rhone tough it wasn’t even possible to
solve it using modular or any other method for proving controllability for that
matter. This also somewhat showcases the merits of the exhaustive method
of iterative projection, where the standard model proved incapable of reducing
the state space of certain models below two million states such as tbed ctct
and many of the profisafe models. Exhaustive was capable of reducing many of
these automata to a reasonable size, or even to the point where they contained
no uncontrollable events using a state limit of just 100 or 200. That said, in
general if it was capable of solving the problem once again non-exhaustive ran
faster than exhaustive. Figures 6.9 to 6.12 show charts of both the states in
simplified tbed ctct and rhone tough for the two methods and the time to solve
them. They both clearly show diminishing reduction in size for in the simplified
model as max states increases. Also of note is the sharp increase in the time
required to solve a model for exhaustive iterative projection as max states in-
creases suggesting that when using this method special care should be taken to
use a small number of for max states.

It should be noted that both profisafe i4 and profisafe o4 in addition to their
controllability problems also have language inclusion problems. It turns out
that these problems are in fact much harder to prove than there controllability
problems, and in fact are very difficult to solve even using projection. Actually,
while profisafe i4 was capable of being solved by the projecting checker after
roughly 10 minutes, a configuration capable of solving profisafe o4 has not been
found.

49

Table 6.1

MODULAR PROJECTING LANGUAGE INCLUSION, NON-EXHAUSTIVE,

MAX PROJECTION 1000

Model Modular projecting language inclusion, max projection 1000

All Early Late MaxCommon Max Min

NotAccept NotAccept Events States Events

Name Aut States Time States Time States Time States Time States Time States Time

profisafe i4 slave 15 1695 3.01 6194 2.42 4982 5.18 8656 6.03 15495 7.58 2063 1.64

profisafe o4 slave 17 2330 7.26 6021 3.22 38609 11.09 4850 4.78 15275 9.49 14868 8.8

big bmw 32 926 0.46 89 0.14 114 0.12 73 0.12 118 0.12 92 0.15

ftechnik 37 4532 5.99 2529 3.81 16498 26.98 13162 17.48 899 8.46 2743 6.21

tbed nocoll 85 13490 42.6 343604 296.92 76 14.74 106 1.99 141 11.51 74 82.07

tbed noderail 85 11564 18.38 30887 86.12 5893 140.89 574 26.57 743 74.88 12042 145.09

verriegel4 66 2812 0.99 174 0.07 200 0.09 330 0.15 175 0.07 201 0.1

profisafe i4 host 29 33249 4.74 49386 45.2 3931 11.19 11697 11.2 29627 12.91 35044 11.94

profisafe o4 host 31 17870 8.14 33805 13.22 9552 5.73 2874 7.04 25404 13.44 19681 24.79

profisafe i5 host 29 39108 6.09 24482 22.84 4958 21.41 8787 16.42 17257 58.44 46586 24.76

profisafe o5 host 31 20470 8.67 47540 16.22 4801 9.5 3632 12.89 11080 17.35 54604 23.65

profisafe i6 host 29 44908 7.59 14296 52.6 5069 22.2 15970 28.04 29267 50.14 90160 36.19

profisafe o6 host 31 23102 10.11 97728 63.09 15015 88.12 20261 25.2 14570 44.48 85031 25.2

Model Min Min Min One RelMax

NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time

profisafe i4 slave 15 6674 4.28 1495 1.64 2931 2.09 2075 2.24 1232 5.7

profisafe o4 slave 17 8124 10.43 27916 6.21 6227 2.8 15067 9.11 16552 7.13

big bmw 32 73 0.09 68 0.07 92 0.12 114 0.12 73 0.08

ftechnik 37 3110 10.62 5299 16.74 3623 5.39 2867 4.71 4365 10.73

tbed nocoll 85 88 21.79 158 83.78 74 171.02 1239 87.95 99 11.29

tbed noderail 85 14713 72.34 9595 50.06 146540 97.5 22861 154.69 2543 30.98

verriegel4 66 202 0.1 184 0.08 201 0.1 200 0.09 179 0.07

profisafe i4 host 29 8295 18.8 5126 7.87 24567 45.8 51868 11.98 12818 12.9

profisafe o4 host 31 3521 9.18 3685 13.29 16954 23.34 52057 11.44 13979 9.97

profisafe i5 host 29 7529 15.02 14115 28.78 41712 15.7 28415 76.19 2846 22.06

profisafe o5 host 31 4529 7.15 4814 9.88 78219 42.82 15792 19.33 4507 7.14

profisafe i6 host 29 15607 33.67 5161 22.3 55752 19.64 20969 80.42 2562 12.39

profisafe o6 host 31 5108 18.7 10775 25.55 81239 101.16 19476 50.52 3033 14.91

50

Table 6.2

MODULAR LANGUAGE INCLUSION USING NON-EXHAUSTIVE

PROJECTION AS PRE-PROCESS, MAX PROJECTION 1000

Model Modular language inclusion, non-exhaustive projection as pre-process, max projection 1000

All Early Late MaxCommon Max Min

NotAccept NotAccept Events States Events

Name Aut States Time States Time States Time States Time States Time States Time

profisafe i4 slave 15 1699 3.3 1699 2.68 1699 2.36 1699 2.32 1699 2.25 1699 2.34

profisafe o4 slave 17 3548 4.27 3548 4.32 3548 4.2 3548 4.32 3548 4.37 3548 4.45

big bmw 32 1498 0.53 1498 0.54 1498 0.54 1498 0.54 1498 0.71 1498 0.52

ftechnik 37 91260 11.91 91713 13.52 207322 15.7 164277 14.78 96446 14.15 116379 13.46

tbed nocoll 85 631197 68.93 1752235 79.95 55.34 599089 67.1 64.37 62.54

tbed noderail 85 305898 30.44 470839 33.71 31.97 377208 31.81 401580 33.14 33.11

verriegel4 66 6062 1.27 6063 1.39 6062 1.24 6062 1.4 6062 1.23 6063 1.4

profisafe i4 host 29 6723 10.97 6723 10.16 6723 9.82 6723 10.01 6723 9.77 6723 9.99

profisafe o4 host 31 7971 11.75 7971 11.26 7971 11.09 7971 11.07 7971 11.34 7971 11.26

profisafe i5 host 29 7098 16.34 7098 16.24 7098 16.6 7098 16.76 7098 16.85 7098 16.89

profisafe o5 host 31 8074 14.18 8074 13.98 8074 13.58 8074 13.6 8074 13.58 8074 13.53

profisafe i6 host 29 7353 27.58 7353 27.3 7353 27.6 7353 27.67 7353 27.74 7353 27.51

profisafe o6 host 31 8209 16.79 8209 16.63 8209 16.58 8209 16.46 8209 16.34 8209 16.49

Model Min Min Min One RelMax

NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time

profisafe i4 slave 15 1699 2.79 1699 2.42 1699 2.43 1699 2.7 1699 2.51

profisafe o4 slave 17 3548 4.61 3548 4.68 3548 4.71 3548 4.52 3548 4.52

big bmw 32 1498 0.54 1498 0.54 1498 0.53 1498 0.53 1498 0.53

ftechnik 37 244026 14.06 105113 13.11 113521 13.43 166371 15.07 212045 14.49

tbed nocoll 85 4672136 86.34 47.18 46.57 5058519 86.88 2394067 75.51

tbed noderail 85 32.73 24.43 24.59 32.63 2088487 38.1

verriegel4 66 6063 1.26 6063 1.4 6063 1.24 6062 1.39 6062 1.24

profisafe i4 host 29 6723 10.04 6723 9.97 6723 9.93 6723 9.93 6723 9.95

profisafe o4 host 31 7971 10.78 7971 10.76 7971 11.07 7971 11.24 7971 10.73

profisafe i5 host 29 7098 16.6 7098 16.58 7098 16.61 7098 16.56 7098 16.6

profisafe o5 host 31 8074 14 8074 13.51 8074 13.48 8074 13.44 8074 13.43

profisafe i6 host 29 7353 27.52 7353 27.5 7353 27.49 7353 27.47 7353 27.19

profisafe o6 host 31 8209 16.36 8209 16.53 8209 16.38 8209 16.54 8209 16.35

51

Table 6.3

MODULAR PROJECTING CONTROLLABILITY, NON-EXHAUSTIVE, MAX

PROJECTION 1000

Model Modular projecting controllability, non-exhaustive, max projection 1000

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 269 0.32 328 0.2 314 0.18 323 0.18 264 0.15 314 0.17

fzelle 67 1090 0.29 744 0.24 700 0.24 875 0.26 863 0.25 655 0.23

rhone alps 35 429 0.16 902 0.43 557 0.23 316 0.15 388 0.18 445 0.2

tbed ctct 84 2093 0.62 323 0.23 26454 6.61 323 0.22 532 0.31 38028 5.39

tbed nocoll 84 129556 11.53 1253502 188.74 476532 97.63 116905 12.97 297005 41.97 404925 62.9

tbed noderail 84 145612 10.84 1114607 147.26 269866 43.45 118250 11.25 250258 31.23 525335 86.98

verriegel4 65 1084 0.33 2932 1.42 1062 0.34 1147 0.35 2360 1.43 2761 2.12

profisafe i4 80 81 0.17 401 0.51 1335 4.44 37 0.13 4790 40.73 37 0.14

profisafe i4 host 28 74 0.13 138 0.14 337 0.56 32 0.09 95 0.17 32 0.09

profisafe i4 slave 14 7 0.04 105 0.07 5 0.03 5 0.03 5 0.04 5 0.03

profisafe i5 88 98 0.19 192 0.27 8630 4.81 37 0.16 2189 1.53 37 0.16

profisafe i5 host 28 91 0.14 138 0.17 1070 3.56 32 0.11 3344 7.16 32 0.11

profisafe i6 94 98 0.23 197 0.28 304 0.78 37 0.18 13889 24.23 37 0.18

profisafe i6 host 28 91 0.16 1223 1.16 7990 12.91 32 0.13 3287 11.5 32 0.12

profisafe inclusion i4host 78 103 0.15 477 0.49 44 0.12 44 0.12 227 0.39 86 0.16

profisafe inclusion o4host 84 103 0.17 248 0.2 44 0.13 44 0.13 227 0.41 179 0.31

profisafe inclusion o4slave 84 103 0.17 658 0.82 44 0.13 44 0.13 165 0.27 86 0.17

profisafe o4 90 81 0.19 286 0.29 860 1.87 37 0.15 189 0.28 37 0.15

profisafe o4 host 30 74 0.13 1550 1.43 102 0.2 32 0.1 102 0.19 32 0.1

profisafe o4 slave 16 7 0.05 59 0.08 5 0.04 5 0.05 5 0.04 5 0.05

profisafe o5 99 98 0.21 1293 1.33 134 0.33 37 0.17 187 0.33 37 0.18

profisafe o5 host 30 91 0.14 642 0.6 1027 3.49 32 0.11 6512 5.71 32 0.12

profisafe o6 106 98 0.25 235 0.34 124 0.38 37 0.2 124 0.38 37 0.2

profisafe o6 host 30 91 0.16 181 0.25 1170 5.06 32 0.13 277 0.39 32 0.13

ftechnik 36 25484 3.52 6795 2.98 26445 4.48 25307 4.77 6776 3.09 66800 10.09

rhone tough 61 453398 6.14 10.1 1679910 19.11 175489 8.6 636432 8.78 6.13

tbed uncont 84 176777 12.03 842054 114.53 490531 36.37 292917 30.87 274112 28.58 340548 44.68

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 281 0.15 281 0.15 282 0.14 281 0.14 272 0.15 277 0.14

fzelle 67 966 0.28 892 0.26 1241 0.37 1256 0.37 863 0.24 892 0.26

rhone alps 35 458 0.16 289 0.12 533 0.21 533 0.21 458 0.16 278 0.1

tbed ctct 84 30451 6.37 21896 4.42 8098 5.08 17414 4.83 36406 6.94 6121 1.63

tbed nocoll 84 1594044 236.95 475835 54.75 986750 115.62 1391084 185.36 265472 50.43 277491 33.13

tbed noderail 84 1345867 191.09 406660 41.7 946799 119.49 1352890 184.28 320888 55.1 275954 26.89

verriegel4 65 1036 0.31 1095 0.36 1095 0.36 1145 0.41 2360 1.4 1095 0.36

profisafe i4 80 96 0.2 37 0.13 383 1.05 196 0.24 4790 40.72 37 0.13

profisafe i4 host 28 32 0.09 32 0.1 19223 29.53 32 0.09 95 0.17 32 0.09

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 105 0.07 5 0.03 5 0.03

profisafe i5 88 2195 1.38 37 0.16 3357 5.76 123 0.22 2189 1.5 37 0.16

profisafe i5 host 28 32 0.11 32 0.11 375 1.01 32 0.11 3344 7.23 32 0.11

profisafe i6 94 43 0.19 37 0.17 8847 58.03 91 0.21 13889 23.67 37 0.18

profisafe i6 host 28 32 0.13 32 0.13 12944 8.26 32 0.13 3287 11.29 32 0.13

profisafe inclusion i4host 78 137 0.22 121 0.17 163 0.37 160 0.19 260 0.43 99 0.16

profisafe inclusion o4host 84 131 0.23 121 0.19 152 0.37 112 0.19 260 0.47 99 0.17

profisafe inclusion o4slave 84 2791 0.89 121 0.19 559 0.63 112 0.18 182 0.28 99 0.17

profisafe o4 90 37 0.15 37 0.15 189 0.39 43 0.16 189 0.28 37 0.15

profisafe o4 host 30 32 0.09 32 0.09 120 0.23 32 0.09 102 0.2 32 0.09

profisafe o4 slave 16 5 0.04 5 0.05 5 0.04 11 0.06 5 0.05 5 0.04

profisafe o5 99 37 0.18 37 0.17 141 0.34 43 0.18 187 0.32 37 0.18

profisafe o5 host 30 32 0.1 32 0.12 387 0.89 32 0.11 6512 5.64 32 0.12

profisafe o6 106 37 0.2 37 0.2 131 0.4 43 0.21 124 0.37 37 0.2

profisafe o6 host 30 32 0.13 32 0.13 1168 9.71 32 0.13 277 0.39 32 0.12

ftechnik 36 7468 4.3 6799 2.85 10760 5.23 5878 3.92 6513 2.88 6970 2.36

rhone tough 61 550741 10.92 249062 9.46 11.98 9.5 397758 8.68 10.85

tbed uncont 84 1113150 130.02 513985 46.26 574284 70.14 871199 101.93 279414 30.87 377358 36.51

52

Table 6.4

MODULAR PROJECTING CONTROLLABILITY, EXHAUSTIVE, MAX

PROJECTION 1000

Model Modular projecting controllability, exhaustive, max projection 1000

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 31528 0.4 13431 0.19 16391 0.18 14432 0.18 14418 0.16 16391 0.18

fzelle 67 9935 0.27 1655 0.22 633 0.23 2869 0.25 3850 0.25 3557 0.22

rhone alps 35 17865 0.26 66143 0.61 24700 0.3 10424 0.19 19784 0.33 23602 0.29

tbed ctct 84 74419 1.42 33509 0.53 2516207 43.54 27390 0.46 38924 0.96 604457 10.24

tbed nocoll 84 2656809 114.09 16546885 1103.35 16604262 664.74 1934572 35.78 7445386 343.62 8707170 420.07

tbed noderail 84 2117338 59.27 17559141 1368.08 12670069 645.38 2425961 82.5 7250563 340.16 11088228 617.63

verriegel4 65 67574 0.67 231228 1.94 29860 0.84 32982 0.87 186632 1.98 281829 2.97

profisafe i4 80 6571 0.56 41764 0.9 10429 0.52 45 0.14 18781 0.95 45 0.13

profisafe i4 host 28 3171 0.23 62785 0.82 9403 0.54 40 0.1 4234 0.29 40 0.1

profisafe i4 slave 14 8 0.04 2100 0.09 5 0.03 5 0.03 5 0.03 5 0.03

profisafe i5 88 8588 0.72 76781 1.35 10429 0.61 45 0.16 8420 0.58 45 0.16

profisafe i5 host 28 5192 0.41 75878 1.11 17537 0.87 40 0.12 34041 1.88 40 0.12

profisafe i6 94 9612 1.06 58858 1.11 10419 0.7 45 0.18 21796 1.6 45 0.18

profisafe i6 host 28 9604 1.1 58785 1.07 3133 0.23 40 0.13 21791 1.73 40 0.13

profisafe inclusion i4host 78 5217 0.22 1212 0.22 51 0.12 51 0.12 11181 0.28 79 0.14

profisafe inclusion o4host 84 5217 0.23 23609 0.52 51 0.13 51 0.13 15402 0.46 8259 0.3

profisafe inclusion o4slave 84 7342 0.34 37875 0.7 51 0.13 51 0.13 11181 0.3 125706 0.99

profisafe o4 90 5214 0.37 59821 0.9 14726 1.01 45 0.15 75715 3.29 45 0.15

profisafe o4 host 30 4148 0.24 12386 0.35 9398 0.55 40 0.1 5475 0.46 40 0.1

profisafe o4 slave 16 8 0.05 73 0.09 5 0.05 5 0.04 5 0.05 5 0.04

profisafe o5 99 8588 0.96 41498 0.78 18536 0.86 45 0.18 55460 14.9 45 0.18

profisafe o5 host 30 8580 0.74 44531 0.95 24327 0.96 40 0.12 38992 1.92 40 0.12

profisafe o6 106 7194 0.52 73978 1.36 4239 0.45 45 0.2 28497 0.95 45 0.21

profisafe o6 host 30 5192 0.31 1305 0.45 10424 0.94 40 0.13 10424 0.7 40 0.13

ftechnik 36 335976 8.13 321765 4.4 396638 11.69 429044 11.23 251360 4.85 563667 21.86

rhone tough 61 638699 21.89 34.11 1107071 37.12 746546 23.95 1108472 43.27 8.75

tbed uncont 84 2229655 147.83 12049242 686.84 9601683 550.94 4091566 171.08 4489598 187.52 5984090 337.31

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 12420 0.15 12420 0.15 16427 0.16 12420 0.15 14432 0.15 14436 0.17

fzelle 67 1973 0.27 1869 0.26 2362 0.36 3375 0.36 3850 0.24 1869 0.26

rhone alps 35 9704 0.18 3508 0.15 17848 0.24 17848 0.24 6669 0.16 2477 0.14

tbed ctct 84 3034759 70.64 1564168 46.64 465969 4.79 3189913 62.43 2449591 58.01 261723 3.36

tbed nocoll 84 30622807 1820.36 9761331 448.45 12179623 695.32 25119535 1271.89 9972105 356.81 6703498 385.03

tbed noderail 84 24161489 1442.44 10716432 743.17 14946347 922.07 26328158 1506.52 11772799 626.69 4546061 235.95

verriegel4 65 60039 0.83 26979 0.79 72157 0.92 41864 0.78 186632 2.08 26979 0.79

profisafe i4 80 5347 0.34 45 0.13 10440 0.54 5233 0.26 18781 0.96 45 0.13

profisafe i4 host 28 2058 0.12 2058 0.11 27713 1.08 2058 0.12 4234 0.29 2058 0.12

profisafe i4 slave 14 5 0.03 5 0.03 5 0.03 2100 0.09 5 0.03 5 0.03

profisafe i5 88 14600 0.98 45 0.16 10454 0.68 3206 0.28 8420 0.56 45 0.16

profisafe i5 host 28 7128 0.24 7128 0.24 17548 0.89 2058 0.14 34041 1.84 2058 0.15

profisafe i6 94 6257 0.59 2063 0.21 18567 1.06 2131 0.25 21796 1.61 2063 0.21

profisafe i6 host 28 7136 0.29 2058 0.16 3144 0.25 2058 0.16 21791 1.7 2058 0.16

profisafe inclusion i4host 78 7309 0.33 8282 0.3 13286 0.36 4147 0.19 10263 0.31 6158 0.21

profisafe inclusion o4host 84 7302 0.34 8282 0.32 14394 0.49 5247 0.28 14511 0.52 6158 0.23

profisafe inclusion o4slave 84 7309 0.35 8282 0.32 13478 0.53 4251 0.28 10263 0.33 6158 0.24

profisafe o4 90 3051 0.2 45 0.15 14737 1.02 52 0.16 75715 3.28 45 0.15

profisafe o4 host 30 2063 0.12 40 0.1 5482 0.47 40 0.1 16982 1.91 40 0.1

profisafe o4 slave 16 5 0.05 5 0.04 5 0.05 12 0.06 5 0.05 5 0.04

profisafe o5 99 6240 0.48 2063 0.21 10430 0.64 2070 0.21 55460 15.06 2063 0.2

profisafe o5 host 30 40 0.11 40 0.11 10449 0.67 40 0.11 38992 1.9 40 0.12

profisafe o6 106 45 0.21 45 0.2 4250 0.46 52 0.22 28497 0.93 45 0.21

profisafe o6 host 30 40 0.13 40 0.13 10435 0.73 40 0.13 10424 0.7 40 0.13

ftechnik 36 296140 9.72 242536 8.44 436762 7.29 374514 7.1 254631 4.15 211651 5.18

rhone tough 61 993382 39.92 969499 23.85 11.44 9.67 922415 30.05 736023 29.05

tbed uncont 84 15641854 876.92 9185235 486.96 9264324 517.08 15294820 863.85 5364884 184.03 6164871 403.37

53

Table 6.5

MODULAR CONTROLLABILITY USING NON-EXHAUSTIVE PROJECTION

AS PRE-PROCESS, MAX PROJECTION 1000

Model Modular controllability using non-exhaustive projection as pre-process, max projection 1000

All Early Late MaxCommon MaxCommon Max

NotAccept NotAccept Events Uncontr States

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 287 0.29 287 0.17 287 0.16 287 0.2 287 0.16 287 0.15

fzelle 67 965 0.55 965 0.64 965 0.63 965 0.63 965 0.56 965 0.63

rhone alps 35 236 0.16 236 0.17 236 0.16 236 0.16 236 0.16 236 0.16

tbed ctct 84 161540 1.09 2117575 10.65 41.18 553605 3.24 2725576 14.77 17.58

tbed nocoll 84 399609 5.97 495402 12.64 45.92 346256 11.69 494710 12.59 87.29

tbed noderail 84 395986 4.41 496700 10.96 68.14 356087 9.54 482816 10.16 48.78

verriegel4 65 2162 0.89 2162 0.9 2162 0.88 2162 0.96 2162 0.89 2162 0.96

profisafe i4 80 4552 4.59 87.31 4504 3.67 4458 3.56 4504 3.65 4917 4.41

profisafe i4 host 28 1141 6.6 1141 6.46 1141 6.09 1141 6.22 1141 6.32 1141 6.13

profisafe i4 slave 14 1005 0.79 1005 0.94 1005 0.78 1005 0.78 1005 0.93 1005 0.79

profisafe i5 88 5148 6.49 136.36 5100 6.46 5054 6.19 5100 6.47 5504 7.12

profisafe i5 host 28 1433 9.87 1433 8.86 1433 8.64 1433 8.51 1433 8.56 1433 8.52

profisafe i6 94 3252 4.01 134.79 3250 3.7 3229 3.59 3250 3.72 3329 4.05

profisafe i6 host 28 1296 8.62 1296 8.63 1296 8.71 1296 9.06 1296 8.76 1296 9.03

profisafe inclusion i4host 78 4539 2.96 24.71 4259 3.02 4277 2.96 4329 2.76 5038 3.43

profisafe inclusion o4host 84 4548 2.39 77.8 3565 2.19 3816 2.44 3868 2.25 6485 2.97

profisafe inclusion o4slave 84 4093 2.09 68.23 3562 2.2 3813 2.4 3834 2.22 4955 2.45

profisafe o4 90 4452 3.56 133.72 4417 3.61 4371 3.75 4417 3.83 4815 4.08

profisafe o4 host 30 1219 6.3 1219 6.34 1219 6 1219 6.32 1219 6 1219 6.24

profisafe o4 slave 16 351 0.46 351 0.45 351 0.46 351 0.46 351 0.69 351 0.45

profisafe o5 99 3619 4.31 95.77 3607 4.35 3610 4.01 3607 4.33 3681 4.08

profisafe o5 host 30 1315 8.58 1315 8.19 1315 7.88 1315 8.19 1315 7.8 1315 8.2

profisafe o6 106 3603 4.7 141.34 3591 4.72 3594 5.38 3591 4.71 3665 4.69

profisafe o6 host 30 1437 9.56 1437 9.47 1437 9.04 1437 9.54 1437 9.48 1437 9.22

ftechnik 36 5824 3.38 4170 4.1 6677 4.69 8167 4.32 5051 4.15 8129 4.43

rhone tough 61 9.25 8.56 10.36 7.72 10.3 7.92

tbed uncont 84 157937 2.76 133635 4.87 752769 7.93 109304 4.22 113948 4.27 1762111 15.88

Model Min Min Min Min One RelMax

Events NewEvents States Transitions Common

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 287 0.2 287 0.15 287 0.15 287 0.2 287 0.14 287 0.15

fzelle 67 965 0.64 965 0.63 965 0.55 965 0.62 965 0.63 965 0.63

rhone alps 35 236 0.16 236 0.16 236 0.16 236 0.16 236 0.16 236 0.16

tbed ctct 84 27.34 14.38 25.25 21.38 18.09 10.23

tbed nocoll 84 86.06 803777 14.44 263891 5.2 442041 6.39 82.17 337247 8.21

tbed noderail 84 3519361 29.62 888508 12.34 266790 4.2 769310 6.54 3127840 30.93 354693 7.28

verriegel4 65 2162 0.92 2162 0.94 2162 0.89 2162 0.86 2162 0.86 2162 0.87

profisafe i4 80 4440 3.56 4440 3.57 4441 3.57 4441 3.55 4441 3.55 4440 3.57

profisafe i4 host 28 1141 5.93 1141 5.99 1141 5.99 1141 5.99 1141 5.95 1141 5.93

profisafe i4 slave 14 1005 0.8 1005 0.94 1005 0.82 1005 0.95 1005 0.81 1005 0.95

profisafe i5 88 5036 6.12 5036 6.36 5037 6.32 5037 6.13 5037 6.3 5036 6.31

profisafe i5 host 28 1433 8.59 1433 8.5 1433 8.61 1433 8.47 1433 8.62 1433 8.43

profisafe i6 94 3211 3.62 3211 3.59 3234 3.78 3266 3.65 3236 3.86 3211 3.63

profisafe i6 host 28 1296 8.59 1296 8.65 1296 8.6 1296 8.57 1296 8.56 1296 8.56

profisafe inclusion i4host 78 4307 3.28 4272 2.88 4248 3.12 4248 2.86 72.22 4272 2.89

profisafe inclusion o4host 84 4306 2.08 4272 2.08 31685 2.73 31678 2.52 64.21 4272 2.08

profisafe inclusion o4slave 84 4303 2.28 4269 2.07 14888 2.49 14881 2.28 64.39 4269 2.28

profisafe o4 90 4339 3.58 4339 3.37 4354 3.75 4340 3.35 4354 3.69 4339 3.35

profisafe o4 host 30 1219 6.03 1219 6.31 1219 6.05 1219 6.26 1219 5.99 1219 6.33

profisafe o4 slave 16 351 0.46 351 0.45 351 0.45 351 0.46 351 0.46 351 0.46

profisafe o5 99 3592 4.28 3592 4.03 3619 4.44 3597 4.07 3593 4.22 3592 4.01

profisafe o5 host 30 1315 7.88 1315 8.21 1315 8.34 1315 7.92 1315 8.2 1315 8.35

profisafe o6 106 3576 4.92 3576 4.68 3603 4.81 3581 4.98 3577 4.54 3576 4.68

profisafe o6 host 30 1437 9.53 1437 9.07 1437 9.49 1437 9.71 1437 9.16 1437 9.59

ftechnik 36 4946 4.35 5051 4.27 4057 4.01 4057 3.87 4142 3.98 4164 4.18

rhone tough 61 10.46 10.33 10.25 10.97 10.17 10.3

tbed uncont 84 3601903 23.97 156609 4.57 275630 3.3 358016 3.77 1674127 14 111386 3.55

54

Table 6.6

MODULAR PROJECTING CONTROLLABILITY, NON-EXHAUSTIVE,

MAXCOMMONEVENTS

Model Modular projecting controllability, non-exhaustive, maxcommonevents

100 200 400 800 1600 3200

Name Aut States Time States Time States Time States Time States Time States Time

tbed ctct 84 1853 0.53 323 0.29 323 0.34 323 0.26 323 0.26 323 0.32

tbed nocoll 84 201870 6.54 65161 7.52 74063 9.41 109016 13.89 163289 17.75 267650 34.61

tbed noderail 84 176516 6.11 74124 6.69 90175 10.87 129152 16.28 184904 22.73 313859 38.8

rhone tough 61 11.09 12.5 10.41 16 109870 10.07 121524 11.9

tbed uncont 84 863808 11.54 374537 9.96 374855 11.48 240165 18.93 357395 43.02 489759 74.29

Table 6.7

MODULAR PROJECTING CONTROLLABILITY, NON-EXHAUSTIVE,

MAXCOMMONEVENTS

Model Modular controllability using non-exhaustive projection as pre-process, maxcommonevents

100 200 400 800 1600 3200

Name Aut States Time States Time States Time States Time States Time States Time

tbed ctct 84 551689 3.55 552005 3.54 552405 3.43 553205 3.49 554805 3.5 1059024 7.09

tbed nocoll 84 440041 4.39 337351 9.46 337705 9.57 345856 12.76 1007593 44.82 1012393 43.11

tbed noderail 84 477971 4.5 350404 9.41 354888 10.04 355688 10.03 192790 23.64 185627 49.27

rhone tough 61 25.58 25.51 23.29 7.52 10.72 12.88

tbed uncont 84 312859 2.63 100549 3.41 100903 3.42 108904 4.2 75361 9.43 117404 22.45

500000

550000

600000

650000

700000

750000

800000

0 500 1000 1500 2000 2500 3000 3500

S
ta

te
s

Max Projection

States in simplified tbed ctct

pre-process, Exhaustive, Monolithic

Figure 6.9: States in simplified tbed ctct

55

Table 6.8

MONOLITHIC CONTROLLABILITY USING NON-EXHAUSTIVE PROJECTION

AS PRE-PROCESS

Model Monolithic controllability using non-exhaustive projection as pre-process

100 200 400 800 1600 3200

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 0 0.31 0 0.18 0 0.16 0 0.21 0 0.16 0 0.16

fzelle 67 4794 0.41 0 0.45 0 0.59 0 0.52 0 0.61 0 0.53

rhone alps 35 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18

tbed ctct 84 11.8 11.25 11.09 11.09 11.46 12

tbed nocoll 84 27659 0.87 9001 0.89 9001 0.93 8662 1.42 6780 7.77 6780 7.99

tbed noderail 84 29928 0.95 9001 1.01 8658 1.22 8658 1.05 6561 6.08 6495 13.9

verriegel4 65 19470 0.49 1224 0.43 1224 0.47 0 0.7 0 0.81 0 0.82

profisafe i4 80 19.41 19.23 21.67 24.48 24.12 25.8

profisafe i4 host 28 106250 3.63 0 4.52 0 5.94 0 6.42 0 5.86 0 5.76

profisafe i4 slave 14 3564 0.12 3564 0.11 3564 0.13 0 0.79 0 0.81 0 0.93

profisafe i5 88 19.12 19.15 19.47 22.17 21.7 22.14

profisafe i5 host 28 176130 6.16 0 5.66 0 8.25 0 9.11 0 8.62 0 8.36

profisafe i6 94 20.32 20.6 21.34 23.86 24.6 27.43

profisafe i6 host 28 187747 7.37 183957 8.5 0 9.72 0 9.41 0 9.08 0 9.1

profisafe inclusion i4host 78 14.76 15.29 15.47 15.78 16.55 18.93

profisafe inclusion o4host 84 17.99 17.86 17.73 17.92 18.09 20.51

profisafe inclusion o4slave 84 17.83 17.75 17.7 18.29 17.9 21.05

profisafe o4 90 19.78 19.37 19.24 22.95 23.06 23.95

profisafe o4 host 30 198375 5.99 192809 6.23 0 6.51 0 6.13 0 6.44 0 6.14

profisafe o4 slave 16 0 0.41 0 0.7 0 0.47 0 0.47 0 0.48 0 0.48

profisafe o5 99 19.3 19.61 20.27 22.53 22.34 22.94

profisafe o5 host 30 351431 11.38 343294 11.66 0 8.31 0 8.23 0 8.14 0 8.26

profisafe o6 106 20.42 20.91 21.14 24.86 24.93 25.54

profisafe o6 host 30 567931 20.46 556623 20.76 0 9.69 0 9.54 0 9.54 0 9.76

ftechnik 36 2 0.42 2 0.7 2 1.07 2 1.95 2 1.82 1 3.5

rhone tough 61 10.18 10.32 848746 4.85 304138 2.34 256830 3.55 53538 7.44

tbed uncont 84 8577 0.75 2903 0.85 2903 0.91 2788 1.45 2312 3.84 2183 8.47

56

Table 6.9

MONOLITHIC CONTROLLABILITY USING EXHAUSTIVE PROJECTION AS

PRE-PROCESS

Model Monolithic controllability using exhaustive projection as pre-process

100 200 400 800 1600 3200

Name Aut States Time States Time States Time States Time States Time States Time

big bmw 31 0 1.04 0 1.11 0 0.97 0 0.97 0 1 0 0.99

fzelle 67 0 0.74 0 0.78 0 0.89 0 0.95 0 1.03 0 0.99

rhone alps 35 0 0.3 0 0.4 0 0.6 0 0.61 0 0.71 0 0.58

tbed ctct 84 772545 4.39 638645 4.48 625946 5.87 625946 7.24 593879 17.17 581339 62.98

tbed nocoll 84 9745 1.6 8703 2.15 8566 3.39 7624 10.54 6930 31.65 6930 143.19

tbed noderail 84 9745 1.75 8703 2.24 7847 4.07 7606 10.94 6646 27.75 0 403.31

verriegel4 65 19470 0.94 0 1.4 0 2.03 0 2.52 0 3.16 0 3.63

profisafe i4 80 0 19.47 0 45.68 0 84.26 0 194.78 0 411.53 0 731.33

profisafe i4 host 28 0 8.92 0 15.86 0 27.66 0 30.33 0 32.06 0 40.55

profisafe i4 slave 14 0 0.65 0 0.83 0 0.95 0 1 0 0.97 0 0.96

profisafe i5 88 29.21 0 25.94 0 40.35 0 90.94 0 245.38 0 537.46

profisafe i5 host 28 0 10.53 0 16.29 0 25.1 0 38.43 0 55.49 0 62.4

profisafe i6 94 32.21 0 33.5 0 59.87 0 113.33 0 217.53 0 691.63

profisafe i6 host 28 0 11.88 0 20.06 0 32.9 0 53.68 0 66.23 0 96.33

profisafe inclusion i4host 78 0 4.8 0 7.71 0 12.26 0 27.03 0 60.13 0 139.25

profisafe inclusion o4host 84 0 5.49 0 10.04 0 17.95 0 35.85 0 66.25 0 160.32

profisafe inclusion o4slave 84 0 4.16 0 7.26 0 11.54 0 26.5 0 72.69 0 161.99

profisafe o4 90 0 14.1 0 25.25 0 38.13 0 84.69 0 160.48 0 448.42

profisafe o4 host 30 0 11.42 0 16.87 0 27.2 0 31.66 0 34.53 0 41.56

profisafe o4 slave 16 0 0.95 0 1.01 0 1.01 0 1.02 0 1.03 0 1.03

profisafe o5 99 30.93 0 27.05 0 42.53 0 90.94 0 166.02 0 898.49

profisafe o5 host 30 0 13.61 0 19.16 0 30.55 0 49.13 0 64.26 0 70.48

profisafe o6 106 34.91 0 32.42 0 49.81 0 126.79 0 239.45 0 498.96

profisafe o6 host 30 0 15.28 0 22.97 0 31.95 0 65.41 0 75.62 0 107.68

ftechnik 36 2 2.42 1 4.52 1 6.48 1 13.66 1 35.71 1 62.17

rhone tough 61 482058 3.29 177807 3.14 155964 6.41 90515 10.94 51975 41.6 41070 95.89

tbed uncont 84 3159 1.56 2885 2.07 2878 3.27 2455 10.23 2231 23.81 2166 146.03

57

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500

T
im

e
(S

ec
o
n
d
s)

Max Projection

Time to solve tbed ctct

pre-process, exhaustive, monolithic
modular projection, non-exhaustive

pre-process, exhaustive, modular

Figure 6.10: Time to solve tbed ctct

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 500 1000 1500 2000 2500 3000 3500

S
ta

te
s

Max Projection

States in simplified rhone tough

pre-process, non-exhaustive, monolithic
pre-process, exhaustive, monolithic

Figure 6.11: States in simplified rhone tough

58

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500

T
im

e
(S

ec
o
n
d
s)

Max Projection

Time to solve rhone tough

pre-process, non-exhaustive, monolithic
pre-process, exhaustive, monolithic

modular projection, exhaustive

Figure 6.12: Time to solve rhone tough

59

Chapter 7

Related Work

Ordered binary decision diagrams (OBDDs) are a method of representing large
boolean formulae in with relatively little memory and can in some cases rep-
resent formulae with linear memory in relation with respect to the number of
variables [5]. One of the ways of checking controllability on larger systems is
to represent the states in the system and it’s transition relation as an OBDD.
Such a representation can in many cases deal with far larger state spaces than
can regularly be explored.

Partial order reduction is a method of reducing the amount of the syn-
chronous product of a set of automata we search by observing that many events
in a model are actually independent of one another, and as such we don’t care
in what order they occur [5]. We can exploit this by when it is appropriate only
exploring the states reached by taking one arbitrary ordering of these events
sometimes dramatically reduce the number of states considered. It should be
noted that projection seems to remove independence between events anyway.

60

Chapter 8

Conclusion

The modular method of checking controllability has been implemented in the
WATERS toolkit and the experimental results have shown its performance to be
equivalent to that shown by the original implementation [3]. In addition to this,
several variations of the controllability checker were developed. Of these the
Parallel and Culling checker, while showing some promise did not bring much
improvement over the standard modular approach to controllability checking.
The projecting approach, however showed lots of improvement in performance,
in particular being capable of solving the rhone tough problem. This had up
till this point never been solved before.

Future work could include looking into ways of improving the performance
of the determinisation step of the controllability checker. A possible way of
doing this could be to use a OBDD [5] to represent the automaton which we
are attempting to determinise. Also, as intuitively projection should gain the
best results when two automata which are related to each other are projected
together, and the person who designed the model should ideally know which
parts of the model are most related to one another, it could be useful to make
it possible for the person modelling to put in information stating that these
automata naturally go together and then use that information when projecting.
Also it seems that the heuristics for selecting new automata to add to the
composition for modular checking could be improved. One way of doing this
could be to instead of finding just one counterexample in a composition, to find
a number of counterexamples and then perhaps select which new automata to
add to the composition based upon what number of these counterexamples it
rejects.

61

big_bm
w

tbed_ctct

tbed_nocoll

tbed_uncont

profisafe_i4

rhone_tough

R
el

at
iv

e
T

im
e

Model

Relative Time to Solve Models

Modular
Parallel
Culling

Modular Projection
Projection Monolithic

Figure 8.1: Synchronous product of Small factory with modified buffer

62

Bibliography

[1] K. Åkesson, H. Flordal, and M. Fabian. Exploiting modularity for synthesis
and verification of supervisors. In 15th IFAC World Congress on Automatic
Control, 2002.

[2] Bertil Brandin and François Charbonnier. The supervisory control of the
automated manufacturing system of the AIP. In Rensselaer’s 4th Com-
puter Integrated Manufacturing and Automation Technology, pages 319–
324, 1994.

[3] Bertil A. Brandin, Robi Malik, and Petra Malik. Incremental verifica-
tion and synthesis of discrete-event systems guided by counter-examples.
12(3):387–401, May 2004.

[4] F. Charbonnier. Commande par supervision des systèmes à événements
discrets: application à un site expérimental l’Atelier Inter-établissement de
Productique. Technical report, Laboratoire d’Automatique de Grenoble,
1994.

[5] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. 1999.

[6] Petra Dietrich. Projekt BMW E65 CAS — FH-Master — eine Model-
lierung in DCD. Technical report, , Corporate Technology, Software and
Engineering 4, 2000.

[7] Hugo Flordal and Robi Malik. Modular nonblocking verification using con-
flict equivalence. In 8th ’06, pages 100–106, July 2006.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. 1979.

[9] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. 2001.

[10] R. J. Leduc. PLC implementation of a DES supervisor for a manufacturing
testbed: An implementation perspective. Master’s thesis, 1996.

[11] C. Lewerentz and T. Linder. Case Study “Production Cell”, volume 891.
1995.

63

[12] Annette Lötzbeyer and R. Mühlfeld. Task description of a flexible produc-
tion cell with real time properties. Technical report, 1996.

[13] Petra Malik. From Supervisory Control to Nonblocking Controllers for Dis-
crete Event Systems. PhD thesis, 2003.

[14] R. Malik and R. Mühlfeld. A case study in verification of UML statecharts:
the PROFIsafe protocol. 9(2):138–151, February 2003.

[15] Robi Malik and Reinhard Mühlfeld. Testing the PROFIsafe protocol using
automatically generated test cases based on a formally verified model. Tech-
nical report, , Corporate Technology, Software and Engineering 1, 2002.

[16] Profibus Nutzerorganisation e. V. PROFIsafe—profile for safety technology,
version 1.12, 2002.

[17] Peter J. G. Ramadge and W. Murray Wonham. The control of discrete
event systems. 77(1):81–98, January 1989.

[18] W. M. Wonham. Notes on control of discrete event systems, 1999. , ; at
http://www.control.utoronto.ca/ under “Research Areas”.

64

