Finite State Machines

- Model checking techniques rely on finite-state representations of systems.
- A finite-state machine (finite-state automaton, automaton) is a machine evolving from one state to another under the action of transitions.

Model of a Digicode

Possible Behaviours of Digicode

Sequences of actions that lead to the success state q_4:

- aba,
- $aaba$, $baba$, $caba$,
- $aaaba$, $ababa$, $acaba$, $baaba$, $bbaba$, $bcaba$, $caaba$, $cbaba$, $ccaba$,
- ...
Computation Tree of DigiCode

The Language of an Automaton

Let \(A = (Q, E, T, q_0, Q_m) \) be an automaton.

- The **language** \(\mathcal{L}(A) \) of \(A \) is the set of all strings \(s \in E^* \) such that there exists a partial execution of \(A \) labeled with the events of \(s \).
- The **marked language** \(\mathcal{M}(A) \) of \(A \) is the set of all strings \(s \in E^* \) such that there exists a partial execution of \(A \) labeled with the events of \(s \) and ending in a marked state \(q_m \in Q_m \).

Definition of Automata

A finite-state automaton is a tuple

\[
A = (Q, E, T, q_0, Q_m)
\]

with

- **finite set of states** \(Q = \{q_1, q_2, q_3, \ldots \} \)
- **finite set of events** \(E = \{a, b, c, \ldots \} \)
- **transition relation** \(T \subseteq Q \times E \times Q \)
- **initial state** \(q_0 \in Q \)
- **set of marked states** \(Q_m \subseteq Q \)

The Language of the Digicode

\[
A: \quad \begin{array}{c}
q_1 \xrightarrow{a} q_2 \\
q_2 \xrightarrow{b} q_3 \\
q_3 \xrightarrow{c} q_4
\end{array}
\]

\[\mathcal{L}(A) = \{\}\]

\[\mathcal{M}(A) = \{\}\]

Definition of a Path

Let \(A = (Q, E, T, q_0, Q_m) \) be an automaton.

- A **path** in \(A \) is a sequence of transitions from \(T \) following each other.

\[
q_1 \xrightarrow{e_1} q_2 \xrightarrow{e_2} q_3 \xrightarrow{e_3} q_4
\]

- A **partial execution** of \(A \) is a path starting from the initial state \(q_0 \).

A Printer Manager
Property 1 of Printer Manager

- Is it possible that both users A and B are printing at the same time?
- Can we reach a state marked $P_A P_B$?
- Can the printer manager execute a sequence of events containing a beg_A and a beg_B event without an end_A event between them?

Counterexample

- Property 3 is not satisfied for the printer manager.
- It can execute the event sequence $req_A req_B beg_A end_B req_B beg_B end_B ...$
- Model checkers can automatically compute such **counterexamples**.

Property 2 of Printer Manager

- Can a user start printing without having requested to do so?
- Can we reach a state marked P_A without passing through a state marked W_A?
- In any partial execution containing the event beg_A, is that event preceded by a req_A event?

Reading

Bérard et. al.: Chapter 1 – Automata

Property 3 of Printer Manager

- If a user requests to print, will they eventually be able to print?
- Is every state marked W_A followed (possibly not immediately) by a state marked P_A?
- In any infinite partial execution containing the event req_A, is that event followed by a beg_A event?