Modelling Reactive Systems

- **Plant Model**
 - Model of the system to be controlled
 - Possible behaviour

- **Specification**
 - Model of the control program
 - Desired behaviour

Controlling Reactive Systems

- **Commands**
- **Responses**

Supervisory Control

- **Uncontrollable Events**: Cannot be prevented by supervisor
- **Controllable Events**: Can be disabled by supervisor

Controlling Small Factory

- **Commands**
 - start1, ...
- **Responses**
 - finish1, ...

Desired Behaviour

- We want small factory together with its controller to behave exactly like the Buffer automaton.

 - *Is this possible?*
Controllability

Definition

Let P and S be two automata. S is called **controllable** with respect to P if, for every state (q_P, q_S) reachable in $P \parallel S$, every uncontrollable event which is enabled in q_P also is enabled in q_S.

Small Factory is Not Controllable

To check whether plants P_1, \ldots, P_n are controllable with respect to specifications S_1, \ldots, S_m:

1. Add initial state $q_0 = (q_{01}, \ldots, q_{0n}, q_{01}, \ldots, q_{0m})$ to state set Q.
2. While there are unvisited states $q \in Q$ do:
 1. For each event e enabled by all plants P_i in state q do:
 1. If e is uncontrollable and there exists a specification S_j that cannot execute e in state q then return "The system is not controllable."
 2. If e can be executed by all specifications then compute successor state r such that $q \xrightarrow{e} r$.
 3. Add r to state set Q if not yet present.

Making Small Factory Controllable

Observations:

- We cannot disable the uncontrollable event finish1.
- If the system ever enters state WIF, we have a problem.
- We can avoid entering this state by disabling the controllable event start1 in state IF.

Controllability Check Algorithm

Checking for Controllability

Reading

Texts on Supervisory Control