Controllability can easily be achieved by not permitting any controllable events.

“If you never do anything, you can’t do anything wrong.”

Controllability can easily be achieved by not permitting any controllable events.
Nonblocking

Definition:
Let \(A = (Q, E, T, q_0, Q_m) \) be an automaton. \(A \) is called **nonblocking** if, for every reachable state \(q \in Q \), there exists a path
\[
q \xrightarrow{e_1} \cdots \xrightarrow{e_k} q_m
\]
that ends in a marked state \(q_m \in Q_m \).

A Deadlock

- Both buffers full.
- Test unit not started for fear it might reject.

Nonconflicting

Definition:
Let \(A_1 \) and \(A_2 \) be two automata. \(A_1 \) and \(A_2 \) are called **nonconflicting**, if \(A_1 \parallel A_2 \) is nonblocking. Otherwise they are called **conflicting**.

Transfer Line: A Solution?

Checking for Conflicts

Choosing the Marked States

The marked state is a configuration which the system always should be able to return to.

Possibilities:
- Initial state
- All tasks completed
- All tasks in progress
- Some task is running

Tip:
Sometimes you want to check several marking conditions …