Formal Syntax of CTL*

State formulas
- Every atomic proposition is a state formula.
- If φ and ψ are state formulas then so are ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, φ ↔ ψ.
- If φ is a path formula, then Aφ and Eφ are state formulas.

Path formulas
- Every state formula is a path formula.
- If φ and ψ are path formulas, then so are Xφ, Fφ, Gφ, φ U ψ.

PLTL and CTL in NuSMV

```
-- CTL
SPEC
  AG (request -> AF grant)

-- PLTL
LTLSPEC
  G (request -> F grant)
```

Three Temporal Logics

CTL
- Every state formula is a CTL*-formula.

CTL
- Every state formula in which temporal combinators are applied to state formulas only is a CTL-formula.

PLTL
- Every path formula without any path quantifier is a PLTL-formula.

Semantics of CTL*

Given
- Kripke structure $K = (Q, Prop, T, q_0, I)$,
- CTL*-formula φ,
- we want to define under which conditions the formula φ is true in a state $q \in Q$.

Examples

<table>
<thead>
<tr>
<th>CTL*</th>
<th>CTL</th>
<th>PLTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG (warm ⇒ AF ¬warm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG (warm ⇒ F ¬warm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G (warm ⇒ X ¬warm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (F warm ⇒ F ok)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (ok U error)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G (warm ⇒ EF ¬warm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Defining the Semantics

- The truth of a state formula depends on the state
 - \neg \text{train1 on A} \lor \neg \text{train2 on A}
 - AG \neg \text{collision}
- The truth of a path formula depends on the execution path
 - GF \text{req}

Path Formulas

Given:
- Path formula \(\phi \)
 - \(G R_A \land F P_A \land G \neg (P_A \land P_B) \)
- Execution path \(\sigma = \langle \sigma_0, \sigma_1, \ldots \rangle \)

To determine whether \(\phi \) is true in \(\sigma \):
- Determine truth of subformulas.
- Evaluate the temporal combinator for \(\phi \).

Example Kripke Structure

```
1 \ R_A R_B
2 \ W_A R_B
3 \ R_A W_B
4 \ W_A P_B
5 \ P_A W_B
6 \ W_A P_B
7 \ P_A W_B
8 \ R_A P_B
```

Evaluating Temporal Combinators

- X \(\phi \) is true on a path \(\sigma \), if \(\sigma \) has more than one state, and \(\phi \) is true in the second state of \(\sigma \).
- G \(\phi \) is true on a path \(\sigma \), if \(\phi \) is true in every state of \(\sigma \).
- F \(\phi \) is true on a path \(\sigma \), if \(\sigma \) contains a state where \(\phi \) is true.
- \(\phi \lor \psi \) is true on a path \(\sigma \), if \(\sigma \) contains a state \(q \) where \(\psi \) is true, and \(\phi \) is true in every state in \(\sigma \) up to but not necessarily including \(q \).

Propositional Formulas

Given:
- Formula \(\phi \) without temporal combinators
 - \(R_A \land P_A \land P_B \land W_A \Rightarrow P_A \)
- State \(q \in Q \)

To determine whether \(\phi \) is true in \(q \):
- Inspect the labels of state \(q \).

Path Quantifiers

Given:
- State formula \(\phi \) with a path quantifier
 - \(EG R_A \land EF P_A \land AG \neg (P_A \land P_B) \)
- State \(q \in Q \)

To determine whether \(\phi \) is true in \(q \):
- Determine truth of subformulas.
- Evaluate the path quantifier.
Evaluating Path Quantifiers

- $A\varphi$ is true in state q, if φ is true on every maximal path starting from q.
- $E\varphi$ is true in state q, if φ is true on some maximal path starting from q.

Note:
- Execution paths must be maximal.
- A finite execution path can only be considered if it ends in a state without outgoing transitions.

More Rules

- $A \varphi \equiv \neg E \neg \varphi$
- $AG \varphi \equiv \neg EF \neg \varphi$
- $AF \varphi \equiv \neg EG \neg \varphi$
- $EG \varphi \equiv \neg AF \neg \varphi$
- $EF \varphi \equiv \neg AG \neg \varphi$

At Last ...

Given:
- Path formula φ
- Kripke-structure K

We say:
- φ is **satisfied in K**, if φ is true for every maximal execution of K.

Reading

Bérard et. al.:
Chapter 2 – Temporal Logic
Chapter 12 – NuSMV

Some Rules

- $G \varphi \equiv \neg F \neg \varphi$
- $F \varphi \equiv \text{true} U \varphi$
- $\varphi W \psi \equiv (\varphi U \psi) \lor G \varphi$

All path formulas can be written using the combinators U and X only.