Advanced Data Mining with Weka

Class 3 – Lesson 1

LibSVM and LibLINEAR

Ian Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 3.1: LibSVM and LibLINEAR

Class 1 Time series forecasting

Class 2 Data stream mining in Weka and MOA

Class 3 Interfacing to R and other data mining packages

Class 4 Distributed processing with Apache Spark

Class 5 Scripting Weka in Python

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Lesson 3.6 Application: Functional MRI Neuroimaging data
LibSVM and LibLINEAR

Install the packages LibSVM and LibLINEAR (also install gridSearch)

- Written by the same people (National Taiwan University)
- LibSVM and LibLINEAR widely used outside Weka
- Weka’s most popular packages!

Support Vector Machines

- Both packages implement them
 - Weka already has SMO (*Data Mining with Weka* Lesson 4.5)
 - ... but LibSVM is more flexible; LibLINEAR can be much faster
- SVMs can be linear or non-linear: “kernel” functions
- SVMs can do classification or regression
 - Weka already has SMOreg for regression
- gridSearch will be used to optimize parameters for SVMs
LibSVM and LibLINEAR

<table>
<thead>
<tr>
<th></th>
<th>SMO/SMOreg</th>
<th>LibSVM</th>
<th>LibLINEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear SVM?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Non-linear kernels?</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1-class classification?</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>... two-class classification when there are no negative examples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic regression?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>... Logistic classifier ([Data Mining with Weka](http://tutorials.terry wesolowski.com/Weka) Lesson 4.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very fast?</td>
<td>no</td>
<td>no</td>
<td>yes!</td>
</tr>
<tr>
<td>L1 norm?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>... minimize sum of absolute values, not sum of squares</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LibSVM and LibLINEAR

LibLINEAR

Speed test

- Data generator: 10,000 instances of LED24 data, percentage split evaluation
 - LibLinear 2 secs to build model
 - LibSVM, default parameters (RBF kernel) 18 secs
 choose linear kernel 10 sec
 - SMO, default parameters (linear) 21 secs
LibSVM and LibLINEAR

Linear boundary

- small margin
- 0 errors on training data
LibSVM and LibLINEAR

Linear boundary

- small margin
- 0 errors on training data
- 4 errors on test data
LibSVM and LibLINEAR

Linear boundary

- small margin
- 0 errors on training data
- 4 errors on test data
LibSVM and LibLINEAR

Linear boundary

- small margin
LibSVM and LibLINEAR

Linear boundary

- large margin
- 1 error on training data
LibSVM and LibLINEAR

Linear boundary

- small margin
- 1 error on training data
- 0 errors on test data
LibSVM and LibLINEAR

Linear boundary

- LibLINEAR
- LibSVM with linear kernel (or SMO)
- 21 errors on the training set
Nonlinear boundary

- LibSVM, RBF kernel
 - default parameters
 - cost=1, gamma=0
 - 9 errors on training set

Do it!
- with BoundaryVisualizer
- in Explorer
LibSVM and LibLINEAR

Nonlinear boundary

- LibSVM:
 - OK parameters
 cost=10, gamma=0
 - 0 errors on training set
 - Poor generalization
Nonlinear boundary

- LibSVM
 - optimized parameters
 - cost=1000, gamma=10
- 0 errors on training set
- Good generalization
LibSVM and LibLINEAR

Optimizing LibSVM parameters with gridSearch
LibSVM and LibLINEAR

gridSearch defaults

- **C**: $10^3, 10^2, 10, 1, 10^{-1}, 10^{-2}, 10^{-3}$
- **kernel.gamma**: $10^3, 10^2, 10, 1, 10^{-1}, 10^{-2}, 10^{-3}$

use **SMOreg** (regression)

evaluate using **correlation coefficient**
Optimizing LibSVM parameters with gridSearch

LibSVM: parameters \texttt{cost}, \texttt{gamma}

\texttt{cost}: 10^3, 10^2, 10, 1, 10^{-1}, 10^{-2}, 10^{-3}

\texttt{gamma}: 10^3, 10^2, 10, 1, 10^{-1}, 10^{-2}, 10^{-3}

use \texttt{LibSVM} (classification)

evaluate using \texttt{Accuracy}

\Rightarrow \texttt{cost} = 1000, \texttt{gamma} = 10
Optimizing LibSVM parameters with gridSearch

(RBFKernel): \(c, \text{kernel.gamma} \)

\(c: 10^3, 10^2, 10, 1, 10^{-1}, 10^{-2}, 10^{-3} \)

\(\text{kernel.gamma}: 10^3, 10^2, 10, 1, 10^{-1}, 10^{-2}, 10^{-3} \)

use SMO (classification)

evaluate using Accuracy
LibSVM and LibLINEAR

- LibLINEAR: all things linear
 - linear SVMs
 - logistic regression
 - can use “L1 norm”
 - minimize sum of absolute values, not sum of squares

- LibSVM: all things SVM

- Practical advice for using SVMs:
 - first use a linear SVM
 - then select RBF kernel
 ... and optimize cost, gamma using gridSearch

Advanced Data Mining with Weka

Class 3 – Lesson 2

Setting up R with Weka

Eibe Frank

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 3.2: Setting up R with Weka

Class 1 Time series forecasting

Class 2 Data stream mining in Weka and MOA

Class 3 Interfacing to R and other data mining packages

Class 4 Distributed processing with Apache Spark

Class 5 Scripting Weka in Python

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Lesson 3.6 Application: Functional MRI Neuroimaging data
Setting up R with Weka

- The instructions are based on using 64-bit Windows, 64-bit Java, and 64-bit R, and assume admin rights
 - Mixing 32-bit versions with 64-bit ones will produce problems, e.g., the installation process for Weka’s RPlugin may halt for no apparent reason
 - If you have 32-bit Windows, use 32-bit Java and 32-bit R
 - Support for R in Weka can also be installed on OS X and Linux: refer to the installation instructions that come with Weka’s RPlugin

- There are four main steps to the installation process:
 - Downloading and installing R
 - Installing the rJava package in R
 - Setting up some Windows environment variables
 - Downloading and installing the RPlugin package for Weka
Downloading and installing R

- Choose a download mirror from

 https://cran.r-project.org/mirrors.html

- Choose to download the binary distribution for Windows
- Choose the “base” version of the distribution
- Once downloaded, execute the installer
- Accept all default settings for install options, but untick *32-bit files* when asked to choose R components to install
 - If you are using 32-bit Windows, untick 64-bit files instead
Installing the rJava package in R

- Start the R console, e.g., by double-clicking on the shortcut that the installer has put on your desktop
- In the R console, type `install.packages("rJava")` and press the return key on your keyboard
- Note that this will only work if you have direct web access, i.e., if your web access is not provided by a proxy computer (see the next slide on what to do if you are behind a proxy)
- In the pop-up menu, choose a mirror to download from
- Accept defaults when asked for install options
- Close R once the package has been installed, by typing `q()`, without saving the workspace
For users with web connections provided by a proxy

- If your organization uses a proxy computer, you need to set up some Windows environment variables before starting R
- Using the Windows search functionality, search for variables, and select Edit environment variables for your account
- Use the New... button to add two new variables, with names HTTP_PROXY and HTTPS_PROXY
- Set their value to the URL and port number of your organisation's proxy server, separated by a comma
 - For example, at Waikato, this would be http://proxy.waikato.ac.nz:8080
- Then, when you install a package in R, you will be asked for your proxy user name and password
Setting up the environment variables

- We need to set up some environment variables so that Weka’s RPlugin knows where R and its libraries are located.

- Using the Windows search functionality, search for variables, and select *Edit environment variables for your account*.

- Use the *New...* button to add two new variables, with names *R_HOME* and *R_LIBS_USER* (see screenshot on next slide).

- Set the value of *R_HOME* to the path of the folder containing the R software (it should end in something like *R-X.X.X*).

- Set the value of *R_LIBS_USER* to the path of the folder containing the newly installed rJava package for R.

- Also, use the *Edit...* button to add the path of the folder containing the R executable to the *PATH* variable (after adding a semicolon).
 - If there is no *PATH* variable, make a new one.
Make sure you don’t use quotes in the variable values.

In this example, there was no pre-existing PATH variable, so the location of the R executable is the only value of the PATH variable.
Installing the RPlugin for Weka

- Start Weka, and from the Tools menu in the GUIChooser, select the Weka package manager
- Choose RPlugin from the list of packages and press Install
 - If your internet access is through a proxy server, see Using a HTTP proxy at http://weka.wikispaces.com/How+do+I+use+the+package+manager
 - for information on how to configure Weka to use the proxy server
- In the pop-up dialogues, press OK
- Once the plugin has been installed, restart Weka
- Start the Weka Explorer, load the iris data, go to the new RConsole tab, and type `plot(rdata)`
- Once you have pressed return, the iris data will be plotted
What can possibly go wrong?

- Many things..., too many to cover here!
- If you run into problems with the installation process, don’t despair, just get in touch with the Weka community for help
Advanced Data Mining with Weka

Class 3 – Lesson 3

Using R to plot data

Eibe Frank

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 3.3: Using R to plot data

Class 1 Time series forecasting

Class 2 Data stream mining in Weka and MOA

Class 3 Interfacing to R and other data mining packages

Class 4 Distributed processing with Apache Spark

Class 5 Scripting Weka in Python

Lesson 3.1 LibSVM and LibLINEAR

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Lesson 3.6 Application: Functional MRI Neuroimaging data
First steps with ggplot2

- We need some data to work with, so first load the Iris data into the Preprocess panel of the Explorer.
- To plot data with R, go to the RConsole.
- Before we can use `ggplot2`, we need to download and install the corresponding R package:
 - To install the package, type `install.packages("ggplot2")` and press return.
 - To load the package, type `library(ggplot2)` and press return.
- Try entering the following to see if the package works:
 `ggplot(rdata, aes(x = petallength)) + geom_density()`.
- This should give you a kernel density estimate for the petal length of the Iris flowers.
The data layer

- The first layer is the data layer, which specifies the data we want to plot
- The data layer is specified using the `ggplot()` function
- The first argument of this function is the data we want to plot
- We use `rdata` here, because this is the name of the data that has been transferred into R from the Preprocess panel
- The second argument is often a call to the `aes()` function, which maps data to a plot’s visual aspects and components
- We use it to define which attributes are plotted, and how parts of the plot are colored and filled
The geometry layer(s)

- Once the data layer has been defined, we can define geometry layers to specify how the data is plotted
- In the previous example, we specified a kernel density plot by using the `geom_density()` function
 - The kernel density estimate generated this way is too wide, but we can use the `xlim()` function to change the range of the x axis:
    ```
    ggplot(rdata, aes(x = petallength)) + geom_density() + xlim(0,8)
    ```
- We can use the `adjust` parameter to scale the kernel bandwidth that is used by the estimate
  ```
  ggplot(rdata, aes(x = petallength)) + geom_density(adjust = 0.5) + xlim(0,8)
  ```
- Using values smaller than 1 makes the density estimate fit the data more closely and we get more peaks and valleys
Plotting classification data

- In classification problems, we often want to visualize data on a per-class basis to detect discriminative information.
- We can do that quite easily with `ggplot2`, e.g., by plotting separate color-coded estimates for each class value:

  ```r
  ggplot(rdata, aes(x = petallength, color = class)) + geom_density(adjust = 0.5) + xlim(0,8)
  ```
- We can also fill the area under the plots based on class color:

  ```r
  ggplot(rdata, aes(x = petallength, color = class, fill = class)) + geom_density(adjust = 0.5) + xlim(0,8)
  ```
- We can specify the level of transparency by using the `alpha` parameter as a geometry-specific aesthetic:

  ```r
  ggplot(rdata, aes(x = petallength, color = class, fill = class)) + geom_density(adjust = 0.5, alpha = 0.5) + xlim(0,8)
  ```
Generating multiple separate plots ("facets")

- We can use facets to display multiple per-attribute plots.
- Generated data has three attributes: `class`, `variable`, `value`.
- First, we need to load the `reshape2` library, which has been installed with the `ggplot2` library:
  ```r
  library(reshape2)
  ```
- Then, we use the `melt()` function to transform the data:
  ```r
  ndata = melt(rdata)
  ```
- To plot a facet grid, with one row facet per attribute:
  ```r
  ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha = 0.5) + xlim(0,8) + facet_grid(variable ~ .)
  ```
- We can also use column facets:
  ```r
  ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha = 0.5) + xlim(0,8) + facet_grid(. ~ variable)
  ```
Printing a plot into a PDF

- Use `pdf()` function to redirect output of plot from screen to a PDF file, e.g.:

  ```
  pdf("/Users/eibe/Documents/Test.pdf")
  ```

- Reissue command, so that plot is written to the file:
  ```
  ggplot(ndata, aes(x = value, color = class, fill = class)) + geom_density(adjust = 0.5, alpha = 0.5) + xlim(0,8) + facet_grid(. ~ variable)
  ```

- Once the data has been plotted to the file, redirect output back to screen:
  ```
  dev.off()
  ```

- The resulting PDF can be viewed with any PDF reader and integrated into other documents
One more example of a geometry layer: box plots

- Assuming we have generated `ndata` using the `melt()` function as before, we can plot box plots for each attribute:

  ```r
ggplot(ndata, aes(y = value, x = class, color = class)) + geom_boxplot() + facet_grid(. ~ variable)
```

- This will generate four column facets containing box plots, with one box plot per class value in each facet.

- The latter is achieved by using the nominal attribute `class` as the column attribute for each facet’s box plot.

- The color is also based on the class, so that columns and colors match for each box plot.
Further information

- There is a very comprehensive web site with documentation for ggplot2:

 http://ggplot2.org/

- This site also enables you to subscribe to a mailing list where you can get help

- There are several books dedicated to *ggplot2*, including two that are mentioned at the above location
Advanced Data Mining with Weka

Class 3 – Lesson 4

Using R to run a classifier

Eibe Frank

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 3.4: Using R to run a classifier

Class 1 Time series forecasting

Lesson 3.1 LibSVM and LibLINEAR

Class 2 Data stream mining in Weka and MOA

Lesson 3.2 Setting up R with Weka

Class 3 Interfacing to R and other data mining packages

Lesson 3.3 Using R to plot data

Class 4 Distributed processing with Apache Spark

Lesson 3.4 Using R to run a classifier

Class 5 Scripting Weka in Python

Lesson 3.5 Using R to preprocess data

Lesson 3.6 Application: Functional MRI Neuroimaging data
Using supervised learning algorithms from R in Weka

- R has a large collection of libraries with supervised learning algorithms for regression and classification
- The MLR package for R provides a unified interface to many of these algorithms
- Weka’s RPlugin contains MLRClassifier, which provides access to the regression and classification schemes in MLR
- In this way, the regression and classification schemes in MLR can be used like any other classifier in Weka
 - For example, it is possible to run them in the Explorer to evaluate them on a particular dataset, or in the Experimenter to compare to other algorithms
Using the MLRCClassifier

- To try MLRCclassifier, load some data into the Preprocess panel of the Explorer, e.g., the diabetes data
- Then, switch to the Classify panel and select the Choose button to pop up the menu with available classifiers
- It will take a little while for the menu to pop up because Weka will download and install the mlr package in R
 - This only happens once, when the package is first required
- Now, expand the new mlr item in the menu and select MLRCclassifier
- Pressing the Start button will run MLRCclassifier on the data
Considering the output

- In the output, you will see that *MLRClassifier* has learned a classification tree using MLR’s *classif.rpart method*
- We can also see that the algorithm comes from R’s *rpart* package
- The R package *rpart* contains an implementation of the famous CART learning algorithm developed by Breiman *et al.*
- The output also shows what properties the algorithm has
 - This particular algorithm can handle multi-class problems, missing values, numeric attributes, nominal attributes (factors), and instance weights
 - It can also deal with ordinal attributes, but this is not currently supported by Weka
 - The list of properties also shows that the classifier can produce class probability estimates for a test instance
Organization of learning algorithms in MLR

- **MLRClassifier** provides access to classification and regression algorithms supported by the *mlr* package.
- Most of the regression and classification algorithms in this list are available through **MLRClassifier**.
- To choose a different algorithm, pop up the **GenericObjectEditor** for **MLRClassifier** by clicking on the text box with the classifier's configuration.
- Selecting the **RLearner** pop-up menu in the **GenericObjectEditor**, you can choose from regression (**regr.***) and classification (**classif.***) algorithms.
Choosing a different classifier: random ferns

- Random ferns, implemented in the R package `rFerns`, were originally developed for computer vision tasks.
- A random fern can be viewed as a restricted decision tree where all nodes at the same level apply the same test.
- We can select random ferns in `MLRClassifier` by choosing `classif.rFerns`.
 - The first time we select a classifier from the menu in `MLRClassifier`, there is a delay because Weka has to download and install the corresponding R package.
- By default, `classif.Ferns` uses 1,000 ferns of depth 5.
- Accuracy is not great, so let us try changing parameters...
Parameters can be passed to a learning algorithm in *mlr* by specifying them in textual form in the *GenericObjectEditor*

The parameter specification is entered into the *learnerParams* field

To find out what parameters are accepted, we need to check the documentation for the learning algorithm in R

The easiest way to find this info is to click on the package link from the web page with learners integrated into MLR

- This brings up the corresponding page for the R package at

 http://www.rdocumentation.org

- Select the link for the learning method from this page
Growing different ferns

- The package documentation for the `rferns` method lists several possible arguments.
- We can ignore the arguments specifying the input data because these are automatically generated by `MLRClassifier`.
- We can see that we can change the depth of the ferns by specifying a value of the `depth` parameter.
- To get ferns of depth two, we can enter `depth = 2` into the `learnerParams` field in the `GenericObjectEditor` for `MLRClassifier`.
- We can also specify multiple parameters in comma-separated fashion, e.g., we can enter `depth = 2, ferns = 100`.

Further information

- The MLR package has many other facilities for machine learning in R, e.g., running experiments in the R environment.
- There is an extensive tutorial on how to use MLR from R at https://mlr-org.github.io/mlr-tutorial/release/html/
- The MLR package is constantly being expanded and every release adds new algorithms.
 - When new releases come out, the RPlugin package needs to be updated so that these algorithms become available through MLRClassifier in Weka.
- Every official R package has a dedicated web page with a link to a PDF reference manual for this package.
 - For example, the URL for the rFerns package is https://cran.r-project.org/web/packages/rFerns/index.html.
Advanced Data Mining with Weka

Class 3 – Lesson 5

Using R to preprocess data

Eibe Frank

Department of Computer Science
University of Waikato
New Zealand
Lesson 3.6 Application: Functional MRI Neuroimaging data
Using R to preprocess data

- R has a large collection of libraries with preprocessing tools that are potentially useful for machine learning in Weka
- Weka's KnowledgeFlow GUI has an `RScriptExecutor` plugin that can be used to run R scripts as part of a flow
 - To see it, click Plugins on the left-hand side of the KnowledgeFlow panel
 - Data can be fed into the `RScriptExecutor` component by connecting it with a component that produces a dataset via a `dataSet` connection
 - This data will be passed into R as an R data frame
 - It can be processed by the R script specified in the `RScriptExecutor` component and the resulting data frame can be passed back into the Weka environment
 - This is done by providing an outgoing `dataSet` connection from the `RScriptExecutor` component
 - If the R script generates textual output or an image, this output can also be obtained by using appropriate connections (text or image)
A simple example

- Assume we want to remove the last attribute from the Iris data
- First, we configure an ArffLoader component to load the data
- Then, we place the RScriptExecutor component on the canvas
- Now, we can connect the two using a dataSet component
- To visualize the processed data we can use a ScatterPlotMatrix component, which we can put on the canvas but not yet connect
- To process the data, we need to configure the RScriptExecutor by entering an appropriate script
- The single-line script \texttt{rdata[1:4]} (square brackets!) creates a data frame from the first four attributes of the incoming data (\texttt{rdata})
- Now, we can make a dataSet connection to the ScatterPlotMatrix
To do something more sophisticated using R, let us apply ICA.

ICA (independent component analysis) attempts to decompose the input data into statistically independent components.

An implementation is available in R’s fastICA package.

To install the package using the KnowledgeFlow, we first need to enable its R Console perspective.

Once we have enabled it, we can go to the R Console tab and issue R commands, e.g., install the fastICA package by entering

```
install.packages("fastICA")
```
Another example script: using ICA

- Now that we have installed the package, we can use `fastICA` in our R script
- First, we need to load the library into R using `library(fastICA)`
- Then, we may want to set up a variable specifying the number of components we would like to extract using ICA
 - Assume we want to use as many components as there are predictor attributes in the input, so we can use `num = ncol(rdata) – 1` for this, where `ncol()` gives the number of attributes in `rdata`
- To apply `fastICA` to the reduced Iris data and extract `num` components, we can use `fastICA(rdata[1:num], num)`
- This function returns a list of results, we want `S`, so we use `fastICA(...)$S`
 - Check the R documentation for `fastICA` to see what values are returned by this function
- This will produce an R matrix, which we need to turn into an R data frame using the `data.frame()` function, so that Weka can import the data
The complete script

- The complete script for the RScriptExecutor is:

```r
library(fastICA)
num = ncol(rdata) – 1
data.frame(fastICA(rdata[1:num], num)$S)
```

- Note that the output of the `fastICA()` function is non-deterministic
- This means the scatter plot you will get will look slightly different compared to the one shown in the video
Running a classifier on the transformed data

- We can visualize the resulting data using *ScatterPlotMatrix*
- To apply a classifier, we need to reattach the class labels to the transformed data
- Assume we have stored the result returned by *data.frame(...)* in a variable called *d*, using *d = data.frame(...)*
- We can use *cbind(d, rdata[num + 1])* to bind the columns from *d* and the class column from *rdata* into a single data frame
- If this is the last line in the R script, the resulting data frame will be passed back into the Weka environment
- Again, we can use a *dataSet* connection to obtain this data
Running naive Bayes on the ICA-transformed data

- Naive Bayes assumes (conditional) independence, so it seems like a good candidate to run on the transformed data
- We use the standard KnowledgeFlow process for applying a cross-validation to a dataset to do this
 - I.e., we connect `RScriptExecutor` to `ClassAssigner`, which we connect to `CrossValidationFoldMaker`, which, in turn, we connect to `NaiveBayes`
 - Then, we connect `NaiveBayes` to `ClassifierPerformanceEvaluator`
 - Finally, we establish a text connection from `ClassifierPerformanceEvaluator` to a `TextViewer` so that we can view the performance scores obtained
- The resulting accuracy is high, 98% on the Iris data in my case! Note that the outcome is non-deterministic (see above).
- Strictly speaking, this process applies semi-supervised learning because ICA is given the full (unlabeled) dataset
The knowledge flow for running the classifier
Some other potentially useful transformation methods in R:

- `cmdscale` performs classic multidimensional scaling: `data.frame(cmdscale(dist(rdata[1:num]), k = 2))`
- `isoMDS` from the MASS package performs nonmetric multidimensional scaling (assuming the data has no duplicates): `data.frame(isoMDS(dist(rdata[1:num]), k = 2))`
- `kpca` from the kernlab package performs kernel (i.e., non-linear) PCA: `data.frame(rotated(kpca(~ ., data = rdata[1:num], kernel = "rbfdot", kpar = list(sigma=0.01), features = 2)))`
- `prcurve` from the analogue package extracts principal curves: `data.frame(prcurve(rdata[1:num])$s)`
- `isomap` from the vegan package implements Isomap: `plot(isomap(dist(rdata[1:num]), k = 51))`
- `lle` from the lle package performs locally linear embeddings: `data.frame(lle(rdata[1:num], m = 2, k = 3)$Y)`

All these methods are unsupervised

- Note that the above `isomap` command plots data and does not create a data frame

Care needs to be taken when applying supervised methods so that the test data is not used to build the transformation model!
Advanced Data Mining with Weka

Class 3 – Lesson 6

Application: Functional MRI Neuroimaging data

Pamela Douglas

Department of Psychiatry and Biobehavioral Sciences
David Geffen School of Medicine
University of California, Los Angeles
USA

weka.waikato.ac.nz
Lesson 3.6: Application: Functional MRI Neuroimaging data

Class 1 Time series forecasting

Lesson 3.1 LibSVM and LibLINEAR

Class 2 Data stream mining in Weka and MOA

Lesson 3.2 Setting up R with Weka

Lesson 3.3 Using R to plot data

Lesson 3.4 Using R to run a classifier

Lesson 3.5 Using R to preprocess data

Class 3 Interfacing to R and other data mining packages

Class 4 Distributed processing with Apache Spark

Class 5 Scripting Weka in Python

Lesson 3.6 Application: Functional MRI Neuroimaging data
Application: Functional MRI Neuroimaging data

Challenge: Classification of High Dimensional Data

- ADHD200 Global Machine Learning Competition
 - Data from Multiple sites around the globe

- Goal: Predict Diagnosis
 - Typically Developing (TD) or ADHD

- Training Data 776 subjects with diagnosis label known
 - Data from Multiple sites around the globe
 - Structural MRI, resting state functional MRI (fMRI), demographic data

- Test Data 200 Subjects – unknown diagnosis

ADHD: Attention deficit hyperactivity disorder
Application: Functional MRI Neuroimaging data

Extracting Structural Brain Attributes

- Structural Brain Attributes were extracted using Freesurfer
- Included 9 attributes (e.g. volume) from 68 Cortical regions
- Three measures from each of the 45 subcortical and non-cortical regions

More than 700 Structural Brain Attributes
Application: Functional MRI Neuroimaging data

Over 100,000 Functional Neuroimaging attributes!
Application: Functional MRI Neuroimaging data

The Winning team used only demographic features!

- Irrelevant and Redundant Features can:
 - Degrade Classification Accuracy
 - Increase computational Burden
 - See also “Data mining with Weka”, Lesson 1.5

- Highlights the importance of feature selection

Demographic Attributes:
- Gender, Age, IQ, Handedness
Application: Functional MRI Neuroimaging data

The No Free Lunch Theorem: each classifier has its own inductive bias, therefore testing out multiple classifiers and selecting the best model can be a good idea

Activity: Learn how to do Nested Cross Validation for Parameter Tuning Test out Multiple Classifiers, and Test the Importance of Using Feature Selection

- Data from Haxby et al. (2001) “Distributed and overlapping representations of faces and objects in ventral temporal cortex,” Science, Vol. 293
 - Six subjects, 12 runs each
 - Each run consisted of viewing 8 object categories.
 - Each object category was shown for 24 sec (500msec on, 1500msec rest).
Application: Functional MRI Neuroimaging data

- Functional MRI is high dimensional big data
- Feature Selection or regularization is highly recommended
- WEKA can easily combine multiple feature categories for classification (e.g. gender, age, and fMRI data)
- Testing a variety of models or classifiers can be helpful
- Weka’s NIFTI format loader ("Brain button")
 - Loads MRI (NIFTI) files directly into WEKA for classification
Advanced Data Mining with Weka

Department of Computer Science
University of Waikato
New Zealand

Creative Commons Attribution 3.0 Unported License
creativecommons.org/licenses/by/3.0/

weka.waikato.ac.nz