
Frequent Pattern Mining

Albert Bifet

May 2012



COMP423A/COMP523A Data Stream Mining

Outline

1. Introduction
2. Stream Algorithmics
3. Concept drift
4. Evaluation
5. Classification
6. Ensemble Methods
7. Regression
8. Clustering
9. Frequent Pattern Mining

10. Distributed Streaming



Data Streams

Big Data & Real Time



Frequent Patterns

Suppose D is a dataset of patterns, t ∈ D, and min sup is a
constant.

Definition
Support (t): number of
patterns in D that are
superpatterns of t .

Definition
Pattern t is frequent if
Support (t) ≥ min sup.

Frequent Subpattern Problem
Given D and min sup, find all frequent subpatterns of patterns
in D.



Frequent Patterns

Suppose D is a dataset of patterns, t ∈ D, and min sup is a
constant.

Definition
Support (t): number of
patterns in D that are
superpatterns of t .

Definition
Pattern t is frequent if
Support (t) ≥ min sup.

Frequent Subpattern Problem
Given D and min sup, find all frequent subpatterns of patterns
in D.



Frequent Patterns

Suppose D is a dataset of patterns, t ∈ D, and min sup is a
constant.

Definition
Support (t): number of
patterns in D that are
superpatterns of t .

Definition
Pattern t is frequent if
Support (t) ≥ min sup.

Frequent Subpattern Problem
Given D and min sup, find all frequent subpatterns of patterns
in D.



Frequent Patterns

Suppose D is a dataset of patterns, t ∈ D, and min sup is a
constant.

Definition
Support (t): number of
patterns in D that are
superpatterns of t .

Definition
Pattern t is frequent if
Support (t) ≥ min sup.

Frequent Subpattern Problem
Given D and min sup, find all frequent subpatterns of patterns
in D.



Pattern Mining

Dataset Example
Document Patterns

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent
d1,d2,d3,d4,d5,d6 c

d1,d2,d3,d4,d5 e,ce
d1,d3,d4,d5 a,ac,ae,ace
d1,d3,d5,d6 b,bc
d2,d4,d5,d6 d,cd

d1,d3,d5 ab,abc,abe
be,bce,abce

d2,d4,d5 de,cde

minimal support = 3



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent
6 c
5 e,ce
4 a,ac,ae,ace
4 b,bc
4 d,cd
3 ab,abc,abe

be,bce,abce
3 de,cde



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent Gen Closed
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce
3 de,cde de cde



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce abce
3 de,cde de cde cde



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce abce
3 de,cde de cde cde



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

e→ ce

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce abce
3 de,cde de cde cde



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce abce
3 de,cde de cde cde



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce abce
3 de,cde de cde cde



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

a→ ace

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce abce
3 de,cde de cde cde



Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce abce
3 de,cde de cde cde



Closed Patterns

Usually, there are too many frequent patterns. We can compute
a smaller set, while keeping the same information.

Example
A set of 1000 items, has 21000 ≈ 10301 subsets, that is more
than the number of atoms in the universe ≈ 1079



Closed Patterns

A priori property
If t ′ is a subpattern of t , then Support (t ′) ≥ Support (t).

Definition
A frequent pattern t is closed if none of its proper superpatterns
has the same support as it has.

Frequent subpatterns and their supports can be generated from
closed patterns.



Maximal Patterns

Definition
A frequent pattern t is maximal if none of its proper
superpatterns is frequent.

Frequent subpatterns can be generated from maximal patterns,
but not with their support.

All maximal patterns are closed, but not all closed patterns are
maximal.



Non streaming frequent itemset miners

Representation:

I Horizontal layout
T1: a, b, c
T2: b, c, e
T3: b, d, e

I Vertical layout
a: 1 0 0
b: 1 1 1
c: 1 1 0

Search:
I Breadth-first (levelwise): Apriori
I Depth-first: Eclat, FP-Growth



The Apriori Algorithm

APRIORI ALGORITHM

1 Initialize the item set size k = 1
2 Start with single element sets
3 Prune the non-frequent ones
4 while there are frequent item sets
5 do create candidates with one item more
6 Prune the non-frequent ones
7 Increment the item set size k = k + 1

8 Output: the frequent item sets



The Eclat Algorithm

Depth-First Search

I divide-and-conquer scheme : the problem is processed by
splitting it into smaller subproblems, which are then
processed recursively

I conditional database for the prefix a
I transactions that contain a

I conditional database for item sets without a
I transactions that not contain a

I Vertical representation
I Support counting is done by intersecting lists of transaction

identifiers



The FP-Growth Algorithm

Depth-First Search

I divide-and-conquer scheme : the problem is processed by
splitting it into smaller subproblems, which are then
processed recursively

I conditional database for the prefix a
I transactions that contain a

I conditional database for item sets without a
I transactions that not contain a

I Vertical and Horizontal representation : FP-Tree
I prefix tree with links between nodes that correspond to the

same item
I Support counting is done using FP-Tree



Mining Graph Data

Problem
Given a data set of graphs, find frequent graphs.

Transaction Id Graph

1

C C S N

O

O

2

C C S N

O

C

3 C C S N

N



The gSpan Algorithm

GSPAN(g,D,min sup,S)

Input: A graph g, a graph dataset D, min sup.
Output: The frequent graph set S.

1 if g 6= min(g)
2 then return S
3 insert g into S
4 update support counter structure
5 C ← ∅
6 for each g′ that can be right-most

extended from g in one step
7 do if support(g) ≥ min sup
8 then insert g′ into C
9 for each g′ in C

10 do S ← GSPAN(g′,D,min sup,S)
11 return S



Mining Patterns over Data Streams

Requirements: fast, use small amount of memory and adaptive
I Type:

I Exact
I Approximate

I Per batch, per transaction
I Incremental, Sliding Window, Adaptive
I Frequent, Closed, Maximal patterns



LOSSYCOUNTING

I Extension of LOSSYCOUNTING to Itemsets
I Keeps a structure with tuples (X , freq(X ),error(X ))
I For each batch, to update an itemset:

I Add the frequency of X in the batch to freq(X )
I If freq(X ) + error(X ) < bucketID, delete this itemset
I If the frequency of X in the batch in the batch is at least β,

add a new tuple with error(X ) = bucketID − β
I Uses an implementation based in :

I Buffer: stores incoming transaction
I Trie: forest of prefix trees
I SetGen: generates itemsets supported in the current batch

using apriori



Moment

I Computes closed frequents itemsets in a sliding window
I Uses Closed Enumeration Tree
I Uses 4 type of Nodes:

I Closed Nodes
I Intermediate Nodes
I Unpromising Gateway Nodes
I Infrequent Gateway Nodes

I Adding transactions: closed items remains closed
I Removing transactions: infrequent items remains

infrequent



FP-Stream

I Mining Frequent Itemsets at Multiple Time Granularities
I Based in FP-Growth
I Maintains

I pattern tree
I tilted-time window

I Allows to answer time-sensitive queries
I Places greater information to recent data
I Drawback: time and memory complexity



Tree and Graph Mining: Dealing with time changes

I Keep a window on recent stream elements
I Actually, just its lattice of closed sets!

I Keep track of number of closed patterns in lattice, N
I Use some change detector on N
I When change is detected:

I Drop stale part of the window
I Update lattice to reflect this deletion, using deletion rule

Alternatively, sliding window of some fixed size



Graph Coresets

Coreset of a set P with respect to some problem
Small subset that approximates the original set P.

I Solving the problem for the coreset provides an
approximate solution for the problem on P.

δ-tolerance Closed Graph
A graph g is δ-tolerance closed if none of its proper frequent
supergraphs has a weighted support ≥ (1− δ) · support(g).

I Maximal graph: 1-tolerance closed graph
I Closed graph: 0-tolerance closed graph.



Graph Coresets

Coreset of a set P with respect to some problem
Small subset that approximates the original set P.

I Solving the problem for the coreset provides an
approximate solution for the problem on P.

δ-tolerance Closed Graph
A graph g is δ-tolerance closed if none of its proper frequent
supergraphs has a weighted support ≥ (1− δ) · support(g).

I Maximal graph: 1-tolerance closed graph
I Closed graph: 0-tolerance closed graph.



Graph Coresets

Relative support of a closed graph
Support of a graph minus the relative support of its closed
supergraphs.

I The sum of the closed supergraphs’ relative supports of a
graph and its relative support is equal to its own support.

(s, δ)-coreset for the problem of computing closed graphs
Weighted multiset of frequent δ-tolerance closed graphs with
minimum support s using their relative support as a weight.



Graph Coresets

Relative support of a closed graph
Support of a graph minus the relative support of its closed
supergraphs.

I The sum of the closed supergraphs’ relative supports of a
graph and its relative support is equal to its own support.

(s, δ)-coreset for the problem of computing closed graphs
Weighted multiset of frequent δ-tolerance closed graphs with
minimum support s using their relative support as a weight.



Graph Dataset

Transaction Id Graph Weight

1

C C S N

O

O 1

2

C C S N

O

C 1

3

C S N

O

C 1

4 C C S N

N

1



Graph Coresets

Graph Relative Support Support
C C S N 3 3

C S N

O

3 3

C S

N

3 3

Table : Example of a coreset with minimum support 50% and δ = 1



Graph Coresets

Figure : Number of graphs in a (40%, δ)-coreset for NCI.



INCGRAPHMINER

INCGRAPHMINER(D,min sup)

Input: A graph dataset D, and min sup.
Output: The frequent graph set G.

1 G← ∅
2 for every batch bt of graphs in D
3 do C← CORESET(bt ,min sup)
4 G← CORESET(G ∪ C,min sup)
5 return G



WINGRAPHMINER

WINGRAPHMINER(D,W ,min sup)

Input: A graph dataset D, a size window W and min sup.
Output: The frequent graph set G.

1 G← ∅
2 for every batch bt of graphs in D
3 do C← CORESET(bt ,min sup)
4 Store C in sliding window
5 if sliding window is full
6 then R ← Oldest C stored in sliding window,

negate all support values
7 else R ← ∅
8 G← CORESET(G ∪ C ∪ R,min sup)
9 return G



ADAGRAPHMINER

ADAGRAPHMINER(D,Mode,min sup)

1 G← ∅
2 Init ADWIN
3 for every batch bt of graphs in D
4 do C ← CORESET(bt ,min sup)
5 R ← ∅
6 if Mode is Sliding Window
7 then Store C in sliding window
8 if ADWIN detected change
9 then R ← Batches to remove

in sliding window
with negative support

10 G← CORESET(G ∪ C ∪ R,min sup)
11 if Mode is Sliding Window
12 then Insert # closed graphs into ADWIN
13 else for every g in G update g’s ADWIN
14 return G



ADAGRAPHMINER

ADAGRAPHMINER(D,Mode,min sup)

1 G← ∅
2 Init ADWIN
3 for every batch bt of graphs in D
4 do C ← CORESET(bt ,min sup)
5 R ← ∅
6
7
8
9

10 G← CORESET(G ∪ C ∪ R,min sup)
11
12
13 for every g in G update g’s ADWIN
14 return G



ADAGRAPHMINER

ADAGRAPHMINER(D,Mode,min sup)

1 G← ∅
2 Init ADWIN
3 for every batch bt of graphs in D
4 do C ← CORESET(bt ,min sup)
5 R ← ∅
6 if Mode is Sliding Window
7 then Store C in sliding window
8 if ADWIN detected change
9 then R ← Batches to remove

in sliding window
with negative support

10 G← CORESET(G ∪ C ∪ R,min sup)
11 if Mode is Sliding Window
12 then Insert # closed graphs into ADWIN
13
14 return G


