
WSS08 .8
Design and Architecture

Overview

This document will show the issues that arose in designing the projected called WSS08, a working title for
Waikato Semantic Searcher 2008. The document is split into two key areas, the Graphical User Interface,
and the Back End System. The two areas have their own priorities that were taken into consideration
when the decisions were made. Each of the key areas are also split further into different areas that need
considering. Each area may have a number of issues, and each issue has a number of alternative
options that could be implemented, and then the decision that was made based on these options.

Index

The Front End

The purpose of this section is to show the decision making process that went on in designing the front
end of the program. This section has a further three specialized sub sections, the GUI, the Search
System and the Communications System.

Priorities

1 The program needs to be usable.

2 The program needs to be reliable.

3 The program needs to be aesthetically pleasing.

4 The program needs to be as responsive as possible.

5 The learning curve for using the GUI should be minimal.

The Front End: Graphical User Interface

This section is about the GUI without including information about how the results will be displayed (that is
to be discussed in a different section).

Issue 1: When a user has selected a result that they want to view, how will that
result be displayed?

Option 1.1: Display the result in an external browser.

Pros Cons

Easier to let external browser deal with the
processing of the pages.

Having multiple windows is something that
would be nice to avoid.

The user will be familiar with using that
browser

This will interrupt the users use of the
program by taking them away to an external
application.

Option 1.2: Display the results internally (using Gecko or something similar).

Pros Cons

Continuous experience for the user. May be difficult to get working properly.

May look and feel better.

Decision: Option 1.2
This has been chosen because we want the user to have a continuous experience without
external programs being opened. This way the user will not have any distractions from the core
program.

Issue 2: How will the user use the GUI to provide feedback on the search? They
need some way to tell the program about results which are positive, negative, or not
interested in.

Option 2.1: Attach a traffic light type bar to each node so the user can click green for
positive, red for negative, and yellow for not interested to give feedback on that node.

Pros Cons

Should be reasonably easy to use. Screen will be cluttered and won’t look good
(against priority 3)

Should be reasonably easy to make.

Option 2.1B: After thinking about the above the one, we thought that this system could
work but only display the “traffic lights” when a node is selected.

Pros Cons

Less cluttered (in line with priority 3). Learning curve will be larger (against priority
5).

Option 2.2: Dragging the nodes into regions which are positive or negative.

Pros Cons

Dragging will work easily with the nodes. It will be easy to see what has been
classified positive and negative.

Users may not want excessive amounts of
dragging.

Option 2.3: Combination of the above. The user will be able to drag nodes into regions.
The user will also be able to right click on a node and be able to select a traffic light type
option that will send the node to a region, or they will be able to select the “not interested”
option.

Pros Cons

Less cluttered (in line with priority 3). Slightly larger learning curve.

Still have the dragging option pros.

Have the advantages of 3.1B.

Decision: Option 2.3
This seems to get the best of all pros with small amounts of cons. It will probably be slightly more
difficult to implement but it will work the best for the program.

Details of Design: Graphical User Interface

The Graphical User Interface will be created using Java Swing components such as JPanels, JButtons
and JToolBars, e.t.c. This will allow the program to be flexible with its display on different operating
systems.

The GUI will create seeding nodes by allowing the user to input text and then selecting the appropriate
node which is brought up as a list of nodes that are in the database which is accessed through the
communications. This will be done so that the user is only selecting from nodes that are going to be
included in the database.

The GUI will determine whether the seeding node is “good” or “bad” depending on the area that the
seeding nodes are put into. This set will be passed to the communications part of the program for
processing.

So, the GUI interacts with the communications part of the program to send queries, and then the result
display part of the program will be used to display the results on the GUI (both of these areas are
discussed in a different part of this document).

When a result is selected to be viewed, the GUI will display this using a page renderer.

The Front End: Result Display System

This part of the program is responsible for displaying the results on the GUI.

Issue 1: When the user has submitted a query, how will the results be displayed?

Option 1.1: Display the results in a list (so that it would look similar to a basic google
search).

Pros Cons

This would be simple for us to program (in
comparison with other options).

Hard to show the clustering easily.

The user should find it very simple to
understand (in line with Priority 5)

It would not look as good (against
Priority 3).

It would be quicker as only text would need
to be displayed.

It would not show the relationships between
the results.

Option 1.2: Display the results as nodes shown as circles, with the nodes displayed in
groups with links according to various search parameters and relationships.

Pros Cons

This would be aesthetically pleasing (in line
with Priority 3).

The learning curve for using the program
would be larger than alternative options
(against Priority 5).

It would work better with the dragging
system used for feedback (see further down
in this document).

It will be harder to program.

It would show the relationships between the
nodes which would be nice for the user to
see.

It will be slower (against Priority 4).

It would some what reflect what actually is
going on behind the scenes.

It may not be that easy to use with ART.

Option 1.3: Display the results in a combination of the both, with the general idea that it
will look like an fi (Iike Windows Explorer) and nodes will be folders and the folders will
contain lists of nodes/results.

Pros Cons

It would be better than just showing lists. May not be as good for browsing the results

It would be organized and categorized. Harder to program than simple lists.

Users will be familiar with the browsing
system.

The learning curve will be small (in line with
Priority 5).

Decision: Option 1.2.
With the general idea that the system will be easily adaptable to support an arbitrary number of
different views and search techniques through the use of a plug-in system. This seems like the
best way for the user to use the program, whilst getting the best user experience.

Issue 2: How should the “uninteresting” result case be processed?

Option 2.1: Remove the results from the display without remembering that result.

Pros Cons

Simple. If the search is modified, the program will
not remember that this has been displayed,
and this result may be displayed again.

Uses less memory.

Option 2.2: Put the uninteresting results into their own database, and do not bring
them up again into the display.

Pros Cons

Program will remember these uninteresting
results.

Will use a third database.

Will use more memory.

Decision: Option 2.2.
This will be used as it is important that these uninteresting results do not come back up. The cons
that come with this will be out weighed by the benefits of this feature.

Details of Design: Result Display System

This part of the program will deal with how the results will be displayed on the GUI. This will be
implemented so that a plug-in type system can be used, and the way that the results will be displayed will
be up to the user to decide on.

It will be passed the results from the communications part of the front end, and then will have to render
these on the GUI in the way that is selected.

The two initial ways that will be used will be a list form or a node display.

The node display will rely on node classes that will contain information (such as the images) for how the
nodes themselves should be displayed. The back end will have to return the results in a form that
represents the clusters.

The list display simply shows the top results that are returned by the Art search.

The Front End: Communications

Details of Design

The front end communications will rely on the protocol that are listed in the back end communications
section.

The image below shows the area of the program this is dealing with.

This part of the program will have to take the queries that are entered into the GUI, and send these to the
server. It will then have to take the results that are returned by the server, and pass these to result display
part of the front end.

Details of Design for the Front End: General

The front end will be responsible for getting and building the queries from the user and sending these to
the server, and then displaying the results that the server returns. The front end will have to be able to
communicate with the server.

“Uninteresting” result cases will be stored in a database that contains a link between query nodes and the
nodes that are the uninteresting results. When the displaying is being done the nodes that are returned
will be checked against this database and won’t be displayed if the uninteresting connections come up.

Below is a basic UML diagram for the front end [needs updating]:

The Back End System

The purpose of this section is to show the decision making process that went on in designing the back
end of the program. This is split into two sub sections, the server, and the pre processing tools.

Priorities

1 Needs to comply with use cases and requirements.

2 Needs to be able to be achieved in the time given.

3 Needs to not be overly difficult to implement.

The Back End: General

Issue 1: Should we use a client/server model or should the back end system be
rolled together as part of the front end.

Option 1.1: Incorporate the back end mechanics as part of the front end

Pros Cons

Less reliant on a network connection More complicated software requiring a
higher degree of threading.

User will need to install a large database of
information

Harder to ship updates to users.

Option 1.2: Split the system into a server/client model, where the server does all the
searching.

Pros Cons

Less complicated threading required. Reliant on a network connection.

User does not require much space on their
hard drive.

Easy to install database updates onto the
server without having to deploy them to
clients.

Clear separation between GUI and back
end system, making team development of
the two systems concurrently easier.

Decision: Option 1.2
This option seems to be the best as there only has to be one copy of wikipedia on the server,
saving a lot of space for clients. It will also be better for the client as it will not have to do the pre
processing of the wikipedia pages.

Issue 2: Should we calculate the semantic relationships on the fly dynamically, or
should we pre-process them into a database?

Option 2.1: Calculate semantic relationships on the fly dynamically from source material
such as Wikipedia and WordNet.

Pros Cons

Does not require a database system. Could be extremely slow processing all the
information.

Does not require the large amounts of
space needed to store the database.

May not be able to capture all the
relationships within an acceptable amount of
time.

Option 2.2: Calculate the semantic relationships ahead of time using our own “in-house”
tools designed for the job, and store them in a database.

Pros Cons

Easy to update the semantic relationship
calculation technology used without having
to update the rest of the software.

Reliant on a database system.

No waiting for software to compute the
relationships dynamically.

Requires a large amount of space to store
the semantic relationships.

Can analyse the source information for a
much longer period of time, and in many
passes if need be.

Gives a list of nodes (documents/words) for
which the user can use to seed the query.

Decision: Option 2.2
This should speed up the process of performing a search quite dramatically. The links that are
created should be able to be more complex due to having more time to process the information.

Issue 3: In what format should we store the semantic relationship information,
given that we are pre-computing it ahead of time?

Option 3.1: Use GraphXML

Pros Cons

A standard format for storing graph
structures, which can be read from other
applications.

Would be extremely slow processing all the
information. Would have to scan the entire
file.

Easy to parse XML files. File will be very large; slow to read all.

Simple structure.

Option 3.2: Use a SQLite database

Pros Cons

Some of the Power of SQL but without
relying on an SQL server which is external
to the software.

Does not support all of the functionality of a
enterprise grade SQL server.

Indexed records means fast lookup times
within the database.

Possible issues with thread/process
concurrency. SQLite does not appear to
have good locking mechanics to protect
against multiple processes modifying the
database.

Option 3.3: Use a MySQL database.

Pros Cons

More powerful SQL functionality than SQLite Requires an external SQL server.

Fast lookup times

No concurrency issues which cannot be
easily solved using mechanics provided by
MySQL.

Decision: Option 3.3
This is because it will work the best for what we are trying to achieve. It has the potential to be
more flexible.

Details of Design for the Back End: Server

For the back end, Art will perform a crucial rule in being used to link nodes and returning results based on
these links. The server will rely on databases being built for it, and will have to be able to communicate
with the client.

The following shows a diagram that illustrates how the server will interact with the client and the part of
the program that will actually build the results [diagram needs to be updated; it is incorrect].

The following shows a UML diagram for the part of the program that will build the results using the
databases that are created from elsewhere in the program.

This page shows the protocols that will be used with the communications parts of the programs.

Client/Server Protocol – General

Code Description

1XX Client commands

2XX Server responses

3XX Misc. commands

4XX Error commands

Client/Server Protocol – Client commands

Code Format Description Example Valid Responses

100 100 <Type>\<...> Searches for nodes 100 Wikipedia\com 200, 300, 301

101 101 [<NodeKey>\<Weight>]+ Preforms a query 101 19456\1.0 23567\0.0 302, 400

102 102 NEXT Request for next query result 102 NEXT 300, 301

103 103 “Name” [<NodeKey>\<Weight>]+ Save a query. 103 “Fluffy Cats” 19456\1.0 23567\0.0 302, 401

Client/Server Protocol – Server responses

Code Format Description Example Valid Responses

200 200 <# results> Begin list of nodes 200 73

Client/Server Protocol – Misc.
Code Format Description Example Valid Responses

300 300 <Key>\<Type>\<Title> Specifies a node 300 19456\Wikipedia\Short_Haired

301 301 DONE Last operation is complete 301 DONE

302 302 OK Last operation is accepted

Client/Server Protocol – Errors
Code Format Description Example Valid Responses

400 400 <Key> Specifies a node does not exist 300 19456 N/A

401 401 <Name> Name specified is used 401 “Fluffy Cats” N/A

410 410 <Peers version> Client/Server version incompat. 410 WSS08.8C Disconnect

411 411 Last command was invalid 411 N/A

The Back End: Pre Processing Tools

For the database builder there will be a JWPL Parser and Jaws wrappers for getting access to Wikipedia
and WordNet respectively. These will help to build the databases that contain all the semantic
relationships.

There will be two databases, one table being the node table which will contain:
- primary key
- type of node
- title
- access date
- creation date

The other being the link table which will contain:
- primary key
- node 1
- node 2
- weight of link

For words, links will be created by looking for synonyms and other words that are related. This can be
done using Jaws.

For wikipedia, links will be created by examining the outgoing links, the incoming links, and the content of
the articles.

Details of Design for the Back End: Pre Processing Tools

The following diagram shows a fairly basic diagram for the part of the program that will build the
databases that will be used for constructing the results from.

Details of Design: General

The basic model of our program will be a Client-Server model. This will allow the program
to be split up into several key areas. These are the front end (GUI) as one area, the back
end, and the database builder. As shown in the UML diagram blow.

