
Contents

1 Overview 3

2 Pipeline 5
2.1 General Description . 5
2.2 Pipeline Modules . 5
2.3 Pipeline Module Interface (IPipelineModule) 5

2.3.1 void setData(Object) . 6
2.3.2 Object run() . 7
2.3.3 Object run(Object) . 7
2.3.4 void setReporter(IReporter) 7
2.3.5 Object getData() . 7
2.3.6 Object getResult() . 7
2.3.7 void setOptions(Object) 7

2.4 Status Reporter Interface (IReporter) 7
2.4.1 void setStatus(String) . 8
2.4.2 void setProgress(int) . 8

3 Preprocessing 9
3.1 Preprocessing Modules . 9

3.1.1 Image Loading . 9
3.1.2 Noise Reduction . 10
3.1.3 Black and White Conversion 10

4 Image segmentation 11
4.1 Data Types . 11

4.1.1 ImageSegment . 11
4.1.2 SegmentLayout . 11

4.2 Layout Detection . 11
4.3 User Verification . 12
4.4 Image Splicing . 12

5 Processing 13
5.1 Training . 13
5.2 WEKA integration . 13
5.3 Processing Algorithms . 13

1

2 CONTENTS

6 User Interface 15
6.1 Main GUI . 15
6.2 Training GUI . 15
6.3 Testing GUI . 15

7 Data store 17
7.1 Stored Data . 17

7.1.1 ID . 17
7.2 Storage . 18
7.3 DataStore . 18

7.3.1 Loading . 18
7.3.2 Saving . 18
7.3.3 Interface IDataStore . 18

7.4 DataItem . 20
7.4.1 Loading . 20
7.4.2 Saving . 20
7.4.3 Access to Data . 20
7.4.4 Interface IDataItem . 20

8 Output 23
8.1 Logging . 23

8.1.1 Severity . 23
8.1.2 ILogger . 23

8.2 Program Output . 25
8.2.1 Training . 25
8.2.2 Normal Mode . 25
8.2.3 Testing Mode . 25

Chapter 1

Overview

ChiroGraphum is a framework and suite of tools for writer-dependent hand-
writing recognition. It will provide facilities for the developers to experiment
with algorithms, as well as an interface for the user to apply combinations of
algorithms to recognise their handwriting. It will use a pipeline architecture,
and collections of feature detectors and classification algorithms.

3

4 CHAPTER 1. OVERVIEW

Chapter 2

Pipeline

2.1 General Description

A Pipeline is a list of modules. The pipeline will be given data which will be
passed through associated pipeline modules. The result of the final pipeline
modules execution will be passed out of the pipeline as the pipelines overall
result.

Within the pipeline, the result of one modules execution will be passed as
the input data for the next module.

2.2 Pipeline Modules

A pipeline module is a unit of work done in a pipeline. All pipeline modules
must implement the IPipelineModule interface.

A Pipeline Module will be passed input data in the form of an Object. It is
the modules responsibility to ensure that the Object can be converted to what
it requires.

A module may also be passed a second Object to be used as its configuration
settings. Like with input data, it is the responsibility of the module to make
sense of this object.

2.3 Pipeline Module Interface (IPipelineMod-
ule)

The IPipelineModule interface is to be implemented by all classes will be used
as a module in a pipeline.

1 package comp314 . i n t e r f a c e s ;
2
3 /∗∗
4 ∗
5 ∗ @author danie lbuchanan
6 ∗
7 ∗/

5

6 CHAPTER 2. PIPELINE

8 public interface IPipe l ineModule {
9 /∗∗

10 ∗
11 ∗ @param data
12 ∗/
13 void setData (IData data) ;
14
15 /∗∗
16 ∗
17 ∗ @return IData
18 ∗/
19 IData run () ;
20
21 /∗∗
22 ∗
23 ∗ @param data
24 ∗ @return IData
25 ∗/
26 IData run (IData data) ;
27
28 /∗∗
29 ∗
30 ∗ @param repo r t e r
31 ∗/
32 void s e tRepor te r (IReporter r e p o r t e r) ;
33
34 /∗∗
35 ∗
36 ∗ @return IData
37 ∗/
38 IData getData () ;
39
40 /∗∗
41 ∗
42 ∗ @return IData
43 ∗/
44 IData getResu l t () ;
45
46 /∗∗
47 ∗
48 ∗ @param opt ions
49 ∗/
50 void setOpt ions (IData opt ions) ;
51 }

2.3.1 void setData(Object)

This method sets the input data for the pipeline module. It takes a single object
to be used as data. The module will convert this to what ever data type it is

2.4. STATUS REPORTER INTERFACE (IREPORTER) 7

designed to operate on. Should it be given incorrect data type it will thrown an
exception.

Every time this method is called it will change the previously set data object
to the one specified.

2.3.2 Object run()

This method causes the module to perform its task and then return the result
as an Object.

2.3.3 Object run(Object)

Overloaded method which combines the functionality of the run() method and
the setData(Object) method.

2.3.4 void setReporter(IReporter)

Sets a class which implements a status reporting function. This is used by the
module to report status information (task progress, etc).

If the reporter is null it will not report anything.

2.3.5 Object getData()

Returns the data object set with either run(Object) or setData(Object) meth-
ods.

2.3.6 Object getResult()

Returns the result of running either run() or run(Object). It can only be called
after one of the two methods has completed execution. If called before then
it will return null. If called after execution it will return the same value as
returned by run() or run(Object)

2.3.7 void setOptions(Object)

Sets options for the modules options. The object parameter is to be interpreted
by the module - its content is not specified by this specification.

2.4 Status Reporter Interface (IReporter)

The IReporter interface is used to report status and progress information about
a modules execution.

1 package comp314 . i n t e r f a c e s ;
2
3 /∗∗
4 ∗
5 ∗ @author danie lbuchanan (r ep l a c e wi th whoever a c t u a l l y

c rea t ed t h i s)
6 ∗

8 CHAPTER 2. PIPELINE

7 ∗/
8 public interface IReporter {
9 /∗∗

10 ∗
11 ∗ @param s t a t u s
12 ∗/
13 void s e t S t a t u s (S t r ing s t a t u s) ;
14
15 /∗∗
16 ∗
17 ∗ @param progre s s
18 ∗/
19 void s e t P r o g r e s s (int prog r e s s) ;
20 }

2.4.1 void setStatus(String)

This method sets a status message. Possible uses include logging.

2.4.2 void setProgress(int)

This method is used to set the progress of the modules execution. Possible uses
include driving a progress bar.

Chapter 3

Preprocessing

The softwares input image will be passed through a series of (some optional)
preprocessing modules. The pipeline will be started off with the input images
filename. This will be passed through image loading modules before being
passed through any optional extra preprocessing modules.

3.1 Preprocessing Modules

3.1.1 Image Loading

This is a required module which will be at the start of the pre-processing
pipeline. It takes a filename string as input and passes out the loaded image file
in bitmap format.

Reading File

Possible options for this include:

1. Reading the file entirely into memory at the beginning before any opera-
tions are attempted.

2. Reading the file into memory as required for each read, i.e. memory
mapped IO.

The option that will be used however depends on how the higher level image
classes work, they may require the image to be loaded into memory entirely
befire processing can occur, if this is the case the amount of memory used could
become an issue.

Format Conversion

The file once loaded into memory should be converted into a format which the
program is able to manipulate or work with easily, this could be for example a
simple black and white bitmap.

The image file should be in one of the following formats:

1. JPEG format (jpg).

9

10 CHAPTER 3. PREPROCESSING

2. Graphics Interchange Format (gif).

3. Tagged Image File Format (tiff).

The file format converter should be able to detect what format the input
image is in, and covert it to an intermediary format such as BMP and the
perform the conversion to whatever the internal image format is.

This should all be accomplished without modification of the original file.

3.1.2 Noise Reduction

This optional module will take an input bitmap and return a noise-reduced
bitmap. It should check what type of noise is affecting the input image and
then choose a filter such as Median which removes the noise and returns the
noise reduced image. Noise types could include:

1. Salt & pepper - Pixels in the image that are very different in colour or
intensity to the surrounding pixels

2. Gaussian Noise - each pixel will be changed by a small amount from its
original pixel value

Median Filter

Median filter considers each pixel in the image. For each pixel it sorts the
neighbouring pixels in order based on their intensity. It then replaces the original
value of the pixel with the median value from the list.

3.1.3 Black and White Conversion

This module will take in a color image (in memory) and convert it into a black
and white binary image, which is able to be used internally. (AR to expand
this)

Chapter 4

Image segmentation

In order to easily provide the user with the option to review the document layout
automatically detected by the software, image segmentation is done in multiple
stages. These consist of layout detection, user verification and splicing.

4.1 Data Types

4.1.1 ImageSegment

This data type stores information about an image segment. These fields include:

1. Co-ordinate for the top left corner of the segment (required)

2. Co-ordinate for the bottom right corner of the segment (required)

3. The bitmap image segment taken from the co-ordinates (optional)

Instances of the ImageSegment class will normally be produced by the Layout
Detection stage of image segmentation. The bitmap field will be left as null until
the Image Splicing segmentation stage.

4.1.2 SegmentLayout

This data type stores ImageSegments in the order they appear in the Source
Image. It divides ImageSegments into lines in the order they appear in.

4.2 Layout Detection

This stages purpose is to detect each word in the input image. Its input consists
of only the Source Image and it outputs a SegmentLayout. The SegmentLayout
is an ordered list of lines detected in the Source Image. Each line is an ordered
list of the detected words, each represented as an ImageSegment.

The ImageSegment instances produced by this stage will contain nothing
more than the two co-ordinates which make up the box around the represented
image segment. These co-ordinates may be adjusted in the User-verification
stage before being used to splice the image in the Image Splicing stage.

11

12 CHAPTER 4. IMAGE SEGMENTATION

We will use a custom algorithm (which uses the black-and-white version of
the image):

1. To segment into lines:

(a) Scan rows of pixels until you find a row with some pixels on.

(b) Keep scanning until you find an empty row.

(c) Everything between those is one line.

2. To segment those lines into words:

(a) Within a line, scan vertical columns of pixels until you find a column
with some pixels.

(b) Keep scanning until you find an empty column.

(c) scan for another column with pixels in it.

(d) If the distance between those is above some threshold, interpret it as
a space.

Try making the threshold proportional to the typical line height, to adjust
for writing size.

4.3 User Verification

An optional stage, this allows the user to correct any layout detection errors
from the first stage. It is to take the Source image and the previously generated
SegmentLayout as its input. As output it will return the input SegmentLayout
which may or may not have been modified by the user.

4.4 Image Splicing

This stage takes the same input as the User Verification stage. That is, the
Source image and the SegmentLayout (either modified by the User Verification
stage or straight from the Layout Detection stage). Its output is the input
SegmentLayout with the segment bitmaps filled in by splicing the image using
the specified co-ordinates.

Chapter 5

Processing

5.1 Training

We will need to build a collection of training data and test data. This will make
it possible to automatically test the accuracy of new or modified algorithms.
For word-by-word methods, the training data and test data will need to include
many of the same words.

It will be necessary to be able to store pipeline results. Especially results
that receive manual feedback, so that this wouldn’t be necessary every time.

It should be possible to save pipelines and sets of pipelines as well.
It may be much more convenient to be able to store internal classifier data

(where applicable). Brute-force methods will still need to store the features
detected during training.

5.2 WEKA integration

There will be pipeline modules that provide wrappers to WEKA classification
algorithms. These modules will automatically develop a suitable set of WEKA
Attributes based on features detected earlier in the pipeline.

There could be a module to provide a wrapper for WEKA clustering algo-
rithms. This would detect similarities between instances; cluster membership
could then be regarded as like another feature and be sent to the classifiers.

We may find the WEKA GenericObjectEditor useful for configuring pipeline
modules. This provides an automatically-generated dialog box with a specified
set of options.

5.3 Processing Algorithms

All algorithms take in a binary bitmap image, and produce a list of word guesses
(Strings), as well as a ranking. (Could make use of a Tuple class here).

Require a module to be put at the end of the pipeline to pull together all
results and output in a set format.

Modules to recognise to several different features, making use of differing
learning algorithms.

13

14 CHAPTER 5. PROCESSING

How to move data around? If identifying individual features, pass around
list of found features.

The initial processing algorithms should be:

1. The area rectangles around the outside of a word

2. nearly horizontal or vertical lines, and crossing lines

3. dots (such as in i j . ? !)

There should also be a module (or possibly a facility, usable by several
modules) that keeps track of word frequency. This would include an initial
database of word frequencies, and be able to update word frequency information
based on the user’s input.

Also, there could be slightly normalized measures of the bitmap width of the
word, which is related to the number of characters.

There could be a normalized measure of word height, but it would be more
appropriate to discover which vertical sections the word has. All words have
the middle section, if they have letters that have lines that go up or down then
they have those sections. For example, ”panda” - the ’p’ is in the middle and
lower section, and the ’d’ is in the middle and higher section. Also, most capital
letters include the top section. This measure could be discovered based on
simply whether the word has pixels near the top or bottom of the line, or by
detecting the actual parts of those letters that take more than one section.

Chapter 6

User Interface

The GUI will evolve over the course of the application development, and we will
add things as we require them, this is merely a base specification.

6.1 Main GUI

The main GUI should allow the user to select the input image (preferably a
page of handwritten text) and then allow the user to select the algorithms that
are run. Once this is done the user should be able to select if they would like to
be allow to change the image segment boundaries, as mentioned in the Image
Segmentation chapter. This should allow the user to change the boundaries for
each word visually, by modifying the box surrounding the word. In the case
of multiple input images, this should be done before running the processing
algorithms. The use should also be presented with feedback while the program
is processing the handwriting, this is done through the use of classes which
implement the IReporter class.

6.2 Training GUI

The user can select the input image(s), and text file(s) containing the same text
as in the image(s). The user would select one or more pipelines, which would
be run on this data; processing algorithms would run normally, and classifiers
would run their training algorithms on the data, with the text files providing
the classes for classification.

There should be a GUI section for training, which allows specifying multiple
separate pipelines for comparison.

6.3 Testing GUI

The testing GUI should allow the user to specify an image and a text file like
with training. The user would be able to specify multiple pipelines (algorithm
congurations). It should be possible to save and load pipelines and groups of
pipelines. The testing system should automatically re-run training (or parts

15

16 CHAPTER 6. USER INTERFACE

of training) when algorithms have been updated or added. The appropriate
sequence would be this:

1. The user specifies multiple pipelines

2. The user specifies the image and text file

3. The user is allowed to correct the image segmentation

4. All of the algorithms combinations are run, separately, with output about
progress (and preferably also information about which features they de-
tected etc, displayed visually if appropriate).

5. The program displays an accuracy comparison for each pipeline

Chapter 7

Data store

The data store stores information about known words. This includes sample
images, features detected, word frequency information, etc. The DataStore
interface will attempt to abstract away how everything is actually stored so that
the initial filesystem-based storage can be replaced at a later date by something
like serialization should it be required.

7.1 Stored Data

An item of data (DataItem class) in the Data Store will contain the following:

1. A unique ID (a number)

2. Zero or more sample images

3. Data such as features detected, etc, in string form.

7.1.1 ID

The Unique ID will just be a number starting at 0. Gaps will occur if items are
removed from the data store. Any such gaps must be handled in such a way
that iteration using something like a for loop would not encounter them. How
this is done is up to the implementation.

One such way would be to fill gaps with “blank” DataItems which would
also be in an internal list of unallocated items. When a new item is added to
the data store rather than creating the DataItem at max + 1 it would just pick
the first one from the list of gaps.

This way a remove would generate a gap and an add would remove it:
Items: 0 1 2 3 4
Start allocated allocated allocated allocated allocated
Remove Item 2 allocated allocated unallocated allocated allocated
Remove item 0 unallocated allocated unallocated allocated allocated
Add new item allocated allocated unallocated allocated allocated
Add new item allocated allocated allocated allocated allocated

17

18 CHAPTER 7. DATA STORE

7.2 Storage

The initial implementation of the Data Store will use a directory-based layout
to allow easy debugging during initial development. In this initial storage design
everything will be sorted into subdirectories under one Data Store “repository”
directory. Each directory under the repository directory will represent one data
item:

1. The name of the subdirectory would be the items unique ID/number

2. The sample images would be stored as files inside this directory with a
name like “sample-000.png”

3. Plain Text data would go in a file like “data.ini” which would have a
key-value structure.

The implementation could also store anything it needs to remember inside its
own data files directly inside the repository directory. How this is done (if it is
done at all) is up to the implementation.

At a later date this could be serialized into a single file inside the repository
directory instead.

7.3 DataStore

Access to DataItems would be through the DataStore class. The DataStore class
would essentially be nothing more than a wrapper around a list of DataItems.
Items would be added/retrieved/removed by unique ID just as with any other
list.

7.3.1 Loading

When instructed to load the DataStore would search for saved data items. For
each data item it finds it would create an instance of DataItem, instruct it to
load the saved data item and then add it to its internal list. This means that
it would really be DataItem that is doing most of the work - DataStores load
function should be quite easy to implement

7.3.2 Saving

A save method is provided. What this does (if anything) is up to the implemen-
tation. The filesystem based data storage method discussed earlier is unlikely
to require this but any future serialization based implementations may require
it.

7.3.3 Interface IDataStore

1 package comp314 . i n t e r f a c e s ;
2
3 /∗∗ Data Store I n t e r f a c e .
4 ∗
5 ∗ @author David Goodwin

7.3. DATASTORE 19

6 ∗/
7 public interface IDataStore {
8
9 /∗∗ This l oads the DataStore from a s p e c i f i e d

r e p o s i t o r y .
10 ∗ @param l o c a t i o n The l o c a t i o n o f the DataStore
11 ∗ r e p o s i t o r y
12 ∗/
13 void load (St r ing l o c a t i o n) ;
14
15 /∗∗ This saves anyth ing r equ i r ed . Up to the
16 ∗ implementat ion .
17 ∗
18 ∗/
19 void save () ;
20
21 /∗∗ Gets the item with the s p e c i f i e d number . Gaps
22 ∗ are to be handled by implementat ion in a
23 ∗ t ransparen t way .
24 ∗ @param number The item number to ge t
25 ∗ @return The s p e c i f i e d item
26 ∗/
27 IDataItem getItem (int number) ;
28
29 /∗∗ Adds the s p e c i f i e d DataItem to the DataStore .
30 ∗ This shou ld f i l l t he f i r s t a v a i l a b l e gap i f the
31 ∗ implementat ion a l l ows gaps . Otherwise i t shou ld
32 ∗ be added at count+1
33 ∗ @param theItem the Item to add
34 ∗ @throws Except ion
35 ∗/
36 void addItem (IDataItem theItem) throws Exception ;
37
38 /∗∗ Removes the s p e c i f i e d item from the DataStore .
39 ∗ This may e i t h e r c r ea t e a gap or cause every
40 ∗ i tem a f t e r the s p e c i f i e d number to be
41 ∗ renumbered . This i s up to the implementat ion .
42 ∗ @param number The item number to remove
43 ∗/
44 void removeItem (int number) ;
45
46 /∗∗ Returns the number o f DataItems in the
47 ∗ r e p o s i t o r y .
48 ∗ @return The number o f i tems in the DataStore .
49 ∗/
50 int getItemCount () ;
51 }

20 CHAPTER 7. DATA STORE

7.4 DataItem

The DataItem class is the container for an item of data that is stored in the
Data Store. It is in charge of providing access to that item of data including
loading and saving it.

7.4.1 Loading

The DataItem is to be given a location from which to load itself. What exactly
is done when this is called is up to the implementation but it is expected that
once the call has been completed the DataStore should be ready for use. In the
previously discussed filesystem implementation it would scan its directory for
images to obtain a count and make the data file ready for use.

7.4.2 Saving

What is done when this is called is entirely up to the implementation. Once
this call has been completed it is expected that the instance could be deleted
without any loss of information.

7.4.3 Access to Data

Sample images are to be accessed by number using get, add and remove methods.
Plain text data are to be accessed by key using get/set/remove methods.

7.4.4 Interface IDataItem

1 package comp314 . i n t e r f a c e s ;
2
3 import java . u t i l . L i s t ;
4
5 /∗∗ Data Store I n t e r f a c e .
6 ∗
7 ∗ @author David Goodwin
8 ∗/
9 public interface IDataItem {

10 /∗∗ Loads the DataItem from the s p e c i f i e d l o c a t i o n .
11 ∗ @param l o c a t i o n The l o c a t i o n to load from
12 ∗/
13 void load (St r ing l o c a t i o n) ;
14
15 /∗∗ Saves the DataItem . The l o c a t i o n i s ob ta ined
16 ∗ from the r e s u l t o f a prev ious save (S t r ing) or
17 ∗ l oad (S t r ing) opera t ion .
18 ∗/
19 void save () ;
20
21 /∗∗ Saves the DataItem to the s p e c i f i e d l o c a t i o n .
22 ∗ @param l o c a t i o n The l o c a t i o n to save to .
23 ∗/

7.4. DATAITEM 21

24 void save (S t r ing l o c a t i o n) ;
25
26 /∗∗ Gets the s p e c i f i e d sample image .
27 ∗ @param number The number o f the sample image .
28 ∗ @return The reque s t ed sample image
29 ∗/
30 IData getImage (int number) ;
31
32 /∗∗ Adds a sample image .
33 ∗ @param theImage The sample image to add
34 ∗/
35 void addImage (IData theImage) ;
36
37 /∗∗ Removes the s p e c i f i e d image .
38 ∗ @param number The image to remove
39 ∗/
40 void removeImage (int number) ;
41
42 /∗∗ Returns the number o f sample images .
43 ∗ @return The number o f sample images
44 ∗/
45 int getImageCount () ;
46
47 /∗∗ Gets a s t o r ed va lue . Key i s the key under
48 ∗ which the data was p r e v i o u s l y saved . The
49 ∗ d e f a u l t va lue i s what i s re turned i f the key
50 ∗ does not e x i s t . This means t ha t the keys e x i s t an c e
51 ∗ does not need to be checked f i r s t .
52 ∗ @param key The i tems key . Keys are in a t r e e . For
53 ∗ example , ” f e a t u r e s / featureA” or ”ASCIIvalue”
54 ∗ @param sDefau l tVa lue What to re turn i f the key
55 ∗ doesnt e x i s t .
56 ∗ @return The va lue f o r the s p e c i f i e d key i f i t
57 ∗ e x i s t s , o the rw i s e d e f a u l t v a l u e .
58 ∗/
59 St r ing getValue (S t r ing key , S t r ing sDefau ltValue) ;
60
61 /∗∗ Stores the s p e c i f i e d va lue under the s p e c i f i e d
62 ∗ key .
63 ∗ @param key The key to save the va lue under
64 ∗ @param va lue The va lue to s t o r e
65 ∗/
66 void setValue (S t r ing key , S t r ing value) ;
67
68 /∗∗ Removes the s p e c i f i e d key .
69 ∗ @param key The key to remove .
70 ∗/
71 void removeKey (St r ing key) ;
72
73 /∗∗ Returns a l i s t o f a l l keys under the s p e c i f i e d

22 CHAPTER 7. DATA STORE

74 ∗ key .
75 ∗ @param key The s p e c i f i e d key . ”” i s the roo t key .
76 ∗ @return The l i s t o f keys under the s p e c i f i e d key .
77 ∗/
78 List<Str ing> l i s t K e y s (S t r ing key) ;
79 }

Value Keys

Keys for the setValue/getValue/removeKey/listKeys methods are in a tree form.
For the string “key1/key2”, “key2” is a child node of “key1”. listKeys(“key1”)
should return the list including “key2”. listKeys(“”) should return the list
including “key1”

Chapter 8

Output

8.1 Logging

The logging should be a static class which is available to all modules and classes,
and provides the ability to write to the log file, which should be opened upon
program execution and closed upon termination.

8.1.1 Severity

Each log entry will contain the entry severity at the start. The writeLine(String)
function uses the “Notice” severity where as the writeLine(Severity,String) al-
lows you to specify the severity.

Available Severity levels

1. Notice - Just a general notice.

2. Debug - A debug message - There shouldnt be too many of these.

3. Warning - A warning that the program state is not quite as expected and
something may go wrong later because of it.

4. Error - Something has gone wrong but recovery may be possbile. The
program will attempt to continue but a Failure may later occur.

5. Failure - An unrecoverable error has occured. This message should proba-
bly include a stack trace and any program state information. After issuing
one of these the program should try to terminate nicely.

8.1.2 ILogger

1 package comp314 . i n t e r f a c e s ;
2
3 import java . i o . IOException ;
4
5 /∗∗ Logging i n t e r f a c e .
6 ∗

23

24 CHAPTER 8. OUTPUT

7 ∗ @author Danie l Buchanan , David Goodwin
8 ∗
9 ∗/

10 public interface ILogger {
11
12 public enum Seve r i t y {Notice , Debug , Warning , Error ,

Fa i l u r e } ;
13 /∗∗ Opens the l o g f i l e f o r input .
14 ∗ @param path The output f i l e f o r l o g g i n g .
15 ∗/
16 void open (St r ing f i l ename) throws IOException ,

Exception ;
17
18 /∗∗ Closes any open l o g f i l e s .
19 ∗/
20 void c l o s e () throws IOException , Exception ;
21
22 /∗∗ Writes a message to the l o g f i l e us ing the Not ice

s e v e r i t y .
23 ∗ @param message The message to wr i t e to the l o g f i l e

.
24 ∗/
25 void wr i teL ine (S t r ing message) ;
26
27 /∗∗ Writes an entry to the l o g f i l e us ing the

s p e c i f i e d s e v e r i t y . This can
28 ∗ throw excep t i on s
29 ∗ @param sv Log entry s e v e r i t y
30 ∗ @param message Log message
31 ∗/
32 void writeLineE (Seve r i t y sv , S t r ing message) throws

Exception ;
33
34 void wr i teL ine (Seve r i t y sv , S t r ing message) ;
35
36 /∗∗ Returns the S t r ing r ep r e s en t a t i on o f the

s p e c i f i e d S e v e r i t y Leve l . This
37 ∗ i s the S t r ing r ep r e s en t a t i on used by the l o g

output .
38 ∗ @param sv The s e v e r i t y l e v e l
39 ∗ @return The s t r i n g r ep r e s en t a t i on o f the g iven

Se v e r i t y Leve l .
40 ∗/
41 St r ing svToStr ing (Seve r i t y sv) ;
42 }

8.2. PROGRAM OUTPUT 25

8.2 Program Output

8.2.1 Training

Will output statistics to the log file on each run.

8.2.2 Normal Mode

Will output a text file containing the recognised contents of the input, wherever
the user decides to put it.

8.2.3 Testing Mode

Will output statistics etc to the log file on each run.

	Overview
	Pipeline
	General Description
	Pipeline Modules
	Pipeline Module Interface (IPipelineModule)
	void setData(Object)
	Object run()
	Object run(Object)
	void setReporter(IReporter)
	Object getData()
	Object getResult()
	void setOptions(Object)

	Status Reporter Interface (IReporter)
	void setStatus(String)
	void setProgress(int)

	Preprocessing
	Preprocessing Modules
	Image Loading
	Noise Reduction
	Black and White Conversion

	Image segmentation
	Data Types
	ImageSegment
	SegmentLayout

	Layout Detection
	User Verification
	Image Splicing

	Processing
	Training
	WEKA integration
	Processing Algorithms

	User Interface
	Main GUI
	Training GUI
	Testing GUI

	Data store
	Stored Data
	ID

	Storage
	DataStore
	Loading
	Saving
	Interface IDataStore

	DataItem
	Loading
	Saving
	Access to Data
	Interface IDataItem

	Output
	Logging
	Severity
	ILogger

	Program Output
	Training
	Normal Mode
	Testing Mode

