Design and
Architecture

Report on the design and architecture of the sub-systems defined in the requirements
document.

Table of Contents

Overview
Database System
GUI Systems
Data Classes
Web System
Output

Help System

NoukwWwNE

Page 1 of 22

1. Overview

Project Coyote consists of sex different subsystems: Database System, GUI Systems, Data
Classes, Web System, Output and the Help System. A general overview can be seen below.

Help System
v
N N
GUI Systems " Output System
J N
A
v
N e
Data Classes > Web System
J N

A 4

Database System

Page 2 of 22

2. Database System

CIPROBECT OOMOTE PHYSICAL DATA MODELCC

Page 3 of 22

PDM description

Physical Data Model representing the relationships between key entities: People, Competitions and
Events. Each Event belongs to a Competition, has Event Details and an Event Type. An Event Type
contains an Event code specifying a Track, Field, or Run entity. Track and Handicap entities have
foreign keys Lane Allocation and Handicap Allocation respectively, storing the person id and their
corresponding lane number or time.

Page 4 of 22

DAOD Factory

DriverMangerDAOFactory

Dynamically creates a connection to the
database by a database driver or .

- url: string

- username: string
- passwaord: string

MembershipDAO (final)

Membership

- BAL_LIST_BY_PERSOM_ID: stting
- BAL_FIND_BY_ID: string

- BAL_INSERT: string

- 8AL_UPDATE: string

- 8QL_DELETE: stting

- 8AL_EXIST_ID: string

- daoFactory: DACF actary

- personlD; int

- anzMemhber

- whophember: hool
- clubMember: hool

+ list{persanlD):List=Memhbership=

+ find(id:int):Membership

+ createimembership:Membershiphvoid*
+ updateimembership:Membershipvoid*®
+ save{membership:Membershipivaid*®

+ deleteimembership:Membershiphvoid*

+ existPersonlDimembership:int;:hoal

+ lembershipDAOidaoFacton:DaoF actany)

i
H

+ getPersanlDd:int

+ getANZMEMBER O haal

+ getBOPMemberd:hoaol

+ getClubiemberdhool

+ getANZMemberisMemberboal)void*
+ setWBOPMemberisMemberboalyvoid*
+ setCLUBMember(isMemberhool):boal
+ hashcodedint

+to5tringdstring

+ eguals{otherOhject);:hool

+ Mermbershipl
MermbershipipersoniD:boal)

+ MembershipipersonlDiboal isANZ ool isWBOP: hool,isCLUBhool)

datasource object.

DAQ Properties

+ DriverdanagerDAOF actory(url Usermame:string, password:string)

+ getConnection:Connection

DAOFactory {abstract}

DACProperties

lv

Loads in database driver properties

DataSourceDAOFactory

or datasource object properties

- dataSource

—1

fram a file on initial load.

+ DataSourceDAOF actary(dataSource:DataSource)
+ getConnection(:Connection

+ getinstancedname:string): DAOF actony
+ getConnection {abstractid: Connection
+ getPersanDAOO: PersanDal

+ getEmailDAC O EmailDAD

+ getPhoneDAOO:PhoneDAD

+ getPersanDetailsDADD PersonDetails
+ gethembershipDAC O MambershipDAD

- FROPERTIES FILE
- FROPERTIES: PRCFERTIES
- specifickey: string

+ DACFroperties(specifickey)
+ getPropertykey:string, mandator:bool):string

Properties F

url

driver
usetnarne
password

DAD Utilitiy

by DADs

Contains commaon methods used

DAOU

| + prepareStaternent()
+ gsetvaluess
+ hashMDS0

+ closefvoid®

T

e
—
/ff;

Page 5 of 22

-
-
-
-

L

DAQ - Data Access Object

DAQs can list, find, insert, update
delete, exist the DTO in from the
database layer

PersonDAO (final)

DTO - Data Transfer Objects

DTOs are pure data objects used
to transfer data between the
business logic and database layer.

- SQL_LIST_ORDER_BY_ID: string
- S0OL_FIND_BY_ID: string

- BOL_IMSERT: string

- S0OL_UPDATE: string

- 5OL_DELETE: string

- S0L_EXIST_PERSOM: string

- danFactony: DAGF actory

N -
: ~ T
! ~ T
[- T
Ws o S
EmailDAD (finalp PhoneDAO (final) PersonDetailsDAQ (finaly
- 8QL_LIST_ORDER_BY_ID: string - 8QL_LIST_BY_ID: string - S0L_LIST_BY_PERSOM_ID: string

- SOL_FIND_BY_EMAIL_ADDRESS: sting
- SAL_INSERT: string

- S5QL_UPDATE: string

- SAL_DELETE: string

- SOL_EXISTS_EMAIL_ADDRESS: string

- daoFactory: DACF actory

- 5GL_FIND_BY_FHOME_MUMBER: string
- SQL_INSERT: string

- 5GL_UPDATE: string

- SaL_DELETE: string

- S0L_EXISTS_PHONE_MUMBER: string

- daoFactory: DACF actory

- SaL_FIND_BY_ID: stting
- 8QL_INSERT: string

- SGL_UPDATE: string

- 8QL_DELETE: string

- SGL_EXIST_ID: string

- daoFactory: DAOFactary

+ list(id:inf):.List=Person=

+find{icint):Persan

+ createiperson:Person)void®

+ updatefperson:Persan)void™

+ save(person:Person)void*

+ deleteiperson:Person)void™

+ existPersonfirstName:string, surname:string, bithdate:string):bool
+ PersonDAQ(danFactor:DACFactary)

+ list{personiDiint:List=Email=

+ find(id:inf;:Email

+ createlernail:Email)void™

+ updatetemail:Ermailvoid®

+ savelemail:Emailvoid=

+ delete(ernail:Email):void®

+ existEmailAddressiemail:string):bool
+ EmailDAD{da0F actory: DACF acton)

+ list(nersonlD) List=Person=

+ find{id:inty:Phone

+ create(phone:Phonelvoid™

+ updateiphone:Phane)void®

+ save(phone Phone)void™

+ delete(phone:Phone)void®

+ gxistErmailPhone{phone:Phonesbhool
+ PhoneDAO{daoF actory DACF acton)

+ list{person|Diinti:List=PersonDetails=

+ find{id:inty:PersonDetails

+ create({personDetails:PersonDetails)void®
+ update(personDetails:PersonDetails)void™
+ save(personDetails:PersonDetails)void*®

+ delete(personDetails:PersonDetails):void™
+ existPersonlD{person|Ciinti:bool

+ PhoneDAO{daaF actan: DACF actang

\
5

\

j
i

—_

4

Page 6 of 22

+ equalsiotherbool
+ getSurname(:string
+ getBinthDated:string
+ getSex(:string +Em
setFirsthamedname:string)void™
setSurname(surname:string)void*
setHithDatehirthdate: string)wvoid™
setSex(sesting)void®

+ hashcoded:int

L]

+
+
+
+

+ getPersonlDoint
+ setEmailAddress(void*
+ Email{idint,emailAddress:string, personlDiint)

+ setPersoniDii
+ hashcoded:int
+ toStringQ:string
+ equalsiotherObjecty:bool

inf)void™

+ toString(:string
+ Persond
+ eguals(otherObject):bool

+ areaMumber:string

+ getPhoneMumberd:string
+ getPersonDint

+ Phone(id:int,arealumber:string phoneMumber:string, personiCyint
+ Phane(idint phoneNumber string pers onlDint)
+ Phone()

+ setArsaMumberfnurm:string)void™

+ setPhonerumberhum:stringvoid®

+ setPerson|Dd:int
+ hashcoded:int
+toString{:string

+ eqguals(otherObject;bool

aid™

- schaolYear: int

Person Email Phone PersonDetails
- id: int - id -id - personlD
- firstame: string - emailAddress: string - areaMumber: string - fees: double
- surname: string - personlD: int - phoneMumber: string - club: string
- hirthDate: string + getiDgiint - personlDy int - coachlD: int
- 58 STHing + getEmailAddress(:string + getiDi) - schaol: string

+ getPersoniD

+ getFees(udouble

+ getClubiistring

+ getCoachlDint

+ getSchool istring

+ getSchoolYeard:string

+ getFeesfersidouble)void™
+ setClubiclub:string)void*
+ getCoachiDicoach|Dintyvoid®
o

o

setSchool{schoal:string)void*
set3choalreariyearintvoid™

+ PersonDetails(
+ PersonDetails(personiDiint

+ hashcoded:int
+ toString(:string
+ egualsiotherOhject: bool

+ PersonDetails(personlDiint fees:double, anzhumberint club:string coachiDiint school:string, schooYear:int

UML diagram

Partial UML implementation representing how data is encapsulated stored and retrieved from a
database in the database layer separating business logic from database logic. Refer to yellow notes
in the UML diagram for a brief description of each class.

Page 7 of 22

3. GUI Systems

3.1 Overview

Help System

[Competitor Database

Select competitor(s)/cancel

open open close

|

Main Menu }

A
open
cancel

Competition Creator

Competition created

close

Competition chose

open 4

Import/cancel

N

A
open
cancel

open

[Competition Select

_Close / create

N
Photo Finish Interface [« Event Management |«

~

[

J L
open
Cancel/select

Results/Entries Import 1

Produce results/start lists

Output

open

Event Creator

Page 8 of 22

3.2 Design Motivation and Priorities

From the outset we decided that the GUI for our solution needed to be a main priority: it is
the major way in which the user interacts with the program, they don’t really care much
about what lies behind it. Their overall impression of the program tends to be based solely
upon the GUI and what it lets them do. Consequently, we decided that the GUI needed to be
“as simple as possible and no simpler.” This entails that it needs to be regular and intuitive,
presenting an easy learning curve. We also intend to streamline the interface, making it
workflow oriented and designed to make the most common use cases fast. The GUI for our
program presents one of our major points of difference from competing software that is
much more difficult to use

3.3 Implementation Detail

The GUI itself will be implemented in java using Swing. It will communicate directly with
the database classes to the database sub-system.

3.4 Design Choices

We came up with many different ideas during the process of choosing a UI design. Initially,
we looked at how we could best present data to the user and make it easy for them to edit
it. We came up with various combinations, typically involving tabs that allowed the user to
switch quickly between all competitions and all competitors. Within the competitions tab,
all competitions would then be displayed. The user would select a competition and the
display would show its details and events. Selecting an event would then open it in a new
window, allowing it to be edited. Menus and toolbars would feature throughout this design.

Initially, this idea seemed good. Jesse made mention that this presentation might confuse
the user slightly, with various distinctions needing to be made between the different
components of a competition, making the point that the less they need to use the program
documentation, the better. Braden also raised the objection that the user interface would
be displaying a lot of information that the user wouldn’t need at the time and thus be
chewing up space that could otherwise be used for what they were actually working on. In
addition, this wasn’t serving to make the most common use cases fast and easy.

After further analysis, we opted to make some changes. First, we decided to present a
splash screen to the user when they weren’t working on anything, helping to orient it
toward the tasks they wanted to perform. To further improve task flow, we did away with
tool bars and menus, instead choosing to use a task-oriented ribbon of grouped buttons
that updates dynamically based upon what the user is doing (similar to that employed in
current Microsoft Office products). Information that isn’t needed at the time can now be
hidden from view, improving workflow and making the program easier to use.

3.5 Design Sketches and Details

What follows are our current design sketches, showing how we intend the program to look
and a flow diagram illustrating the way major interactions change the state of the GUIL.

Page 9 of 22

3.5.1 Main Menu

What would you like to do?

The main menu presents a series of simple options to the user, prompting them to select an
action.

3.5.2 New Competition

Competition Name [|
Dates & Times
Date (DD/MM/YYYY) Start Time (HH:MM) Finish Time (HH:MM) (Optional)
[I []
(e [Steme Thnshime]
Table of Time Blocks
Event Presets

The new competition component allows users to quickly define a new competition,
including selecting preset events that it contains based upon the type of competition.

Page 10 of 22

3.5.3 Edit Existing Competition

Table of Competitions in Database

Selecting the option to edit an existing competition allows the user to filter all available
competitions to find the one they want.

3.5.4 Work on a Competition

Table of Competitors in this event

Page 11 of 22

Event Type .

<Radio buttons for each event of the selected type will go here>

Event Details
Date (DD/MM/YYYY) Start Time (HH:MM) Finish Time (HH:MM) (Optional)

|
Number of Heats /| Calculate Automatically

Participant Details
Gender () Male () Female () Both

Table of Competitors in Database List of Selected Competitors

Once a competition has been selected or created, this screen is presented. It allows the user to
quickly work on the particular events that it contains. Two modes will be presented for all of
the events: one where competitors can be entered into the event and one where the results of
the event can be entered. These modes can be switched between using a button in the ribbon
strip. The user interface will be updated accordingly when this change occurs. This mode

Page 12 of 22

change works on a per event basis rather than competition-wide. New competitors for an event
can be entered directly into the table of current competitors (an auto-complete function may
be provided). The list of events can be hidden if the user wants to increase screen space for
data entry. Clicking add an event or add competitors from database pops up a new window
internal to the program as appropriate.

3.5.5 Manage Competitors

Return to
g, prne | ||| view : Ml
Frshame ||
Search lasthame ||
Fields AgeRange| | to | More Conditions Here

Table of Competitors in Database

First Name
Last Name
Date of Birth Sex OM OF

<Additional Fields Go Here As Needed>

Selecting to add, modify, or view statistics for a competitor opens a new window internal to
the program.

Page 13 of 22

3.5.6 View Help

Selecting the help option from the main menu activates the help sub-system, leaving the
program running separately, allowing the user to continue working with the program
whilst viewing the help information. We also intend to make help available through other
means within the GUI, such as pressing the “F1” key.

Page 14 of 22

4. Data Classes

5.1 Overview

lMain entry point

GUIMainMenu]

Coyote
Competition Competitor GUICompetitor
Creator Manager Manager

Selector

A 4

Competition

GUICompetition e

Creator

~

GUICompetition
Selector

GUICompetition)

Manager

GUISaveFile
Dialog

—

CompetitorEdit

N\,

GUIOpenFile
Dialog

Camera Select

EventEdit [
Competitior

Interface

A 4 A 4

GUIStats
Viewer

A 4

GUICamera

GUISelect [GUIEventEdit]

Edit

Competitior

GUICompetitior

Note:

Means that A calls B.

Colour Key:

)

Main entry point.
Core program classes that will access the database.
Core program classes that won’t access the database.

GUI classes.

Page 15 of 22

5.2 Detailed Class Diagrams

—_—
—_—

CompetitonEditor

currentCompetition: Competition
fieldsArevalid(:hoal
createCompetition{vaid*®
commitChangesdvoid®
canceldmid®

ilel0

campetitorsFromCSY0 List=Competitor=
resultsFromCEY 0 List=Time=
statsToHTML{competitor. Competitor)void*®
stats ToCSW{competitor:Competitar)vaid*
competitorsToC S {event Event)void

Wil be implermented to link with the
Lynx camera operating software.
The details will be researched and

implemented near the end of the project e

- mll|\

CompetitorEditor

createMode: bool
currentCompetitor: Competitor

fieldsAretalid{:hool
setvaluesivalues:undefined)void*
createCompetitarf)
cammitChanges(

cancel()

createmode: bool [

so— —— - addCompetitorsFromDBievent Eventyvoid

Coyote

showHelp{vaoid*
— = selectCompetition{void®
newCompetitiond void*

Main class of Project : Coyote
Aids the user in creating or selecti
a competition to manage

stanCompetitoranageryvoid® [

Te—
T
- —
—
b s
CompetitionManager CompetitionSelector
harne: string allCompetitions: List=Competition=
= date: Date searchResults: List=Competition=

editCompievent: Eventiwvaid®
printAllvoid®

outputc SV G void®
autputHTML:vaid* FEa
CompetitionManagerihame:string)void®

setSearchCriterialcriteria:Criterianywoid
getSearchResults:List=Competition=

stantCompetitionManager{competition:Competition)void*

returnToMainkenudvoid*
getCompetitionsFromDBd:List=Competition=

addhewEvent{event.Eventyvoid®
deleteEventievent Event)void*
printEvent{event:Eventyvoid*
inserthlewCompetitor(event: Eventyvoid®

allocatelanesieventEventy void*
allocateHeats (event:Eventyvoid* —

enterResults{ovoid®
imporResultsCameraieventEvent)void*
imponResultsCEVievent Eventivaid*
returnToMe nu dovaid®
saveEventsAsFresetdvoid®

|
|
;
i

calculateHandicaps(event Eventivaid® "7 2 currentCompetitor: Competitor

EventEditor

createfade: boal
currentEvent: Event

fieldsArevalid(:hool
setvaluesivalues undefined)void
createEvent(void*
commitChanges(void®
cancelvoid®
EventEditarievent.Event)void*

harme: String

ageGroupsAllowed: List=string=
—— — = fime:Time
maxEntries: int

getiMamer

getmaxEntries{:int
getTime(Time
getAgeGroupsd:List=string=

FieldEvent

discipline: string

CompetitorManager

allCompetitors: List=Competitor=
tahleltems: List=Competitar=

getDiscipline(:string

Competitor
id: int

addCompetitor] void*
removeCompetitoricompetitor Competitor)void*
editCompetitor{competitor: Competitor) vaid*
printdvoid®
wiewStats{competitor: Competitor):w
statsToHTML{competitor. Competitor)void®
getSearchResults{:List=Competitor=
sorTablelcriteria: Criterian)void™®
setSearchCriterialcriteria: Criterianyoid®
returnTomMenu(void®

firstharme: string
lasthlame: string
hirthdate: Date

™ 2 sex string
getFirsthlamed)
getlastamed:string
getBirthdate(:Date
getSex(istring

Y

CompetitorSelector

allCompetitors: List=Competitar=
searchResults: List=Competitar=
selectedCompetitors: List=Campetitars=
current: Event

setSearchCriteriaferiteria: Criterian)void®
getSearchResults{:List=Competitar=
selectCompetitar{competitor. Competitar)void®
deselectCompetitor{competitor.Competitor)void*
canfirmSelection{void®

cancel{void*

RunEvent
distance: int

TrackEvent

numOflanes: int
numOfHeats: int

gethumofLanes(int
gethumOfHeatsd:int

Page 16 of 22

The UML diagram above shows the class structure of the core program (i.e. the middle tier of the
system sitting between the user interface and the database). It describes each class’s public
methods, instance variables, and relationships to other core program classes.

Core Program Classes

class Coyote
This is the entry point of the program, and provides the underlying functionality of the Main Menu
GUI. From here the rest of the program is accessed.

class CompetionEditor
This part of the program modifies the values associated with a Competition. It is also responsible for
creating new competitions. The user interacts with it via the Competition Editior GUI.

class CompetitionSelector
This class is used to search the database for competitions, select one and load it into a
CompetitionManager. The user interacts with it via the Competition Selector GUI.

class CompetitionManager

CompetitionManager is the largest class in the program and it is used to add events to a completion,
add participants and results to those events. It also provides a host of tools to help organise a
competition and automatically fill in details. Additionally it can output competition details in a
variety of useful formats. The user interacts with it via the Competition Manager GUI.

class SelectCompetitors

The purpose of this class is to provide a mean to select several competitors from the database at
once and then add them as participants in an event. It provides tools for searching through all of the
competitors in the database. The user interacts with it via the Competitors Select GUI.

class EventEditor
This part of the program modifies the variables associated with an Event. It is also responsible for
creating new events. The user interacts with it via the Event Editior GUI.

class CompetitorManager

Competitor manager is used to manage competitors in the database. This includes providing
functionality to add and remove competitor from the database. Search the database for existing
competitors, then View and edit details and statistics of those competitors. The user interacts with it
via the Competitor Manager GUI.

class CompetionEditor
This part of the program does the actual work involved in creating and editing competitors in the
database. The user interacts with it via the Competition Editior GUI.

class FilelO
This utility class provides methods for the various file reading and writing functions of the program.

Page 17 of 22

5. Web System

A User that is regularly entering the clubs events can use an online profile to enable them to quickly
and easily enter events in the future and view personal statistics. This will be achieved by storing a
database online and providing access to it via PHP scripts. The database will be synched with a local
version of the system each time the local system gains internet access (usually a short period of time
after a competition has completed). PHP scripts are able to quickly access both our MySQL
databases and Java programming objects.

The web system will be designed to integrate into the Tauranga Ramblers current website. This
means all fonts, colours, buttons and overall appearance will be replicated from the rest of the web
system. This will be achieved by linking the web system to the same .css file, as well as using the
same button images etc.

The user will be required to log in using an email address and password. See below for a possible
solution. This will enable the security of personal information to be maintained, and also ensure all
users are unique are legitimate.

¥ Tauranga Ramblers - Mozilla Firefox o [=] 4]

Flle Edt Wiew Hitory Bookmarks Took Help

v c TRY I,J|File:mE:,iRamb\ersWebsitefindex.html W |'|Google >

|2 Most visited . Getting Started . Latest Headlines

TAURANGA

RAMBLERS

Online Profile

Tauranga rarmblers members are able to sign in to a online profile to view their running statistics from events
they have competed in since being a member,

Sign In

Email;

Password:

Forgotten your password? Click here

Rogults

Once the user has successfully logged in, they will be able to quickly and easily modify personal
details or view statistics from previous competitions. This will be achieved by having simple
navigation using hyperlinks to the various sections of their profile.

Page 18 of 22

¥ Tauranga Ramblers - Mozilla Firefox

Fle Edt VYiew Hitory Bookmarks Tools Help

- c (o) |] il fifE:iRamblers websitefindex htmi

T I M | Google

2| Most Yisited ’ Getting Starked . Lakest Headlines

TAURANGA

¥ Tauranga Ramblers - Mozilla Firefox

RAMBLERS

Welcome, Braden
Yhat would you like to do?
Change my Personal Details
Vievs Statistics

Enter an Upcoming Event

Change my Password

Fle Edt Yiew History Bookmarks Tools Hslp

As a member may belong to the club for a very long period of time, the statistics will appear with
recent events first. Also, the user will be able to sort the data by event type to enable the competitor
to quickly compare event times over a season or multiple seasons.

=101 x|

g C () | L [FiesfifE:imamblers websicefindex. htmi

Wil |'|Google

2 Most Yisited ’ Getting Started . Lakest Headlines

TAURANGA

Regulls

Mamborship
Coaching
Training Rung

Higtory

Profites

RAMBLERS

Statistics

View By Year

View by Event Type

Year Date

2009 22/01/09 Club Might

15/01/09 Club Might

2008 26/12/08

14/12/08 Club Might

Competition

King of the Mountain

Event

800m
3000m

1500m
400m
100m
Qpen

800m
1&00m

Time

2:08.78
9:56.10

4:32.56

0:58.92

0:12.32

27:80.90

2:12,80
4:38.68

Result

1/12
2/18

/10
+/6
58
15/128

3/13
2/12

Page 19 of 22

6. Output

There are a number of possible ways a user will be able to output data into various formats. This will
enable the data stored in Project: Coyote to be viewed across multiple platforms and computers.

7.1 Start Lists

The ability to produce start lists is an essential tool in enabling a competition to run smoothly. They
inform competitors of lane draws, number of competitors competing, start times, and also help with
registration prior to the event starting. The user will be able to select from a range of output formats

such csv, HTML and pdf formats. An example output will be formatted as below:

Men’s 100M

Heat 1

1 Ben Potter Counties SM

2 Adam Somerville CMA SM

3 Joseph Millar Tauranga M19
4 Stephen Buckley CMA SM

5 Andrew Catlin Hamilton City M19
6 Jonathon Morton Tauranga M19
Heat 2

1 Nicolas Vickers Lake City M16
2 John Campbell ACA M16
3 Ryan Overmayer Hamilton City M16
4 Sam Scott Lake City M16
5 Alistair Adams Hamilton City M16
6 Gavin Jensen Manawatu M16
7 Brent Gough Tauranga M16
Heat 3

1 George Gardiner Tauranga M45
2 Dave Rondon Whakatane M45
3 Daniel Roose Papamoa M45
4 Christian Hotta Lake City M50
5 Dave Whitehead Tauranga M50
6 Brendan Magill Tauranga M45

7.2 Results OQutput

All competitions require a simple and easy method to produce results to inform competitors of their
achievements. The user can select to output results for a single event, or for the entire competition
into a single file. The user will be able to select from a range of output formats such csv, HTML and

pdf formats. An example output will be formatted as below:

Men’s 800M

1 Scott Hilliar Matamata M16 2.10.03
2 Ben Rogers WHAC M16 2.24.55
3 Andrew Robinson | Mt Maunganui M19 2.35.54
4 Gavin Smith Tauranga M55 2.35.78
5 Malcolm Angell Tauranga M4a5 2.39.25
6 Dave Whitehead Tauranga M50 2.40.22

Page 20 of 22

7. Help System

The help system will use an interactive web browser interface. This is to allow an easy method to
include screenshots as well as providing a familiar setting for most computer users. It will allow users
to search for help criteria, as well as select relevant topics from a menu. The help system is primarily
to provide documentation for new or existing users to be able to learn how to use the program.

The help system will be written in a very high level language, to allow computer illiterate users to
understand each instruction or explanation. A sample screenshot

¥ Mozilla Firefox =101 x|

File Edit iew History Bookmarks Tools Help
*C X a |

|.2] Mast visited P Getting Started |5 Latest Headlines

> - I"|Google e

Help Contents: Producing Results
1 Procucing results tor an svent or an ertlre competition |s very simple. Tor 2 single =vent, ensure that
) the reslts have hern prtered and that the pregram Is surrerly In the results srreer.
EN Crouling a Connpelilive
1. Maraging acompetition Click v e e nl hal you e el e e e B2 en e Lo Bl dde
Adding Kesults N

- AN Ariant thr rumat fram

A Prenhuing Beeanlls + su0m e thaiise oo ne fefr
|-
- b side

+ Highlump ¥

+ shot Fut

& all punnr
e Uzing the Campettor Latabase
3 il Thien click e e resalls bulles on the oy Lask bar,

ek thir burton from
j’ e izl dusk L
P
i
Revulis

e, il o apy i1 narissll sialg b g v diors yeas el Tkes o e T Tile, smed ol i ich

Tum el Lo vea, Mavipsle Lol ane you would like e ssee e Dl and click a bullon s=va,

Te procuce results for an ertire competition, simphy cheaosz the “all 2venms” bustan froe the list on the
lefr hard siclz,

Page 21 of 22

Glossary

Competition IS one or more races at a specific date, time and location

A single competitive contest with multiple competitors usually grouped into age
categories or ability

Race A single competitive contest which involves sprinting/running

Heat A preliminary sprinting/running race in which the competitor advances to a more
important race

Event

Page 22 of 22

