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Motivation - Dimensionality Curse

The ‘curse of dimensionality’: A collection of pervasive, and often
counterintuitive, issues associated with working with high-dimensional
data.
Two typical problems:

Very high dimensional data (arity ∈ O (1000)) and very many
observations (N ∈ O (1000)): Computational (time and space
complexity) issues.
Very high dimensional data (arity ∈ O (1000)) and hardly any
observations (N ∈ O (10)): Inference a hard problem. Bogus
interactions between features.

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 4 / 113



Motivation - Dimensionality Curse

The ‘curse of dimensionality’: A collection of pervasive, and often
counterintuitive, issues associated with working with high-dimensional
data.
Two typical problems:

Very high dimensional data (arity ∈ O (1000)) and very many
observations (N ∈ O (1000)): Computational (time and space
complexity) issues.
Very high dimensional data (arity ∈ O (1000)) and hardly any
observations (N ∈ O (10)): Inference a hard problem. Bogus
interactions between features.

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 4 / 113



Motivation - Dimensionality Curse

The ‘curse of dimensionality’: A collection of pervasive, and often
counterintuitive, issues associated with working with high-dimensional
data.
Two typical problems:

Very high dimensional data (arity ∈ O (1000)) and very many
observations (N ∈ O (1000)): Computational (time and space
complexity) issues.
Very high dimensional data (arity ∈ O (1000)) and hardly any
observations (N ∈ O (10)): Inference a hard problem. Bogus
interactions between features.

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 4 / 113



Curse of Dimensionality

Comment:
What constitutes high-dimensional depends on the problem setting,
but data vectors with arity in the thousands very common in practice
(e.g. medical images, gene activation arrays, text, time series, ...).

Issues can start to show up when data arity in the tens!

We will simply say that the observations, T , are d-dimensional and
there are N of them: T = {xi ∈ Rd}Ni=1 and we will assume that, for
whatever reason, d is too large.
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Mitigating the Curse of Dimensionality

An obvious solution: Dimensionality d is too large, so reduce d to
k � d .

How?
Dozens of methods: PCA, Factor Analysis, Projection Pursuit, Random
Projection ...

We will be focusing on Random Projection, motivated (at first) by the
following important result:
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Johnson-Lindenstrauss Lemma (JLL)
The JLL is the following rather surprising fact:

Theorem (Johnson and Lindenstrauss, 1984)

Let ε ∈ (0,1). Let N, k ∈ N with V ⊆ Rd a set of N points and
k ∈ O

(
min{d , ε−2 log N}

)
. Then there exists a mapping P : Rd → Rk ,

such that for all u, v ∈ V:

(1− ε)‖u − v‖2d 6 ‖Pu − Pv‖2k 6 (1 + ε)‖u − v‖2d

Dot products are also approximately preserved by P since if JLL
holds then: uT v − ε 6 (Pu)T Pv 6 uT v + ε. (Proof: parallelogram
law).
Note that the projection dimension k depends only on ε and N.
For linear mappings scale of k is sharp: No linear dimensionality
reduction can improve on JLL guarantee for an arbitrary point set.
Lower bound k ∈ Ω

(
min{d , ε−2 log N}

)
[LN14].
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Distributional JLL

Theorem (Distributional JLL [DG02, Ach03])

Let ε, δ ∈ (0,1). Let k ∈ N such that k ∈ O
(
ε−2 log δ−1). Then there is

a random linear mapping R : Rd → Rk such that for any vector
x ∈ Rd , with probability at least 1− δ it holds that:

(1− ε)‖x‖2d 6 ‖Rx‖2k 6 (1 + ε)‖x‖2d

Note that the projection dimension k depends only on ε and δ.
For random linear mappings scale of k is sharp: Lower bound
k ∈ Ω(ε−2 log δ−1) sharp for randomized dimensionality reduction
[KMN11].
Taking δ−1 ∈ O

(N
2

)
' N2 obtain same order of k as canonical JLL.

We call the k × d matrix R a ‘random projection’. As far as
geometry preservation goes, RP is (w.h.p, or on average)
essentially as good as best possible deterministic linear scheme.
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Intuition

Geometry of data gets perturbed by random projection, but not too
much:
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Figure: Original data
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Figure: RP data (schematic)
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Applications

Random projections have been used for:
Classification. e.g.
[BM01, FM03, GBN05, SR09, CJS09, RR08, DK10, DK14]
Regression. e.g. [MM09, HWB07, BD09, Kab14]
Clustering and Density estimation. e.g.
[IM98, AC06, FB03, Das99, KMV12, AV09]
Other related applications: structure-adaptive kd-trees [DF08],
low-rank matrix approximation [Rec11, Sar06], sparse signal
reconstruction (compressed sensing) [Don06, CT06], data stream
computations [AMS96], real-valued optimization [KBD13], . . .
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Distributional JLL - Proof Ideas

Construct a k × d matrix R with entries Rij
i.i.d∼ N (0, σ2) and fix

some arbitrary vector x ∈ Rd .
Show that the expected squared Euclidean norm of the mapped
vector Rx is E[‖Rx‖2] = k‖x‖2/dσ2.
Show that with high probability ‖Rx‖2 is close to its expectation.
For an N point set T := {z1, z2, . . . , zN |zi ∈ Rd} instantiate x as
the vector xij := zi − zj , i < j . There are N(N − 1)/2 such pairs.
Obtain guarantee that all interpoint distances are approximately
preserved w.p. at least 1− δ by applying union bound – i.e. Let Aij
be the event that the projection of xij has greater than ε distortion
and use Pr(

∨
i<j Aij) 6

∑
i<j Pr(Aij) =: δ.

With probability at least 1− δ,
√

dσ2/kR is a JLL mapping.

Note that proof of distributional JLL is constructive - it tells us how to
construct a JLL embedding w.h.p. using a random matrix.
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Obtain guarantee that all interpoint distances are approximately
preserved w.p. at least 1− δ by applying union bound – i.e. Let Aij
be the event that the projection of xij has greater than ε distortion
and use Pr(

∨
i<j Aij) 6

∑
i<j Pr(Aij) =: δ.

With probability at least 1− δ,
√

dσ2/kR is a JLL mapping.

Note that proof of distributional JLL is constructive - it tells us how to
construct a JLL embedding w.h.p. using a random matrix.

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 13 / 113



Distributional JLL - Proof Ideas

Construct a k × d matrix R with entries Rij
i.i.d∼ N (0, σ2) and fix

some arbitrary vector x ∈ Rd .
Show that the expected squared Euclidean norm of the mapped
vector Rx is E[‖Rx‖2] = k‖x‖2/dσ2.
Show that with high probability ‖Rx‖2 is close to its expectation.
For an N point set T := {z1, z2, . . . , zN |zi ∈ Rd} instantiate x as
the vector xij := zi − zj , i < j . There are N(N − 1)/2 such pairs.
Obtain guarantee that all interpoint distances are approximately
preserved w.p. at least 1− δ by applying union bound – i.e. Let Aij
be the event that the projection of xij has greater than ε distortion
and use Pr(

∨
i<j Aij) 6

∑
i<j Pr(Aij) =: δ.

With probability at least 1− δ,
√

dσ2/kR is a JLL mapping.

Note that proof of distributional JLL is constructive - it tells us how to
construct a JLL embedding w.h.p. using a random matrix.

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 13 / 113



Distributional JLL - Proof Ideas

Construct a k × d matrix R with entries Rij
i.i.d∼ N (0, σ2) and fix

some arbitrary vector x ∈ Rd .
Show that the expected squared Euclidean norm of the mapped
vector Rx is E[‖Rx‖2] = k‖x‖2/dσ2.
Show that with high probability ‖Rx‖2 is close to its expectation.
For an N point set T := {z1, z2, . . . , zN |zi ∈ Rd} instantiate x as
the vector xij := zi − zj , i < j . There are N(N − 1)/2 such pairs.
Obtain guarantee that all interpoint distances are approximately
preserved w.p. at least 1− δ by applying union bound – i.e. Let Aij
be the event that the projection of xij has greater than ε distortion
and use Pr(

∨
i<j Aij) 6

∑
i<j Pr(Aij) =: δ.

With probability at least 1− δ,
√

dσ2/kR is a JLL mapping.

Note that proof of distributional JLL is constructive - it tells us how to
construct a JLL embedding w.h.p. using a random matrix.

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 13 / 113



What is Random Projection? (1)

Canonical RP:
Construct a (wide, flat) matrix R ∈Mk×d by picking the entries
i.i.d from a zero-mean Gaussian rij ∼ N (0, σ2).

Orthonormalize the rows of R, e.g. set R′ = (RRT )−1/2R.
To project a point v ∈ Rd , pre-multiply the vector v with RP matrix
R′. Then v 7→ R′v ∈ R′(Rd ) ≡ Rk is the projection of the
d-dimensional data into a random k -dimensional projection space.

R′ is like ‘half a projection matrix’ in the sense that if P = (R′)T R′, then
P is a projection matrix in the standard sense.
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Comment (1)

If d is very large we can drop the orthonormalization in practice - the
rows of R will be nearly orthogonal to each other and all nearly the
same length.

For example, for Gaussian (N (0, σ2)) R we have [DK12]:

Pr
{

(1− ε)dσ2 6 ‖Ri‖2 6 (1 + ε)dσ2
}
> 1− δ, ∀ε ∈ (0,1]

where Ri denotes the i-th row of R and
δ = exp(−(

√
1 + ε− 1)2d/2) + exp(−(

√
1− ε− 1)2d/2).

Similarly [Led01]:

Pr{|RT
i Rj |/dσ2 6 ε} > 1− 2 exp(−ε2d/2), ∀i 6= j .
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Concentration of norms in rows of R
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Near-orthogonality of rows of R
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Why Random Projection?

Various motivations including:
Linear.
Cheap: E.g. PCA∈ O

(
d2N

)
+O

(
d3)+O (Nkd),

RP∈ O
(
k2d

)
+O (Nkd).

Easy to implement.
Approximates an isometry/uniform scaling when k ∈ O

(
ε−2 log N

)
– JLL.

Any fixed, finite point set w.h.p
Projection dimension independent of data dimensionality.

JLL geometry preservation guarantee optimal for linear mappings.
Oblivious to data distribution.
Tractable to analysis.
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Comment (2)

Random matrices with symmetric zero-mean sub-Gaussian entries
also have similar properties.

Sub-Gaussians are those distributions whose tails decay no slower
than a Gaussian, e.g. practically all bounded distributions have this
property.

We obtain similar guarantees (i.e. up to small multiplicative constants)
for sub-Gaussian RP matrices too!
This allows us to get around issue of dense matrix multiplication in
dimensionality-reduction step.
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What is Random Projection? (2)

Different types of RP matrix easy to construct - take entries i.i.d from
nearly any zero-mean subgaussian distribution. All behave in much the
same way.

Popular variations [Ach03, AC06, Mat08]: The entries Rij can be:

Rij =

{
+1 w.p. 1/2,
−1 w.p. 1/2.

Rij =


+1 w.p. 1/6,
−1 w.p. 1/6,
0 w.p. 2/3.

Rij =

{
N (0,1/q) w.p. q,
0 w.p. 1− q.

Rij =


+1 w.p. q,
−1 w.p. q,
0 w.p. 1− 2q.

For the RH examples, taking q too small gives high distortion of sparse
vectors [Mat08]. [AC06] get around this by using a randomized
orthogonal (normalized Hadamard) matrix to ensure w.h.p all data
vectors are dense.
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vectors are dense.
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Fast, sparse variants

Achlioptas ‘01 [Ach03]: Rij = 0 w.p. 2/3
Ailon-Chazelle ‘06 [AC06]: Use x 7−→ PHDx , P random and sparse,
Rij ∼ N (0,1/q) w.p 1/q, H normalized Hadamard (orthogonal) matrix,
D = diag(±1) random. Mapping takes O

(
d log d + qdε−2 log N

)
.

Ailon-Liberty ‘09 [AL09]: Similar construction to [AC06].
O
(
d log k + k2).

Dasgupta-Kumar-Sarlós ‘10 [DKS10]: Use sequence of (dependent)
random hash functions. O

(
ε−1 log2(k/δ) log δ−1

)
for

k ∈ O
(
ε−2 log δ−1).

Ailon-Liberty ‘11 [AL11]: Similar construction to [AC06]. O (d log d)

provided k ∈ O
(
ε−2 log N log4 d

)
.
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Generalizations of JLL to Manifolds

From JLL we obtain high-probability guarantees that, independently of
the data dimension, random projection approximately preserves data
geometry of a finite point set (for a suitably large k ). In particular
norms and dot products approximately preserved w.h.p.

JLL approach can be extended to (smooth, compact) Riemannian
manifolds: ‘Manifold JLL’

Key idea: Preserve ε-covering of smooth manifold under some metric
instead of geometry of data points. Replace N with corresponding
covering number M and take k ∈ O

(
ε−2 log M

)
.
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Subspace JLL
Let S be an s-dimensional linear
subspace. Let ε > 0. For
k = O

(
ε−2s log(12/ε)

)
[BW09] w.h.p. a

JLL matrix R satisfies ∀x , y ∈ S:
(1− ε)‖x − y‖2d 6 ‖Rx − Ry‖2k 6
(1 + ε)‖x − y‖2d

1 R linear, so no loss to take
‖x − y‖ = 1.

2 Cover unit sphere in subspace with
ε/4-balls. Covering number
M = (12/ε)s.

3 Apply JLL to centres of the balls.
k = O (log M) for this.

4 Extend to entire s-dimensional
subspace by approximating any unit
vector with one of the centres.
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Manifold JLL

Proof idea:
1 Let M be a smooth s-dimensional

manifold in Rd (⇒ M is locally like a
linear subspace).

2 Approximate manifold with tangent
subspaces.

3 Apply subspace-JLL on each
subspace.

4 Union bound over subspaces to
preserve large distances.

(Same basic approach can be used to preserve geodesic distances.)
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JLL for unions of axis-aligned subspaces (‘RIP’)

RIP = Restricted isometry property (more on this later).

Proof idea:

1 Note that s-sparse d-dimensional
vectors live on a union of

(d
s

)
s-dimensional subspaces.

2 Apply subspace-JLL to each s-flat.
3 Apply union bound to all

(d
s

)
subspaces.

k = O
(
ε−2s log(12

ε
d
s )
)

[BDDW08]

Comment: This is the canonical ‘compressed sensing’ setting
assuming the sparse basis is known.
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Applications of Random Projection (1)

JLL implies that, with a suitable choice of k , we can construct an
‘ε-approximate’ version of any algorithm which depends only on the
(Euclidean) geometry of the data, but in a much lower-dimensional
space. This includes:

Nearest-neighbour algorithms.
Clustering algorithms.
Margin-based classifiers.
Least-squares regressors.

That is, we trade off some accuracy (perhaps) for reduced algorithmic
time and space complexity.
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Using one RP...

Diverse motivations for RP in the literature:

To trade some accuracy in order to reduce computational expense
and/or storage overhead (e.g. kNN).
To create a new theory of cognitive learning (RP Perceptron).
To replace a heuristic optimizer with a provably correct algorithm
with performance guarantees (e.g. Mixture learning).
To bypass the collection of lots of data then throwing away most of
it at preprocessing (Compressed sensing).

Solution in all cases: Work with random projections of the data.
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JLL-based approaches

Recall our two initial problem settings:
Very high dimensional data (arity ∈ O (1000)) and very many
observations (N ∈ O (1000)): Computational (time and space
complexity) issues.
Very high dimensional data (arity ∈ O (1000)) and hardly any
observations (N ∈ O (10)): Inference a hard problem. Bogus
interactions between features.

For this part of the talk we focus mainly on the first of these problems,
i.e. reducing the complexity of large problems.
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Approximate Nearest Neighbour Search
Kept theoreticians busy for over 40 years.
Many applications: Machine Learning kNN rule; Database
retrieval; Data compression (vector quantization).
Exact Nearest Neighbour Search: Given a point set
T = {x1, ..., xN} in Rd , find the closest point to a query point xq.
Approximate NNS: Find x ∈ T that is ε-close to xq. That is, such
that ∀x ′ ∈ T , ‖x − xq‖ 6 (1 + ε)‖x ′ − xq‖.

The problem: Space or time complexity exponential in d even for
sophisticated approximate NNS. [Kle97, HP01, AI06].

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 31 / 113



Nearest Neighbour Search

The first known approximate NNS algorithm with space and time
complexity polynomial in d is due to Indyk & Motwani ’98[IM98],
and uses the JLL.

Have an algorithm with query time O exp(d).
Apply JLL, so take k ∈ O(ε−2 log N) and randomly project data.
This yields an algorithm that has query time O(NCε−2

).

Since this important advance, there have been many further
results on approximate NNS (including other uses of random
projections! e.g. [Cha02]).
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Neuronal RP Perceptron Learning

Motivation: How does the brain
learn concepts from a handful of
examples when each example
contains many features?
Large margin⇒ ‘robustness’ of
concept.
Idea:

1 When the target concept robust,
random projection of examples to a
low-dimensional subspace
preserves the concept.

2 In the low-dimensional space, the
number of examples and time
required to learn concepts are
comparatively small.
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Definition. For any real number ` > 0, a concept in conjunction with a
distribution D on Rd × {−1,1}, is said to be robust, if
Pr{x |∃x ′ : label(x) 6= label(x ′), and ‖x − x ′‖ 6 `} = 0.
Given T = {(x1, y1), ..., (xN , yN)} ∼ DN labelled training set, R ∈Mk×d
a random matrix with zero-mean sub-Gaussian entries.
Suppose T is a sample from a robust concept, i.e. ∃h ∈ Rd , ‖h‖ = 1
s.t. ∀n ∈ {1, ...,N}, yn · hT xn > `.

Algorithm
1 Project T to T ′ = {(Rx1, y1), ..., (RxN , yN)} ⊆ Rk .
2 Learn a perceptron ĥR in Rk from T ′ (i.e. by minimizing training

error).
3 Output R and ĥR.

For a query point xq predict sign(ĥT
RRxq).
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PAC Guarantees for RP Perceptron
Using known results on generalization for halfspaces [KV94], and on
the running time of Perceptron [MP69] in Rk , we use JLL to ensure
their preconditions hold w.h.p.
The results employed in [AV06] require classes to be separated by a
margin ` in the dataspace and, for the randomly-projected perceptron,
they then show that the classes remain `/2-separated w.h.p and that
all norms and dot products are also approximately preserved w.h.p.
Taking L to be the squared diameter of the data and N the number of
training examples, a PAC guarantee is obtained provided that:

k = O
(

L
`2
· log(12N/δ)

)
(1)

i.e. take k large enough to ensure all of the above conditions hold
w.h.p.
Comment: In [AV06] the authors obtain k = O

( 1
`2
· log( 1

ε`δ )
)

by taking
the allowed misclassification rate as ε > 1

12N` . This somewhat
obscures effect on upper bound on gen. error of # training points N.
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Provably Learning Mixtures of Gaussians

Mixtures of Gaussians (MoG) are among the most fundamental
and widely used statistical models. p(x) =

∑K
y=1 πyN (x |µy ,Σy ),

where N (x |µy ,Σy ) = 1
(2π)d/2|Σy |1/2 exp(−1

2(x − µy )T Σ−1
y (x − µy )).

Given a set of unlabelled data points drawn from a MoG, the goal
is to estimate the mean µy and covariance Σy for each source.
Greedy heuristics (such as Expectation-Maximization) widely
used for this purpose do not guarantee correct recovery of mixture
parameters (can get stuck in local optima of the likelihood
function).
The first provably correct algorithm to learn a MoG from data is
based on random projections.
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Algorithm
Inputs: Sample S: set of N data points in Rd ; m = number of mixture
components; ε,δ: resp. accuracy and confidence params. πmin:
smallest mixture weight to be considered.
(Values for other params derived from these via the theoretical
analysis of the algorithm.)

1 Randomly project the data onto a k -dimensional subspace of the
original space Rd . Takes time O(Nkd).

2 In the projected space:
For x ∈ S, let rx be the smallest radius such that there are > p
points within distance rx of x .
Start with S′ = S.
For y = 1, ...,m:

Let estimate µ̂∗y be the point x with the lowest rx

Find the q closest points to this estimated center.
Remove these points from S′.

For each y , let Sy denote the l points in S which are closest to µ̂∗y .
3 Let the (high-dimensional) estimate µ̂y be the mean of Sy in Rd .
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Definition
Two Gaussians N (µ1,Σ1) and N (µ2,Σ2) in Rd are said to be
c-separated if ‖µ1 − µ2‖ > c

√
d ·max{λmax(Σ1), λmax(Σ2)}. A mixture

of Gaussians is c-separated if its components are c-separated.

Theorem
Let δ, ε ∈ (0,1). Suppose the data is drawn from a mixture of m
Gaussians in Rd which is c-separated, for c > 1/2, has (unknown)
common covariance matrix Σ with condition number
κ = λmax(Σ)/λmin(Σ), and miny πy = Ω(1/m). Then,

w.p. > 1− δ, the centre estimates returned by the algorithm are
accurate within `2 distance ε

√
dλmax;

if
√
κ 6 O(d1/2/ log(m/(εδ))), then the reduced dimension

required is k = O(log m/(εδ)), and the number of data points
needed is N = mO(log2(1/(εδ))). The algorithm runs in time
O(N2k + Nkd).
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The proof is lengthy but it starts from the following observations:
A c-separated mixture becomes a (c ·

√
1− ε)-separated mixture

w.p. 1− δ after RP. This is because
JLL ensures that the distances between centers are preserved
λmax(RΣRT ) 6 λmax(Σ)

RP makes covariances more spherical (i.e. condition number
decreases).

It is worth mentioning that the latest theoretical advances [KMV12] on
learning of high dimensional mixture distributions under general
conditions (i.e. without the c-separability condition) in polynomial time
also use RP.
At present this is a theoretical construction only - no concrete
implementation.
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10 years later...
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Compressed Sensing (1)

Often high-dimensional data is sparse in the following sense: There is
some representation of the data in a linear basis such that most of the
coefficients of the data vectors are (nearly) zero in this basis. For
example, image and audio data in e.g. DCT basis.
Sparsity implies compressibility e.g. discarding small DCT coefficients
gives us lossy compression techniques such as jpeg and mp3.

Idea: Instead of collecting sparse data and then compressing it to
(say) 10% of its former size, what if we just captured 10% of the data in
the first place?
In particular, what if we just captured 10% of the data at random?
Could we reconstruct the original data?

Compressed (or Compressive) Sensing [Don06, CT06].
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Compressed Sensing (2)

Problem: Want to reconstruct sparse d-dimensional signal x , with s
non-zero coeffs. in sparse basis, given only k random measurements.
i.e. we observe:

y = Rx , y ∈ Rk , R ∈Mk×d , x ∈ Rd , k � d .

and we want to find x given y . Since R is rank k � d no unique
solution in general.
However we also know that x is s-sparse...

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 43 / 113



Compressed Sensing (3)

Basis Pursuit Theorem (Candès-Tao 2004)
Let R be a k × d matrix and s an integer such that:

y = Rx admits an s-sparse solution x̂ , i.e. such that ‖x̂‖0 6 s.
R satisfies the restricted isometry property (RIP) of order (2s, δ2s)
with δ2s 6 2/(3 +

√
7/4) ' 0.4627

Then:
x̂ = arg min

x
{‖x‖1 : y = Rx}

If R and x satisfy the conditions on the BPT, then we can
reconstruct x perfectly from its compressed representation, using
efficient `1 minimization methods.
We know x needs to be s-sparse. Which matrices R then satisfy
the RIP?
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Restricted Isometry Property

Restricted Isometry Property
Let R be a k × d matrix and s an integer. The matrix R satisfies the
RIP of order (s, δ) provided that, for all s-sparse vectors x ∈ Rd :

(1− δ)‖x‖22 6 ‖Rx‖22 6 (1 + δ)‖x‖22

One can show that random projection matrices satisfying the JLL w.h.p
also satisfy the RIP w.h.p provided that k ∈ O (s log d). [BDDW08]
does this using JLL combined with a covering argument in the
projected space, finally union bound over all possible

(d
s

)
s-dimensional subspaces.
N.B. For signal reconstruction, data must be sparse: no perfect
reconstruction guarantee from random projection matrices if s > d/2.
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Compressed Learning

Intuition: If the data are s-sparse then one can perfectly reconstruct
the data w.h.p from its randomly projected representation, provided
that k ∈ O (s log d).
It follows that w.h.p no information was lost by carrying out the random
projection.
Therefore w.h.p one should be able to construct a classifier (or
regressor) from the RP data which generalizes as well as the classifier
(or regressor) learned from the original (non-RP) data.
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Fast learning of SVM from sparse data

Theorem (Calderbank et al. [CJS09])
Let R be a k × d random matrix which satisfies the RIP. Let
RS = {(Rx1, y1), ..., (RxN , yN)} ∼ DN .
Let ẑRS be the soft-margin SVM trained on RS.
Let w0 be the best linear classifier in the data domain with low hinge
loss and large margin (hence small ‖w0‖).
Then, w.p. 1− 2δ (over RS):

HD(ẑRS) 6 HD(w0) +O

(√
‖w0‖2

(
L2ε+

log(1/δ)

N

))
(2)

where HD(w) = E(x ,y)∼D[1− ywT x ] is the true hinge loss of the
classifier in its argument, and L = maxn‖xn‖.
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The proof idea is somewhat analogous
to that in Arriaga & Vempala, with several
differences:

Major:
Data is assumed to be sparse.
This allows using RIP instead of
JLL and eliminates the
dependence of the required k on
the sample size N. Instead it will
now depend (linearly) on s.

Minor:
Different classifier
The best classifier is not assumed
to have zero error
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Proof sketch:
Risk bound in [SSSS08] bounds the true SVM hinge loss of a
classifier learned from data from that of the best classifier. Used
twice: once in the data space, and again in the projection space.
By definition (of best classifier), the true error of the best classifier
in projected space is smaller than that of the projection of the best
classifier in the data space.
From RIP, derive the preservation of dot-products (similarly as
previously in the case of JLL) which is then used to connect
between the two spaces.
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Compressive Linear Least Squares Regression

Given T = {(x1, y1), ..., (xN , yN)} with xn ∈ Rd , yn ∈ R.
Algorithm.

1 Let R a k × d RP matrix with entries Rij ∼ N (0,1), let P := R/
√

k ,
and project the data: XPT to Rk .

2 Run a regression method in Rk .
Result. Using JLL in conjunction with bounds on the excess risk of
regression estimators with least squares loss, the gap between the
true loss of the obtained estimator in the projected space and that of
the optimal predictor in the data space can be bounded with high
probability, provided that k ∈ O( 8

ε2
log(8N/δ)).

For full details see [MM09].
Here we outline the special case of ordinary least squares regression
(OLS).
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Denote by X the design matrix with xi its rows, and Y a column vector
with elements yi .
Assume X is fixed (not random), and we want to learn an estimator β̂
so that X β̂ approximates E[Y |X ] .
Definitions in Rd .
Squared loss: L(w) = 1

N EY [‖Y − Xw‖2] (where EY denotes EY |X ).
Optimal predictor: β = arg min

w
L(w).

Excess risk of an estimator: R(β̂) = L(β̂)− L(β).
For linear regression this is: (β̂ − β)T Σ(β̂ − β) where Σ = X T X/N.
OLS estimator: β̂ := arg min

w

1
N ‖Y − Xw‖2

Proposition: OLS. If Var(Yi) 6 1 then EY [R(β̂)] 6 d
N .
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Definitions in Rk .
Square loss: LP(w) = 1

N EY [‖Y − (XPT )w‖2] (where EY denotes EY |X ).
Optimal predictor: βP = arg min

w
LP(w).

RP-OLS estimator: β̂P := arg min
w

1
N ‖Y − (XPT )w‖2

Proposition: Risk bound for RP-OLS
Assume Var(Yi) 6 1, and let P as defined earlier. Then, for
k = O(log(8N/δ)/ε2 and any ε, δ > 0, w.p. 1− δ we have:

EY [LP(β̂P)]− L(β) 6
k
N

+ ‖β‖2‖Σ‖traceε
2 (3)

Comment: The argument in [MM09] uses JLL to obtain the excess
risk guarantee. Value of k obtained is suboptimal - log N term can be
removed (for an extended class of random matrices - including
non-RIP/non-JLL matrices) using a more careful treatment - see
[Kab14] for details.
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Further approaches not leveraging JLL or CS

Recall our two initial problem settings:
Very high dimensional data (arity ∈ O (1000)) and very many
observations (N ∈ O (1000)): Computational (time and space
complexity) issues.
Very high dimensional data (arity ∈ O (1000)) and hardly any
observations (N ∈ O (10)): Inference a hard problem. Bogus
interactions between features.

For the remainder we will focus on the second problem, i.e. good
inference from next to no data.
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Some intuition and an idea

Consider JLL again: If we have hardly any observations,
N ∈ O (log d) say then JLL would only require k ∈ O (log log d) . . .

. . . so then N ∈ O (exp(k))! Q: Could better parameter estimates
in the projected space compensate for the distortion introduced by
RP?
Somewhat appealing but potentially a serious problem, at least
from a statistical perspective, is that we now seem to estimate the
parameters for the wrong distribution.

Let’s run with it for a while anyhow. . . ,
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Guarantees without JLL

We can obtain guarantees for randomly-projected learning algorithms
without directly applying the JLL, by using measure concentration and
random matrix theoretic-based approaches. One application of such
an approach is the work on OLS by [Kab14]; here we will consider
classification and real-valued optimization.

Key Intuition: Projecting from a high-dimensional to a low
dimensional setting turns an ill-posed problem (i.e. with no unique
solution) into a well-posed one (there is a unique solution).

Therefore we can view random projection as a way of regularizing the
original problem. But what kind of regularization? Can we say more?
Most importantly, can we interpret the problem solved in the projected
space in terms of the original problem?
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Applications (1)
Classification with Fisher’s Linear

Discriminant
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Fisher’s Linear Discriminant (FLD)
Supervised learning
approach.
Simple and popular
linear classifier, in
widespread application.
Classes are modelled as
MVN distributions with
same covariance.
Assign class label to
query point according to
Mahalanobis distance
from class means.
FLD decision rule:

ĥ(xq) = 1
{

(µ̂1 − µ̂0)T Σ̂−1
(

xq −
(µ̂0 + µ̂1)

2

)
> 0

}
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Randomly-projected Fisher’s Linear Discriminant

‘RP-FLD’: Learn the classifier and carry out the classification in the RP
space.
Things we don’t need to worry about:

Important points lying in the null space of R: Happens with
probability 0.
Problems mapping means, covariances in data space to RP
space: All well-defined due to linearity of R and E[·].

RP-FLD decision rule:

ĥR(xq) = 1
{

(µ̂1 − µ̂0)T RT
(

RΣ̂RT
)−1

R
(

xq −
(µ̂0 + µ̂1)

2

)
> 0

}
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The Problem

Assume a two-class classification problem, with N real-valued
d-dimensional training observations:
T = {(xi , yi) : (x, y) ∈ Rd × {0,1}}Ni=1.

Furthermore assume that N � d , which is a common situation in
practice (e.g. medical imaging, genomics, proteomics, face
recognition, etc.), and WLOG that the unknown data distribution is full
rank i.e. rank(Σ) = d . (Can relax to rank(Σ) > rank(Σ̂).)
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Challenges (1)

Problems:
Issues: N is too small (for good estimation of model parameters) w.r.t
d ⇐⇒ d is too large w.r.t N.
Σ̂ (but not Σ) is singular.
Σ̂ must be inverted to construct FLD classifier.

Solution: Compress data by random projection to Rk , k 6 rankΣ̂ =: ρ.
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Challenges (2)

It is known that, for a single randomly-projected (linear) classifier,
expected misclassification error (w.r.t R) grows nearly exponentially as
k ↘ 1 [DK13].

Solution:
Recover performance using an ensemble of RP FLD classifiers [DK14].

Ensembles that use some form of randomization in the design of the
base classifiers have a long and successful history in machine
learning: E.g. bagging [Bre96]; random subspaces [Ho98]; random
forests [Bre01]; random projection ensembles [FB03, GBN05].

Comment: We also obtain substantial computational savings with our
approach – details later.
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Our Questions

Can we recover (or improve on) the level of classification
performance achieved in the data space, using our RP FLD
ensemble?
Can we understand how the RP FLD ensemble acts to improve
performance?
Can we overfit the data with too large an RP-FLD ensemble?
Can we interpret the RP ensemble classifier parameters in terms
of data space parameters?
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RP FLD Classifier Ensemble

For a single RP FLD classifier, the decision rule is given by:

1
{

(µ̂1 − µ̂0)T RT
(

RΣ̂RT
)−1

R
(

xq −
µ̂1 + µ̂0

2

)
> 0

}
which is the randomly projected analogue of the FLD decision rule. For
the ensemble we use an equally weighted linear combination of RP
FLD classifiers:

1

{
1
M

M∑
i=1

(µ̂1 − µ̂0)T RT
i

(
Ri Σ̂RT

i

)−1
Ri

(
xq −

µ̂1 + µ̂0

2

)
> 0

}
(4)

Linear combination rules are a common choice for ensembles. This
rule works well in practice and it is also tractable to analysis.

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 65 / 113



Observation

We can rewrite decision rule as:

1

{
(µ̂1 − µ̂0)T 1

M

M∑
i=1

RT
i

(
Ri Σ̂RT

i

)−1
Ri

(
xq −

µ̂1 + µ̂0

2

)
> 0

}

Then, for average case analysis with a fixed training set, it is enough to
consider:

lim
M→∞

1
M

M∑
i=1

RT
i

(
Ri Σ̂RT

i

)−1
Ri = E

[
RT
(

RΣ̂RT
)−1

R
]

(Provided this limit exists).
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Theory(1):Regularization

For a fixed training set ρ, d are constant and 1 6 k 6 ρ is the integer
regularization parameter (which we can choose).

Our analysis reveals that the (implicit) regularization scheme
implemented by the ensemble has a particularly pleasing form. In
particular our ensemble implements:

Shrinkage regularization [LW04] in range of Σ̂.
Ridge regularization [HTF01] in null space of Σ̂.

As k ↗ ρ− 1 we regularize less, and approach the performance of
pseudo-inverted FLD (i.e. we start to overfit).
As k ↘ 1 we regularize more – very small choices of k typically
underfit.
Sweet spot seems to be around k = ρ/2.
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Theory(2):Exact Error of Converged Ensemble

Theorem (Ensemble error with Gaussian classes)

Let xq ∼
∑1

y=0 πyN (µy ,Σ), where Σ ∈Md×d is a full rank covariance
matrix. Let R ∈Mk×d be a random projection matrix with i.i.d.

Gaussian entries and denote S−1
R := ER

[
RT
(

RΣ̂RT
)−1

R
]
. Then the

exact error of the randomly projected ensemble classifier (4),
conditioned on the training set, is given by:

1∑
y=0

πy Φ

−1
2

(µ̂¬y − µ̂y )T S−1
R (µ̂0 + µ̂1 − 2µy )√

(µ̂1 − µ̂0)T S−1
R ΣS−1

R (µ̂1 − µ̂0)


Comment: Generalization error is monotonic increasing in
κ(S−1/2

R ΣS−1/2
R ) - this condition number is bounded a.s. for a large

enough ensemble, but not for pseudo-inverted FLD – cf.[BL04].
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Theory (3): Finite sample guarantee for ensemble

Theorem (Generalization Error)

Let TN = {(xi , yi)}Ni=1 be a set of training data of size N = N0 + N1,
subject to N < d and Ny > 1 ∀y. Let xq be a query point with
Gaussian class-conditionals xq|yq ∼ N (µy ,Σ), and let
Pr{yq = y} = πy . Let ρ be the rank of the maximum likelihood estimate
of the covariance matrix and let k < ρ− 1 be a positive integer. Then
for any δ ∈ (0,1) and any training set of size N, the generalization error
of the converged ensemble is upper-bounded w.p. at least 1− δ by:

Pr
xq ,yq

(ĥens(xq) 6= yq) 6
1∑

y=0

πy Φ

(
−

[
g

(
κ̄

(√
2 log

5
δ

))
× . . .

. . .

[√
‖Σ− 1

2 (µ1 − µ0)‖2 +
dN

N0N1
−
√

2N
N0N1

log
5
δ

]
+

−

√
d
Ny

(
1 +

√
2
d

log
5
δ

)])

where κ̄(ε) is a high probability (w.r.t draws of TN ) upper bound on the
condition number of ΣŜ−1and g(·) is the function g(a) :=

√
a

1+a .
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Comment

The principal terms in this bound are:
1 The function g : [1,∞)→ (0, 1

2 ] which is a decreasing function of
its argument and here captures the effect of the mismatch
between the estimated model covariance matrix Ŝ−1 and the true
class-conditional covariance Σ, via a high-probability upper bound
on the condition number of Ŝ−1Σ;

2 The Mahalanobis distance between the two class centres which
captures the fact that the better separated the classes are the
smaller the generalization error should be;

3 Antagonistic terms involving the sample size (N) and the number
of training examples in each class (N0,N1), capturing the effect of
class imbalance - the more balanced the classes the tighter the
bound.
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Time Complexity Analysis
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Time Complexity Analysis (1)
Learning:
In the data space, the cost of learning the FLD classifier is dominated
by inverting Σ̂, which is O

(
d3) using Gauss-Jordan or O

(
d2.807) using

Strassen’s algorithm.

For the RP ensemble the main cost comes from projecting the data (M
k × d matrix multiplications) plus M matrix inversions each O

(
k3).

Taking M ∈ O
(⌈

d
k

⌉)
so that the ensemble covariance is full rank w.p.

1, the time complexity on a single core is then:

O
(

MkdN + Mk3
)

= O
(

d2N + dk2
)
� O

(
d3
)

when N, k � d

N.B. Parallel implementation of the ensemble straightforward, sparse
RP matrices improve hidden constants considerably.
Comment: Pseudo-inverse FLD is O

(
Nd2) time complexity, diagonal

FLD O (d). Theory and experiments show classification performance
of these approaches can be very poor.
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Time Complexity Analysis (2)
Classification:
Can avoid randomly projecting a query point M times by averaging the
individual classifier decision rules. Bracket the argument to the
ensemble decision rule as:(

(µ̂1 − µ̂0)T 1
M

M∑
i=1

RT
i

(
Ri Σ̂RT

i

)−1
Ri

)(
xq −

µ̂1 + µ̂0

2

)
to obtain a single linear classifier of the form ĥ = w + b, w ∈ Rd ,
b ∈ R, where:

w :=
1
M

M∑
i=1

(µ̂1 − µ̂0)T RT
i

(
Ri Σ̂RT

i

)−1
Ri =

1
M

M∑
i=1

wi

and

b := − 1
M

M∑
i=1

(µ̂1 − µ̂0)T RT
i

(
Ri Σ̂RT

i

)−1
Ri

(
µ̂1 + µ̂0

2

)
=

1
M

M∑
i=1

bi

Complexity of classification then O (d) - same as data space FLD.
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Experiments
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Experiments: Datasets

Table: Datasets

Name Source Sample size # features
colon Alon et al. [ABN+99] 62 2000
leukaemia Golub et al. [GST+99] 72 3571
leukaemia lge Golub et al. [GST+99] 72 7129
prostate Singh et al. [SFR+02] 102 6033
duke West et al. [WBD+01] 44 7129
dorothea NIPS 2003 [GGBHD03] 800 100000

First five datasets are real-valued, Dorothea is binary and very sparse.
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Experiments: Protocol
Standardized features to have mean 0 and variance 1. For gene
arrays ran experiments on 100 independent splits, for Dorothea
used single (competition) split.
For gene arrays, in each split took 12 points for testing, rest for
training. For Dorothea 800 points for training, 350 for testing.
For data space experiments on colon and leukemia used
ridge-regularized FLD and fitted regularization parameter using
5-fold CV independently on each split, search in
{2−11,2−10, . . . ,2}.
For other gene array datasets we used diagonal FLD in the data
space (size, no sig. diff. in error on colon, leuk.). For Dorothea
used Bernoulli NB without preprocessing the binary data.
Compared performance with SVM with linear kernel and
parameter C fitted by 5-fold CV, search in {2−10,2−9, . . . ,210},
also compared with `1-regularized SVM.
RP base learners: FLDs with full covariance and no regularization.
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Experiments: Results for k = ρ/2

Table: Mean test error rates ± 1 standard error, estimated from 100
independent splits with k = ρ/2. (Dorothea: single data split, error rates from
10 independent RP-FLD ensembles).

Dataset ρ/2 100 RP-FLD 1000 RP-FLD SVM
colon 24 13.58 ± 0.89 13.08 ± 0.86 16.58 ± 0.95
leuk. 29 1.83 ± 0.36 1.83 ± 0.37 1.67 ± 0.36
leuk.lg. 29 4.91± 0.70 3.25 ± 0.60 3.50 ± 0.46
prost. 44 8.00 ± 0.76 8.00 ± 0.72 8.00 ± 0.72
duke 15 17.41 ±1.27 16.58 ± 1.27 13.50 ± 1.10
dorothea 399 8.66 ± 0.044 8.80 ± 0.038 86.86 (33.43 NB)
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Experiments: Colon Cancer, Rij ∼ N (0,1)
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Figure: Plot shows test error rate versus k and error bars mark 1 standard
error estimated from 100 runs.
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Effect of k : Leukemia Large, Rij ∼ N (0,1)
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Figure: Plot shows test error rate versus k and error bars mark 1 standard
error estimated from 100 runs.
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Experiments: Prostate Cancer, Rij ∼ N (0,1)
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Figure: Plot shows test error rate versus k and error bars mark 1 standard
error estimated from 100 runs.
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Experiments: Duke Breast Cancer, Rij ∼ N (0,1)
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Figure: Plot shows test error rate versus k and error bars mark 1 standard
error estimated from 100 runs.
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Effect of k : Dorothea, Rij ∼ N (0,1)
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Naive Bayes data space
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Averaging 1000 RP−FLDs

Figure: Plot shows test error rate versus k and error bars mark 1 standard
error estimated from 100 runs.
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Effect of M: Leukemia, Rij ∼ N (0,1)

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

leukemia

 

 

FLD
RP−FLD k=5 Averaging
RP−FLD k=25 Averaging
RP−FLD k=100 Averaging
RP−FLD k=500 Averaging

Figure: Plot shows test error rate versus ensemble size for various choices of
k . Error bars mark 1 s.e. estimated from 100 runs.
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Bernoulli RP Matrix: Leukemia, Rij ∼ {−1,+1}
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Figure: Plot shows test error rate versus ensemble size for various choices of
k . Error bars mark 1 s.e. estimated from 100 runs.
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Sparse RP Matrix: Leukemia, Rij ∼ {−1,0,+1}
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Figure: Plot shows test error rate versus ensemble size for various choices of
k . Error bars mark 1 s.e. estimated from 100 runs.

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 85 / 113



Comparison with Majority Vote: Leukemia,
Rij ∼ N (0,1)
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Figure: Plot shows test error rate versus ensemble size for various choices of
k for majority vote classifier. Error bars mark 1 s.e. estimated from 100 runs.
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Answers from Ensembles of RP-FLD

Can we recover (or improve on) level of classification performance
in data space, using the RP FLD ensemble? YES
Can we understand how the RP FLD ensemble acts to improve
performance? YES
Can we overfit the data with the RP FLD ensemble? NO (with
appropriate choice of k )
Can we interpret the ensemble classifier parameters in terms of
data space parameters? YES
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Applications (2)
Large-scale Unconstrained Continuous

Optimization using EDA
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Estimation of Distribution Algorithm

EDA is a state-of-the art heuristic optimization scheme for
unconstrained real optimization problems (in low-dimensional settings).
Evolutionary algorithm-like approach - the main loop runs until
stopping criteria are met, and looks like:

1 Evaluate the objective function on a population of N candidate
solutions, and select the N ′ best individuals.

2 Assume these N ′ best individuals were drawn i.i.d from a
multivariate Gaussian, and estimate its mean µ and covariance
matrix Σ by µ̂ and Σ̂ using them.

3 Sample N new candidate solutions from the estimated distribution.
4 Go to 1.

Comment: One can show that the eigenvalues of Σ̂ act like ‘learning
rates’ or ‘temperatures’, and good estimates of them imply (under
conditions) an optimal search policy.
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Problems when Scaling Up EDA

In practice, objective functions evaluations are typically costly and so
one tries to keep the population size N > N ′ as small as possible.
Then:

If there are d parameters to optimize, and d is large, it is infeasible
to have a full-rank estimate of Σ̂ (i.e. to have N ′ > d + 1).
ML estimates of eigenvalues from few samples are very poor - the
extrema are typically out by orders of magnitude.
Sampling from a Gaussian in Rd is an O

(
d3) operation, and this

is also infeasible if d is large.
Diagonal constraints on Σ̂ and other simple regularizers can work
poorly, and don’t solve the issue of the sampling cost.

We want an approach that will: Keep N small, improve the eigenvalue
estimates, NEVER sample in Rd , avoid unjustified constraints on Σ̂,
and still obtain good outcomes from the optimization scheme.
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Our Approach
Use random projections and simple averaging to implement a
scaleable divide-and-conquer scheme for high-dimensional EDA
[KBD13].

We make M different random projections of the N ′ best points, where
the projection dimension is k � N ′.

Estimate the Gaussian distribution in each of these M RP spaces, and
sample a new population of size N from each one.

Project the new populations back to Rd using the transpose of the
corresponding RP matrix.

Generate a new d-dimensional sample of size N in Rd , by averaging
the populations. i.e. for j = 1, . . . ,N set:

xj =
1
M

M∑
i=1

RT
i Rix

(i)
j
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Why might this help?
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Search using ML estimate is
constrained to lie in the range
of Σ̂.

Diagonally-constrained EDA
searches whole space, but
ignores orientation of fitness
density of the parent
population.

Sampling from RP subspaces
and averaging respects
orientation of the fitness
density, while still searching
whole space.
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Does it work?
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(Small is good here.)
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Take me home!
Random projections have a wide range of theoretically
well-motivated and effective applications in machine learning and
data mining.
In particular, random projections:

are easy to implement,
can reduce time and space complexity of algorithms for small
performance cost, and
can be used to construct parallel implementations of existing
algorithms.

Because random projection is independent of data distribution,
theoretical analysis possible unlike many deterministic
approaches.
In particular, can avoid worst-case guarantees for random
projections but not (usually) for approaches such as PCA.
In high dimensions RP matrices act like approximate isometries,
preserving geometric properties of data well but in a lower
dimensional space.
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Thank You!
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Appendix

Proposition JLL for dot products.
Let xn,n = {1 . . .N} and u be vectors in Rd s.t. ‖xn‖, ‖u‖ 6 1.
Let R be a k × d RP matrix with i.i.d. entries Rij ∼ N (0,1/

√
k) (or with

zero-mean sub-Gaussian entries).
Then for any ε, δ > 0, if k ∈ O

( 8
ε2

log(4N/δ)
)

w.p. at least 1− δ we
have:

|xT
n u − (Rxn)T Ru| < ε (5)

simultaneously for all n = {1 . . .N}.
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Proof of JLL (1)

We will prove the following ‘distributional’ version of the JLL, and then
show that this implies the original theorem:

Theorem (Distributional JLL)

Let ε ∈ (0,1). Let k ∈ N such that k > Cε−2 log δ−1, for a large enough
absolute constant C. Then there is a random linear mapping
P : Rd → Rk , such that for any unit vector x ∈ Rd :

Pr
{

(1− ε) 6 ‖Px‖2 6 (1 + ε)
}
> 1− δ

No loss to take ‖x‖ = 1, since P is linear.
Note that the projected dimension k depends only on ε and δ.
Lower bound k ∈ Ω(ε−2 log δ−1) sharp for randomized
dimensionality reduction [KMN11, LN14].
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Proof of JLL (2)

Consider the following simple mapping:

Px :=
1√
k

Rx

where R ∈Mk×d with entries Rij
i.i.d∼ N (0,1).

Let x ∈ Rd be an arbitrary unit vector.
We are interested in quantifying:

‖Px‖2 =

∥∥∥∥ 1√
k

Rx
∥∥∥∥2

:=

∥∥∥∥ 1√
k

(Y1,Y2, . . . ,Yk )

∥∥∥∥2

=
1
k

k∑
i=1

Y 2
i =: Z

where Yi =
∑d

j=1 Rijxj .
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Proof of JLL (3)

Recall that if Wi ∼ N (µi , σ
2
i ) and the Wi are independent, then∑

i Wi ∼ N
(∑

i µi ,
∑

i σ
2
i

)
. Hence, in our setting, we have:

Yi =
d∑

j=1

Rijxj ∼ N

 d∑
j=1

E[Rijxj ],
d∑

j=1

Var(Rijxj)

 ≡ N
0,

d∑
j=1

x2
j


and since ‖x‖2 =

∑d
j=1 x2

j = 1 we therefore have:

Yi ∼ N (0,1) , ∀i ∈ {1,2, . . . , k}

it follows that each of the Yi are standard normal RVs and therefore
kZ =

∑k
i=1 Y 2

i is χ2
k distributed.

Now we complete the proof using a standard Chernoff-bounding
approach.
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Proof of JLL (4)

Pr{Z > 1 + ε} = Pr{exp(tkZ ) > exp(tk(1 + ε))}, ∀t > 0
Markov ineq. 6 E [exp(tkZ )] /exp(tk(1 + ε)),

Yi indep. =
k∏

i=1

E
[
exp(tY 2

i )
]
/exp(tk(1 + ε)),

mgf of χ2 =
[
exp(t)

√
1− 2t

]−k
exp(−ktε),∀t < 1/2

next slide 6 exp
(

kt2/(1− 2t)− ktε
)
,

6 e−ε
2k/8, taking t = ε/4 < 1/2.

Pr{Z < 1− ε} = Pr{−Z > ε− 1} is tackled in a similar way and gives
same bound. Taking RHS as δ/2 and applying union bound completes
the proof (for a single x).

R.J.Durrant (U.Waikato) Unreasonable Effectiveness of RP in CS HDM 2014 108 / 113



Estimating (et
√

1− 2t)−1

(
et√1− 2t

)−1
= exp

(
−t − 1

2
log(1− 2t)

)
,

Maclaurin S. for log(1− x) = exp
(
−t − 1

2

(
−2t − (2t)2

2
− . . .

))
,

= exp
(

(2t)2

4
+

(2t)3

6
+ . . .

)
,

6 exp
(

t2
(

1 + 2t + (2t)2 . . .
))

,

= exp
(

t2/ (1− 2t)
)

since 0 < 2t < 1
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Randomized JLL implies Deterministic JLL

Solving δ = 2 exp(−ε2k/8) for k we obtain
k = 8/ε2 log δ−1 + log 2. i.e. k ∈ O

(
ε−2 log δ−1).

Let V = {x1, x2, . . . , xN} an arbitrary set of N points in Rd and set
δ = 1/N2, then k ∈ O

(
ε−2 log N

)
.

Applying union bound to the randomized JLL proof for all
(N

2

)
possible interpoint distances, for N points we see a random JLL
embedding of V into k dimensions succeeds with probability at
least 1−

(N
2

) 1
N2 >

1
2 .

We succeed with positive probability for arbitrary V . Hence we
conclude that, for any set of N points, there exists linear
P : Rd → Rk such that:

(1− ε)‖xi − xj‖2 6 ‖Pxi − Pxj‖2 6 (1 + ε)‖xi − xj‖2

which is the (deterministic) JLL.
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Comment (2)

In the proof of the randomized JLL the only properties we used which
are specific to the Gaussian distribution were:

1 Closure under additivity.
2 Bounding squared Gaussian RV using mgf of χ2.

In particular, bounding via the mgf of χ2 gave us exponentially fast
concentration about mean norm.

Can do similar for matrices with zero-mean sub-Gaussian entries also:
Sub-Gaussians are those distributions whose tails decay no slower
than a Gaussian, e.g. practically all bounded distributions have this
property.

We obtain similar guarantees (i.e. up to small multiplicative constants)
for sub-Gaussian RP matrices too!
This allows us to get around issue of dense matrix multiplication in
dimensionality-reduction step.
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Proof of JLL for dot products
Outline: Fix one n, use parallelogram law and JLL twice, then use
union bound.

4(Rxn)T (Ru) = ‖Rxn + Ru‖2 − ‖Rxn − Ru‖2 (6)
> (1− ε)‖xn + u‖2 − (1 + ε)‖xn − u‖2 (7)
= 4xT

n u − 2ε(‖xn‖2 + ‖u‖2) (8)
> 4xT

n u − 4ε (9)

Hence, (Rxn)T (Ru) > xT
n u − ε, and because we used two sides of JLL,

this holds except w.p. no more than 2 exp(−kε2/8).
The other side is similar and gives (Rxn)T (Ru) 6 xT

n u + ε except w.p.
2 exp(−kε2/8).
Put together, |(Rxn)T (Ru)− xT

n u| 6 ε · ‖x‖
2+‖u‖2

2 6 ε holds except w.p.
4 exp(−kε2/8).
This holds for a fixed xn. To ensure that it holds for all xn together, we
take union bound and obtain eq.(5) must hold except w.p.
4N exp(−kε2/8). Finally, solving for δ we obtain that k > 8

ε2
log(4N/δ).
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