Introduction

The Waikato Environment for Knowledge Analysis (Weka) is a comprehensive suite of Java class libraries that implement many state-of-the-art machine learning and data mining algorithms. Weka is freely available on the World-Wide Web and accompanies a new textbook on data mining [1] which documents and fully explains all the algorithms it contains. Applications written using the Weka class libraries can be run on any computer with a Web browsing capability; this allows users to apply machine learning techniques to their own data regardless of computer platform.

Tools are provided for pre-processing data, feeding it into a variety of learning schemes, and analyzing the resulting classifiers and their performance. An important resource for navigating through Weka is its on-line documentation, which is automatically generated from the source.

The primary learning methods in Weka are “classifiers”; and they induce a rule set or decision tree that models the data. Weka also includes algorithms for learning association rules and clustering data. All implementations have a uniform command-line interface. A common evaluation module measures the relative performance of several learning algorithms over a given data set.

Tools for pre-processing the data, or “filters,” are another important resource. Like the learning schemes, filters have a standardized command-line interface with a set of common command-line options.

The Weka software is written entirely in Java to facilitate the availability of mining tools regardless of computer platform. The system is, in sum, a suite of Java packages, each documented to provide developers with state-of-the-art facilities.

Java and the class library

One advantage of developing a system in Java is its automatic support for documentation. Descriptions of each of the class libraries are automatically compiled into HTML, providing an invaluable resource for programmers and application developers alike.

The Java class libraries are organized into logical packages—directories containing a collection of related classes. The set of packages is illustrated in Figure 1. They provide interfaces to pre-processing routines including feature selection, classifiers for both categorical and numeric learning tasks, meta-classifiers for enhancing the performance of classifiers (for example, boosting and bagging), evaluation according to different criteria (for example, accuracy, entropy, root-squared mean error, class-sensitive classification, etc.) and experimental support for verifying the robustness of models (cross-validation, bias-variance decomposition, and calculation of the margin).

Weka’s core

The core package contains classes that are accessed from almost every other class in Weka. The most important classes in it are Attribute, Instance, and Instances. An object of class Attribute represents an attribute—it contains the attribute’s name, its type, and, in case of a nominal attribute, its possible values. An object of class Instance contains the attribute values of a particular instance; and an object of class Instances contains an ordered set of instances—in other words, a dataset.

Data Pre-Processing

Weka’s pre-processing capability is encapsulated in an extensive set of routines, called filters, that enable data to be processed at the instance and attribute value levels. Table 1 lists the most important filter algorithms that are included.

<table>
<thead>
<tr>
<th>filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddFilter</td>
<td>Adds a new attribute to the data set.</td>
</tr>
<tr>
<td>DeleteFilter</td>
<td>Removes an attribute from the data set.</td>
</tr>
<tr>
<td>MakeIndicatorFilter</td>
<td>Converts a nominal attribute to an indicator attribute.</td>
</tr>
<tr>
<td>MergeAttributeValuesFilter</td>
<td>Merges values of attributes.</td>
</tr>
<tr>
<td>NominalToBinaryFilter</td>
<td>Converts nominal attributes to binary attributes.</td>
</tr>
<tr>
<td>SelectFilter</td>
<td>Selects a subset of attributes.</td>
</tr>
<tr>
<td>ReplaceMissingValuesFilter</td>
<td>Replaces missing values with a default value.</td>
</tr>
<tr>
<td>SwapAttributeValuesFilter</td>
<td>Swaps values of two attributes.</td>
</tr>
<tr>
<td>DiscretiseFilter</td>
<td>Discretizes continuous attributes.</td>
</tr>
<tr>
<td>NumericTransformFilter</td>
<td>Performs a numeric transformation on the data.</td>
</tr>
</tbody>
</table>

Table 1: The filter algorithms in Weka

General manipulation of attributes

Many of the filter algorithms provide facilities for general manipulation of attributes. For example, the first two items in Table 1, AddFilter and DeleteFilter, insert and delete attributes. MakeIndicatorFilter transforms a nominal attribute into a binary indicator attribute. This is useful when
a multi-class attribute should be represented as a two-class attribute.

In some cases it is desirable to merge two values of a nominal attribute into a single value. This can be done in a straightforward way using MergeAttributeValuesFilter. The name of the new value is a concatenation of the two original ones.

Some learning schemes—for example, support vector machines—can only handle binary attributes. The advantage of binary attributes is that they can be treated as either being nominal or numeric. NominalToBinaryFilter transforms multi-valued nominal attributes into binary attributes.

SelectFilter is used to delete all instances from a dataset that exhibit one of a particular set of nominal attribute values, or a numeric value below or above a certain threshold.

One possibility of dealing with missing values is to globally replace them before the learning scheme is applied. ReplaceMissingValuesFilter substitutes the mean (for numeric attributes) or the mode (for nominal attributes) for each missing value.

Transforming numeric attributes

Some filters pertain specifically to numeric attributes. For example, an important filter for practical applications is the DiscretiseFilter. It implements an unsupervised and a supervised discretization method. The unsupervised method implements equal width binning. If the index of a class attribute is set, the method will perform supervised discretization using MDL [2].

In some applications, it is appropriate to transform a numeric attribute before a learning scheme is applied, for example, to replace each value by its square root. NumericTransformFilter transforms all numeric attributes among the selected attributes using a user-specified transformation function.

Feature Selection

Another essential data engineering component of any applied machine learning system is the ability to select potentially relevant features for inclusion in model induction. The Weka system provides three feature selection systems: a locally produced correlation based technique [3], the wrapper method and Relief [4].

Learning schemes

Weka contains implementations of many algorithms for classification and numeric prediction, the most important of which are listed in Table 2. Numeric prediction is interpreted as prediction of a continuous class. The Classifier class defines the general structure of any scheme for classification or numeric prediction.

| weka.classifiers.ZeroR |
| weka.classifiers.OneR |
| weka.classifiers.NaiveBayes |
| weka.classifiers.DecisionTable |
| weka.classifiers.J48 |
| weka.classifiers.j48 |
| weka.classifiers.sm5 |
| weka.classifiers.sm5Prime |
| weka.classifiers.LR |
| weka.classifiers.DecisionStump |

Table 2: The basic learning schemes in Weka

The most primitive learning scheme in Weka, ZeroR, predicts the majority class in the training data for problems with a categorical class value, and the average class value for numeric prediction problems. It is useful for generating a baseline

Figure 1 Package Hierarchy in Weka
performance that other learning schemes are compared to. In some cases, it is possible that other learning schemes perform worse than ZeroR, an indicator of substantial overfitting.

The next scheme,

\textit{OverR}, produces very simple rules based on a single attribute [5]. \textit{NaiveBayes} implements the probabilistic Naive Bayesian classifier. \textit{DecisionTable} employs the wrapper method to find a good subset of attributes for inclusion in the table. This is done using a best-first search. \textit{IBk} is an implementation of the k-nearest-neighbours classifier [6]. The number of nearest neighbours (k) can be set manually, or determined automatically using cross-validation.

\textit{j48} is an implementation of C4.5 release 8 [7] that produces decision trees. This is a standard algorithm that is widely used for practical machine learning. \textit{Part} is a more recent scheme for producing sets of rules called “decision lists”; it works by forming partial decision trees and immediately converting them into the corresponding rule. \textit{SMO} implements the “sequential minimal optimization” algorithm for support vector machines which are an important new paradigm in machine learning [8].

The next three learning schemes in Table 2 represent methods for numeric prediction. The simplest is linear regression. \textit{MSPrime} is a rational reconstruction of Quinlan’s M5 model tree inducer [9]. \textit{LWR} is an implementation of a more sophisticated learning scheme for numeric prediction, using locally weighted regression [10].

\textit{DecisionStump} builds simple binary decision "stumps" (1-level decision trees) for both numeric and nominal classification problems. It copes with missing values by extending a third branch from the stump—in other words, by treating “missing” as a separate attribute value. \textit{DecisionStump} is mainly used in conjunction with the \textit{LogitBoost} boosting method, discussed in the next section.

\textbf{Meta-Classifiers}

Recent developments in computational learning theory have led to methods that enhance the performance and extend the capabilities of these basic learning schemes. We call these performance enhancers “meta-learning schemes” or “meta-classifiers” because they operate on the output of other learners. Table 3 summarizes the most important meta-classifiers in \textit{Weka}.

The first of these schemes is an implementation of the bagging procedure [11]. This implementation allows a user to set the number of bagging iterations to be performed.

\textit{AdaBoostM1} [12] similarly gives the user control over the boosting iterations performed. Another boosting procedure is implemented by \textit{LogitBoost} [13], which is suited to problems involving two-class situations—for example, the \textit{SMO} class from above. In order to apply these schemes to multi-class datasets it is necessary to transform the multi-class problem into several two-class ones, and combine the results. \textit{MultiClassClassifier} does exactly that.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{W-L Wins Loss} & \textbf{Scheme} & \textbf{Scheme} \\
\hline
208 & 254 & 46 \textit{LogitBoost -10 Decision Stump} \\
155 & 230 & 75 \textit{LogitBoost -10 Decision Stump} \\
132 & 214 & 82 \textit{AdaBoostM1 Decision Trees} \\
118 & 209 & 91 \textit{Naive Bayes} \\
62 & 183 & 121 \textit{Decision Trees} \\
14 & 168 & 154 \textit{IBk Instance-based learner} \\
\textbf{-65} & \textbf{120} & \textbf{185} \textit{AdaBoostM1 Decision Stump} \\
\textbf{-140} & \textbf{90} & \textbf{230} \textit{OneR—Simple Rule learner} \\
\textbf{-166} & \textbf{77} & \textbf{243} \textit{Decision Stump} \\
\textbf{-195} & \textbf{9} & \textbf{204} \textit{ZeroR} \\
\hline
\end{tabular}
\caption{Ranking schemes}
\end{table}

\textbf{Additional learning schemes}

\textit{Weka} is not limited to supporting classification schemes; the class library includes representative implementations from other learning paradigms.

\textbf{Association rules}

\textit{Weka} contains an implementation of the \textit{Apriori} learner for generating association rules, a commonly used technique in market basket analysis [14]. This algorithm does not seek rules that predict a particular class attribute, but rather looks for any rules that capture strong associations between different attributes.

\textbf{Clustering}

Methods of clustering also do not seek rules that predict a particular class, but rather try to divide the data into natural groups or “clusters.” \textit{Weka} includes an implementation of the EM algorithm, which can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables.

\textbf{Evaluation and Benchmarking}

One of the key aspects of the \textit{Weka} suite is the ability it provides to evaluate learning schemes consistently. Table 4 contains a condensed summary of the current “league table” in terms of applying the machine learning schemes to all of the datasets we have collected (37 from the UCI repository [14]). All schemes are tested by ten by ten stratified cross-validation.
Column 2, Wins, is the number of datasets for which the scheme performed significantly better (at the 95% confidence level) than another scheme. Loss is the number of datasets for which a scheme performed significantly worse than another scheme. W-L is the difference between wins and losses to give an overall score. It would appear, for these 37 test sets, that Logit boosting simple stumps for 10 or 100 iterations is the best overall method among the schemes available in Weka.

Building Applications with Weka

In most data mining applications the machine learning component is just a small part of a far larger software system. To accommodate this, it is possible to access the programs in Weka from inside one’s own code. This allows the machine learning subproblem to be solved with a minimum of additional programming.

For example, Figure 2 shows a Weka applet written to test the usefulness of machine learning techniques in the objective measurement of mushroom quality. Image processing a picture of a mushroom cap (as left in Figure 2) provides data for the machine learning scheme to differentiate between A, B and C grade mushrooms [15].

![Figure 2: Mushroom grading applet](image)

Conclusions

As the technology of machine learning continues to develop and mature, learning algorithms need to be brought to the desktops of people who work with data and understand the application domain from which it arises. It is necessary to get the algorithms out of the laboratory and into the work environment of those who can use them. Weka is a significant step in the transfer of machine learning technology into the workplace.

References