Accelerating Convolutional Neural Network Systems

Henry G.R. Gouk

This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Computing and Mathematical Sciences with Honours (BCMS(Hons)) at The University of Waikato.

COMP520-14C (HAM)

© 2014 Henry G.R. Gouk
Abstract

Convolutional Neural Networks have recently been shown to be highly effective classifiers for image and speech data. Due to the large volume of data required to build useful models, and the complexity of the models themselves, efficiency has become one of the primary concerns. This work shows that frequency domain methods can be utilised to accelerate the performance training, inference, and sliding window classification, despite the problem of CNNs using small kernels. A speedup is demonstrated on several applications including traffic sign detection and a range image classification tasks.
Acknowledgements

First and foremost, I would like to thank supervisor, Anthony Blake, for the inspiration and guidance he has given me. I would also like to thank John Perrone for the discussions about biologically accurate neural networks, and both Michael Cree and John for the feedback they provided.

I am grateful to the other members of the Advanced Computation Group for the interesting discussions and wish them well for their respective projects. I would also like to thank Joanna for helping me gather New Zealand traffic sign images, that I was unfortunately not able to utilise due to time constraints.

Finally, thanks go to all my other friends and family for tolerating my incessant rambling about what I have been doing all year.

Contents

1 Introduction 1
 1.1 Motivation 2
 1.2 Scope 3

2 Background 4
 2.1 Convolutional Neural Networks 4
 2.2 Previous Work 5

3 Accelerating Training 8
 3.1 Frequency Domain Methods 9
 3.1.1 Forward Propagation 10
 3.1.2 Backpropagation 12
 3.2 Signals of Arbitrary Dimensions 15
 3.2.1 Fourier Transforms 15
 3.2.2 Padded Signal Reversal 16
 3.2.3 Pooling 17
 3.3 Implementation Considerations 18
 3.3.1 Locality Of Reference 18
 3.3.2 SIMD 19
 3.3.3 Control Instructions 20
 3.4 Results 22

4 Accelerating Sliding Window Classification 29
 4.1 Method 30
 4.1.1 Algorithmic Enhancements 30
List of Figures

2.1 A 1-D convolutional network, without a pooling layer. Note that first and second layers are not fully connected.

3.1 Example of a vector operation. Diagram provided by Tim Leathart.

3.2 This pie chart shows the percentage of run time spent executing each operation during the training of the CIFAR-10 network described in Chapter 5.

3.3 A plot of the minibatch size versus the average time per epoch of training for a convolutional layer with 32 input and output channels of 64×64 pixels, with 5×5 kernels.

3.4 A plot of the input dimensions versus the time (seconds) for training on a convolutional layer. Square input images are used, with the value of N used for both the width and height.

3.5 A plot of the kernel dimensions versus the time (seconds) for training on a convolutional layer. Square kernels are used, with the value of N used for both the width and height.

3.6 A plot of the relative speedup of the frequency domain approach over the spatial domain approach as the number of input channels is varied.

3.7 A plot of the relative speedup of the frequency domain approach over the spatial domain approach as the number of output channels is varied.
4.1 A plot of the input dimensions versus the time (seconds) for sliding inference with a convolutional layer. Square input images are used, with the value of N used for both the width and height. The kernels were 5×5 pixels, and there were 32 input and output channels. A sub-window size of 32×32 pixels is used.

4.2 A plot of the sub-window dimensions versus the time (seconds) for sliding inference with a convolutional layer. 512×512 pixel input images are used, the kernels were 5×5 pixels, and there were 32 input and output channels.

4.3 A plot of the relative speedup of the unrolled sliding window fully connected layer over using a space domain convolutional layer with 1×1 kernels.

5.1 A collection of images from the MNIST dataset.

5.2 A collection of images from the GTSRB dataset.

5.3 A collection of images from the CIFAR-10 dataset. Source: http://www.cs.toronto.edu/~kriz/cifar.html

5.4 A plot showing the average time over 10 runs required to train on 10,000 images from the MNIST, GTSRB, and CIFAR-10 datasets for the four different CNN implementations.

5.5 This figure shows how each of the algorithms performs as the dimensions of the image given to the network grows.
List of Algorithms

1 Computes the activations of a convolutional layer using the space domain convolution algorithm. 10
2 Computes the activations of a convolutional layer using the frequency domain convolution algorithm. 11
3 Computes the derivative of the cost function with respect to each activation in the layer previous to a convolutional layer using space domain methods. ... 12
4 Computes the derivative of the cost function with respect to each activation in the layer previous to a convolutional layer using frequency domain methods. 13
5 Computes the error derivatives with respect to each weight in a convolutional layer, with the cross correlation performed in the space domain. .. 14
6 Computes the error derivatives with respect to each weight in a convolutional layer, with the cross correlation performed in the frequency domain. ... 15
7 Reverses the R dimensional signal I of size D and zero pads it to be of size P. ZEROS returns a signal of the specified dimensions where every data point is a zero. 16
8 Finds the maximal element in each non-overlapping section of a uniformly subdivided hypercube. 17
9 Pads the rank R input tensor, I, of size D to be of size P. 57
Crops the rank R input tensor, I, from size D to size V, taking into account a translation in each dimension introduced by the frequency domain convolution algorithm. 57

Crops the rank R input tensor, I, from size D to size V, taking into account a translation in each dimension introduced by the frequency domain convolution algorithm. The output is also reversed in each dimension. 58

Crops the rank R input tensor, I, from size D to size V and reverses the result in each dimension. 58
Chapter 1

Introduction

“The question of whether a computer can think is no more interesting than the question of whether a submarine can swim.”

— Edsger Dijkstra

For decades Machine Learning and Computer Vision researchers have attempted to construct computer systems capable of understanding their surroundings as seen through the lens of a camera. Whether this understanding comes in the form of being able to discriminate between different objects or the ability to manipulate actuators to interact with the environment, progress has been slow but steady. Many attempts were built around hand crafted rules or basic statistical analysis, but people inevitably looked to the brain as an example of how this goal could be accomplished by a proven system. The result of this was the introduction of many algorithms, collectively dubbed “neural networks”, accompanied by claims that they mimic how a human visual cortex interprets the world.

While it is far-fetched to state that these algorithms are biologically accurate, it cannot be denied that some are at least biologically inspired. Convolutional
Neural Networks (CNN) are one of the best examples of this. The convolutional and pooling layers were directly inspired by the results of Hubel and Wiesel’s experiments that revealed the presence of simple and complex cells in the visual cortex [1]. The usage of these two types of layers is the main factor in the success of CNNs over other machine learning algorithms when performing pattern recognition tasks on natural signals – particularly image classification. Although CNNs were first developed almost 25 years ago, it is only recently that they have started to outperform other methods in popular object recognition benchmarks. This is often attributed the ever-growing image datasets and the greatly increased computing power available today, allowing larger and more sophisticated models to be built.

1.1 Motivation

Despite this increase in the performance of modern computing systems, training a modestly sized CNN model is still time consuming. Compounded with the fact that neural networks have a large number of model hyperparameters that must be assigned sensible values through a trial and error process – such as a grid search or Bayesian hyperparameter optimisation – this causes the total time required to build an accurate model to increase massively. As such, the first goal of this project is to design a system that can train CNNs much faster than the conventional methods.

In addition to networks taking a long time to train, there is also the problem of efficiently using a deployed CNN system. This is still quite a broad problem in itself, as the context of how inference is performed using the CNN is quite important. For example, if one is simply classifying a set of fixed sized images then the standard inference procedure, or some optimised variant, can be used. However, if the CNN is part of a larger system, then it is likely that the global structure of the system can be optimised in some way to maximise performance.

This project aims to improve the efficiency of training CNNs, and also the
methods used for inference in a variety of applications. Advances in these areas have the potential to greatly reduce operating costs of large computer systems that rely heavily on CNNs to make predictions, as well as enabling new applications that were previously unfeasible.

1.2 Scope

This project is concerned with the running time of the current methods for using CNNs and how they can be improved without having any change on the accuracy of the final model or the predictions made. With the recent explosion in the use of neural networks it is hardly possible to demonstrate how the performance of all CNN applications can be accelerated on a wide variety of computer systems. For this reason, the scope of the project has been limited to speeding up training, inference, and sliding window classification on desktop computer CPUs. This is accomplished using a mixture of algorithmic and implementation optimisations that are best suited to the problem and target platform. A rigorous evaluation of both the algorithmic and the implementation optimisations is given that shows how much of an impact leveraging knowledge about the underlying machine can have on the overall performance of a program.
CHAPTER 2

BACKGROUND

“Geoff Hinton discovered how the brain really works. Once a year for the last 25 years.”
— Yann LeCun

This chapter describes the current trends in neural network research and where the work conducted during this project fits in with key developments in the field. Firstly, the differences between MLPs and CNNs are presented, and then a short review of previous milestones in specific areas relevant to this project are given.

2.1 CONVOLUTIONAL NEURAL NETWORKS

CNNs can be viewed as extensions to MLPs in two different ways. In one view the convolutional and pooling layers are introduced as completely new types of layers tasked with learning a feature representation that is then fed into a normal MLP. What makes convolutional layers different from fully connected layers is the local connectivity and the shared weights. That is, each unit in a
convolutional layer takes only a subset of the activations in the previous layer as input, and groups of units in convolutional layers share the same weight vector. Pooling layers are then used as a way to accumulate local groups of activations produced by the convolutional layers. Figure 2.1 demonstrates how these layers are connected in the case where a one dimensional signal is being classified.

In the other view, convolutional layers are considered to be an abstraction of fully connected layers that operate on tensors instead of scalars, with convolution used in place of multiplication and pointwise addition used instead of regular addition. The input feature maps, output feature maps, and kernels can all be considered tensors and the pooling layers can be thought of as extensions to the activation functions.

2.2 Previous Work

It has been shown both theoretically and empirically that the number of hidden units in a CNN is strongly correlated to its predictive power [2, 3]. This alone is a compelling reason to accelerate both the rate at which CNNs
can be trained and the speed at which inferences can be performed on newly supplied data. Coupled with this is the desire to scale CNN models to much harder problems with more classes and more complex images [4]. In addition, problems such as object detection and reinforcement learning systems often have real-time constraints.

A plethora of research has been conducted with the aim of shortening the length of time required for CNNs and, more broadly, ANNs to converge towards states of minimal error. The methods produced by this work can be approximately separated into two categories: those that reduce the number of times each instance is processed, and those that reduce the average length of time taken to process each instance.

The first category is comprised of methods like Stochastic Gradient Descent (SGD), the Conjugate Gradient method, and L-BFGS — see [5] for a performance comparison in the context of CNNs. This category also includes augmentations to these training algorithms, such as momentum, Nesterov’s accelerated gradient [6], weight initialization heuristics [7, 8], and various adaptive learning rate schemes [9, 10, 11]. All of these algorithms belong to the field of numerical optimisation, and can be applied to many problems other than training neural networks.

The second category is mainly composed of methods that utilise aspects inherent to the target platform of the CNN implementation. For example, GPU implementations have become more popular than CPU implementations due to the ability of processors belonging to the GPU architecture paradigm to run a simple program in an embarrassingly parallel manner [4, 12, 13]. Extending the idea of massively parallel computations, some cluster based implementations are starting to emerge. Google recently received media coverage for their cluster based neural network implementation that used an asynchronous numerical optimisation algorithm to exploit parallelism between many high speed processors [3]. FPGA implementations have also started to be explored, with the primary focus being on high speed inference [14, 15], allowing efficient deployment for embedded applications.
The work undertaken during this project pertaining to the acceleration of CNNs is based off research conducted during a directed study by the author in the previous year [16]. During the course of this study the forward propagation procedure and part of the training procedure was transformed to be carried in the frequency domain by exploiting the convolution theorem and the linearity property of the Fourier transform. This resulted in a substantial improvement in performance, due to a time complexity change allowing the procedures to scale better to larger networks and input signals. Since that study was conducted another group has implemented a similar system that uses frequency domain methods to train networks [17]. This project extends the ideas presented during the directed study to achieve further acceleration of the training procedure, and also greatly increases the performance of applying CNNs as sliding window classifiers.
Chapter 3

Accelerating Training

“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.”

— John von Neumann

Recently the image datasets available for training CNNs have rapidly grown in size, with respect to the number of images and the size of each image [18]. The first goal of this project was to design a system that allows for training on large datasets in a more scaleable manner.

When faced with the problem of optimising the performance of a system, one must carefully scrutinise the system at every level of abstraction in order to devise a solution that will provide a high level of performance. In the context of training CNNs this involved looking at the entire system that encompasses the CNN, the algorithms used, their implementations, and the hardware executing the machine code. In other words, optimisations were performed at several layers of abstraction.
3.1 Frequency Domain Methods

The idea of using frequency domain methods to accelerate the training of CNNs was first introduced during a directed study carried out during the year previous to this project [16], and also explored by [17]. Over the course of this study algorithms that exploit frequency domain characteristics of signals were devised to speed up the forward propagation and backpropagation procedures involved in the training process. In the report it is mentioned that further improvements could be made by transforming more of the training process to use frequency domain methods. The process of achieving this enhancement is described in this section. A concise derivation of the entire frequency domain set of methods is given, including those developed during the directed study.

The training process can be divided into four distinct phases:

Forward Propagation is the process of performing an inference on the supplied instance. The current predictions made by the CNN are required in order to compute the error attributable to each instance, which is needed to modify the weights of the network.

Backpropagation is the procedure used to compute the derivative of the error function with respect to each weight in the network. In this work backpropagation refers to calculating the error derivative with respect to the activation value of each unit in the network.

Gradient Calculation is actually the second part of the backpropagation procedure. During this phase the error derivatives with respect to the activations are used to calculate the derivatives for each weight.

Weight Updating is done after the error derivatives with respect to each weight have been accumulated for a minibatch. These gradients are then used to change the weights in such a way that the error is likely to be reduced. In this work SGD is used as the update rule.

The forward propagation, gradient calculation, and weight update stages were all modified to use frequency domain methods in [16], leaving just the
Algorithm 1 Computes the activations of a convolutional layer using the space domain convolution algorithm.

```plaintext
function SpaceForward(I, N, M, K, B, g)
    for o = 1 to M do
        for i = 1 to N do
            O_o ← O_o + I_i * K_o,i
        end for
        O_o ← g(O_o + B_o)
    end for
    return O
end function
```

remainder of the backpropagation procedure to be changed in this work and new performance measurements to be carried out.

3.1.1 Forward Propagation

The usual procedure for computing the activations of a convolutional layer is given by Algorithm 1. Two properties of the Fourier transform, namely the convolution theorem and the linearity property, that allow this procedure to be modified to utilise frequency domain methods are given in Equations 3.1 and 3.2, respectively. The convolution theorem has a long history of being used for accelerating the application of moderately sized filters to images through the use of fast Fourier transforms. The problem with applying this fast convolution algorithm to CNNs is that the typical kernel sizes used are too small to gain a speedup when using frequency domain methods, and in most cases performance will actually degrade noticeably. To get around this the linearity property can be used to eliminate a substantial number of inverse transforms by accumulating the results of the convolutions in the frequency domain, instead of performing the accumulation in the space domain. Another small optimisation is adding the bias term to the DC component of the frequency domain representation instead of adding it to each element of the feature map in the space domain.
Algorithm 2 Computes the activations of a convolutional layer using the frequency domain convolution algorithm.

1: function FrequencyForward(I, N, M, K, B, g)
2: for $i = 1$ to N do
3: $J_i \leftarrow \mathcal{F}\{I_i\}$
4: end for
5: for $o = 1$ to M do
6: for $i = 1$ to N do
7: $O_o \leftarrow O_o + J_i \cdot K_{o,i}$
8: end for
9: $O_o \leftarrow g(\mathcal{F}^{-1}\{O_o + B_o\})$
10: end for
11: return O
12: end function

\[f * g = \mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\} \] \hspace{1cm} (3.1)

\[\mathcal{F}\{f + g\} = \mathcal{F}\{f\} + \mathcal{F}\{g\} \] \hspace{1cm} (3.2)

The resulting procedure is given in Algorithm 2. It is assumed that the kernels, K, have been zero-padded to be the same dimensions as the input image and that they are supplied in the frequency domain. This is a reasonable requirement as the kernels only change at the end of each minibatch of training, therefore that is the only time their Fourier transforms must be computed.

By modifying the conventional forward propagation procedure to use the frequency domain convolution method, the worst case time complexity of the entire algorithm has changed. The original space domain version of the algorithm had a worst case time complexity of $O(NMIK)$, where N is the number of input feature maps, M is the number of output feature maps, I is the number of elements in each input map, and K is the number of elements in each kernel. In contrast to this, the worst case time complexity for the frequency domain method is $O(MNI + NI\log I + MI\log I)$. Note that the
Algorithm 3 Computes the derivative of the cost function with respect to each activation in the layer previous to a convolutional layer using space domain methods.

1: function SpaceBackward($\frac{\delta J}{\delta z}$, K, N, M)
2: for $i = 1$ to N
3: for $o = 1$ to M
4: $B_i \leftarrow B_i + \frac{\delta J}{\delta z_o} \ast \text{REVERSE}(K_{o,i})$
5: end for
6: end for
7: return B
8: end function

running time of the algorithm no longer depends on the size of the kernels used.

3.1.2 BACKPROPAGATION

The backpropagation procedure is responsible for computing the derivative of the cost function, $J(\vec{x})$, with respect to each weight in the network. These values are then accumulated across a set of the training instances and used to perform a weight update. This process can be further divided into two parts; computing $\frac{\delta J}{\delta w}$, where w is a weight, and computing $\frac{\delta J}{\delta a}$, where a is the activation of a unit in the previous layer.

The first stage of the backpropagation procedure is responsible for actually backpropagating the errors of one layer to the preceding layer in the network. The space domain algorithm for calculating the derivative of the cost with respect to each unit in the previous layer of the network is given in Algorithm 3. In the two dimensional case, reversing the kernel in each dimension has the same effect as rotating it by 180 degrees. By convolving the error derivatives, $\frac{\delta J}{\delta a}$, with the rotated kernel, the cross-correlation between the two signals is computed.

The strategy used to accelerate the forward propagation can also be applied here. One potential problem with directly applying the same technique is that kernels must be rotated and padded before the convolution operation.
Algorithm 4 Computes the derivative of the cost function with respect to each activation in the layer previous to a convolutional layer using frequency domain methods.

1: function FrequencyBackward($\frac{\delta J}{\delta z}$, K, N, M)
2: for $i = 1$ to N do
3: for $o = 1$ to M do
4: $B_i \leftarrow B_i + \frac{\delta J}{\delta z_o} \cdot K_{o,i}$
5: end for
6: $B_i \leftarrow F^{-1}\{\text{CropReverse}(B_i)\}$
7: end for
8: return B
9: end function

is performed. Since the kernels have been supplied in the frequency domain this would require transforming them back into the space domain, padding and rotating the image, and then once again transforming them into the frequency domain. Alternatively, one could take the complex conjugate of each kernel to perform the reversal, and then modify the imaginary component of each element to affect a translation equivalent to padding. This option is computation heavy compared to the third option; reverse each error derivative map for this layer (which is already done during the calculate gradients step), and then reverse the result of the cross correlation, yielding an error derivative map for the previous layer in the network. Algorithm 4 provides pseudocode for this method. Once again the kernels are expected to be in the frequency domain, but in this case derivatives, $\frac{\delta J}{\delta z}$, are also expected to be in the frequency domain. This can be accomplished by simply storing these values when they are computed during the gradient calculation step.

As with the forward propagation procedure, the worst case time complexity of the space domain method for backpropagation is $O(NMIK)$, and $O(NMI + NI\log I)$ for the frequency domain method.

The gradient calculation stage of the backpropagation procedure uses the error derivatives with respect to each unit in a convolutional layer to compute the error derivatives with respect to each weight in the layer. The conventional approach to performing the step is outlined in Algorithm 5. Note that
Algorithm 5 Computes the error derivatives with respect to each weight in a convolutional layer, with the cross correlation performed in the space domain.

```
1: function SpaceCalculateGradients(\( \frac{\delta J}{\delta K}, \frac{\delta J}{\delta a}, \frac{\delta a}{\delta z}, I, N, M \))
2: for \( o = 1 \) to \( M \) do
3: \( \frac{\delta J}{\delta z_o} \leftarrow \frac{\delta J}{\delta a_o} \cdot \frac{\delta a_o}{\delta z_o} \)
4: \( \frac{\delta J}{\delta b_o} \leftarrow \text{SumComponents}(\frac{\delta J}{\delta z_o}) \)
5: for \( i = 1 \) to \( N \) do
6: \( T \leftarrow I_i \ast \text{REVERSE}(\frac{\delta J}{\delta z_o}) \)
7: \( \frac{\delta J}{\delta K_{o,i}} \leftarrow \frac{\delta J}{\delta K_{o,i}} + \text{REVERSE}(T) \)
8: end for
9: end for
10: return (\( \frac{\delta J}{\delta K}, \frac{\delta J}{\delta b} \))
11: end function
```

By applying optimisations similar to those used in the forward propagation and backpropagation procedures one can derive a faster algorithm for computing these derivatives. The cross correlation can be performed in the frequency domain, and because the input features to each convolutional layer have already been transformed into the frequency domain during the forward propagation stage there is no need to recompute this data. The linearity property can once again be exploited, allowing the values to be accumulated in the frequency domain instead of transforming the data back into the space domain. These inverse transforms can be delayed until the end of the minibatch. The resulting algorithm is given in Algorithm 6, and has a worst case time complexity of \(\mathcal{O}(NMI + MI\log I) \), as opposed to \(\mathcal{O}(NMIK) \) for the space domain approach.
Algorithm 6 Computes the error derivatives with respect to each weight in a convolutional layer, with the cross correlation performed in the frequency domain.

1: function FrequencyCalculateGradients
2: for o = 1 to M do
3: \(T \leftarrow \text{PadReverse}(\frac{\delta J}{\delta a_o} \cdot \frac{\delta a_o}{\delta z_o}) \)
4: \(\frac{\delta J}{\delta b_o} \leftarrow \text{SumComponents}(T) \)
5: \(\frac{\delta J}{\delta z_o} \leftarrow \mathcal{F}\{T\} \)
6: for i = 1 to N do
7: \(S \leftarrow J_i \cdot \frac{\delta J}{\delta z_o} \)
8: \(\frac{\delta J}{\delta K_o,i} \leftarrow \frac{\delta J}{\delta K_o,i} + S \)
9: end for
10: end for
11: end function

3.2 Signals of Arbitrary Dimensions

CNNs have primarily seen use in the domain of image classification, however audio and video (i.e. 1-D and 3-D) classification systems have also been built that incorporate CNN models [19, 20]. In order to provide a high speed implementation of training and inference methods for as many scenarios as possible, it became necessary to devise algorithms that could perform all the required operations on data of arbitrary dimensions. In all cases dynamic programming was used to facilitate multi-dimensional data manipulation. Quite a few operations are required to implement the procedures in the frequency domain, so only a selection of the dynamic programming algorithms are described here.

3.2.1 Fourier Transforms

An elegant property of multi-dimensional Fourier transforms is the ability to express an \(N \) dimensional transform as many \(N - 1 \) dimensional transforms, interspersed by transpositions. This happens the be the method most frequently implemented for multi-dimensional transforms in high performance
Algorithm 7: Reverses the R dimensional signal I of size D and zero pads it to be of size P. ZEROS returns a signal of the specified dimensions where every data point is a zero.

1: function PadReverse(I, D, P, R)
2: if $R = 0$ then
3: $O \leftarrow I$
4: else
5: for $i = 1$ to D_R do
6: $O_i = \text{PadReverse}(I_{D_R-i+1}, D_1, \ldots, D_{R-1}, P_1, \ldots, P_{R-1}, R-1)$
7: end for
8: for $i = D_R + 1$ to P_R do
9: $O_i = \text{ZEROS}(P_1, \ldots, P_{R-1})$
10: end for
11: end if
12: return O
13: end function

FFT libraries [21, 22].

3.2.2 Padded Signal Reversal

By considering a signal, S, of $D_1 \times D_2 \times \ldots \times D_N$ dimensionality as a signal, T, with one dimension of size D_N where each datum is actually another signal of $D_1 \times D_2 \times \ldots \times D_{N-1}$ dimensionality, one can derive an algorithm for multi-dimensional signal reversal that also adds padding in each dimension. This is accomplished by reversing the order of elements in T, and then recursively applying this padded reversal procedure to each data point in T, and extending T by padding out the required volume of space with zeros. The base case is encountered when a zero dimensional signal is met, where result is simply the same as the input. By recursing all the way down to this zero dimensional case, a convolutional layer for 0-D signals (i.e. scalars) becomes identical to a fully connected layer. Algorithm 7 shows pseudocode for this procedure.

There are a number of other operations that consist of padding, cropping, signal reversal, or combinations thereof, which are not derived here due to
Algorithm 8 Finds the maximal element in each non-overlapping section of a uniformly subdivided hypercube.

1: function MaxPool(I, D, P, O, R)
2: if $R = 0$ then
3: if $O < I$ then
4: $O \leftarrow I$
5: end if
6: else
7: $n \leftarrow \frac{D}{P}$
8: $j \leftarrow 1$
9: for $p = 1$ to n do
10: for $i = 1$ to P do
11: $O_i \leftarrow \text{MaxPool}(I_j, D_{1,...,R-1}, P_{1,...,R-1}, O_p, R - 1)$
12: $j \leftarrow j + 1$
13: end for
14: end if
15: end if
16: return O
17: end function

the similarly simple method given for this signal reversal algorithm. The pseudocode for all of these operations can be found in Appendix A.

3.2.3 Pooling

For the purposes of this section we assume that maxpooling is being used, as opposed to averaging. In the multi-dimensional case maxpooling can be seen as finding the maximal element in each section of a subdivided tensor. This can once again be accomplished using dynamic programming by decomposing the problem into subproblems where a solution to the N dimensional case can be found by combining the results of many $N - 1$ dimensional problems. Algorithm 8 provides pseudocode for this method.
3.3 Implementation Considerations

The multi-dimensional signal processing algorithms given previously are not the only way to apply the required operations to signals of arbitrary dimensions. The selection of these algorithms in particular was motivated by how efficiently they can be implemented on modern computer architectures. Due to the physical limitations of how small transistors can be constructed, it has become necessary for microarchitects to introduce new architectural features that enable programmers to gain increases in performance. The two main concerns programmers should now have when implementing algorithms efficiently are the memory access patterns, and how well the algorithm can be vectorised. In this section the techniques used to optimise the C++ implementation\(^1\) of the CNN training and inference procedures are detailed.

3.3.1 Locality Of Reference

To combat the growing disparity between processor and memory performance, most modern CPUs contain a cache subsystem tasked with hiding the latency incurred by accessing the main system memory. As such, it has become important to analyse how different algorithms will impact cache behaviour, otherwise an approach that appears to be the asymptotically optimal choice could run the risk of having poor performance for the task at hand due to suboptimal cache utilisation. One of the responsibilities of the cache subsystem is to determine what should or should not be stored in the cache. In order to do this, certain assumptions have to be made about how programs will access memory. The main assumption made by most processors is the idea that the memory access patterns will exhibit some sort of locality, whether it be spatial or temporal. That is, CPU caches are designed to perform well when programs access many nearby memory locations in a short space of time.

\(^1\)The implementation has been made open source and is available from http://github.com/henrygouk/nnet
For the signal processing operations described earlier, the ideal algorithm would be capable of computing the result in a single linear pass over the input data. The algorithms given in Section 3.2 and Appendix A have been designed in such a way that the input signals are accessed as one continuous stream of data, provided the data is stored in row major order. Because of this the hardware prefetcher is able to correctly predict which memory locations will be accessed in future with high accuracy, thus the CPU fetches data from the main system memory before the program even requests that data.

3.3.2 SIMD

The frequency at which commodity microprocessors can operate has stagnated due to a multitude of physical limitations. To compensate for this CPU designers have had to innovate at the microarchitecture level, creating new instructions that allow processors to continue gaining performance boosts with each generation. The most successful extensions have been the addition of SIMD (Single Instruction, Multiple Data) instructions that allow the same operation to be applied to several data elements at the same time. This is accomplished by loading data from memory into short vector registers and then using these SIMD instructions instead of the usual SISD (Single Instruction, Single Data) instructions. Figure 3.1 gives an example of a SIMD vector operation.
The sequential memory access patterns of the signal processing algorithms given previously also enables easy vectorisation. This is because the most efficient instructions to load data into the vector registers require that the data be stored sequentially in memory. Having the data in organised in a contiguous manner also simplifies the flow control aspect of the implementation; the only condition that must be checked on each memory access is whether there is enough data left to be processed that will fill up a vector register. In the event that there is not sufficient data to fill a vector register, scalar instructions must be used otherwise the vector load instruction could cause a memory safety fault.

As the number of filters in a convolutional layer grows, the pointwise complex multiplication becomes the most performance critical component of the algorithm. As shown in Figure 3.2, these complex multiplications make up a substantial fraction of the overall running time. Thus, efficient implementation of these operations is critical. Due to the sequential nature of pointwise operations, these complex multiplications were an ideal candidate for vectorisation. Appendix B shows how pointwise complex multiplication can be efficiently implemented using Intels AVX (Advanced Vector eXtensions) SIMD instructions.

3.3.3 Control Instructions

The superscalar pipelines implemented in modern processors incur a huge overhead when branch prediction algorithms make mistakes. This, along with the added overhead of the CPU actually having the execute these control instructions instead of data instructions, is a strong motivation for reducing the occurrence of branches as much as possible.

A similar problem, in sense that it also involves control instructions, is the usage of recursive functions like those given for computing signal processing operations on multi-dimensional data. Calling functions has the overhead of setting up a new stack frame, which in turn requires a number of memory accesses and control instructions. Thus, recursively calling a function inside...
Figure 3.2: This pie chart shows the percentage of run time spent executing each operation during the training of the CIFAR-10 network described in Chapter 5.
nested loops will incur a massive penalty on performance. For the signal processing operations this was mitigated by hard coding an iterative algorithm for the one dimensional cases.

3.4 Results

To quantify how well the frequency domain methods perform versus space domain methods several experiments were run. These performance measurements demonstrate how the speed of convolutional layers are affected by varying different network hyperparameters. A comparison between training times for vectorised and unvectorised implementations of both algorithms provided with the extrinsic performance evaluation given in Section 5.1.4. The experiments were all run on a desktop computer with an Intel i7-4770 processor and 16GB of RAM.

One of the optimisations involved in the frequency domain method for training CNNs required that a large number of fast Fourier transforms be delayed until the end of each minibatch of training. To verify that this does in fact improve performance, and to ensure performance is acceptable for very small minibatch sizes, the average time taken to compute an epoch of training on a single convolutional layer with different minibatch sizes was measured. The input image size was fixed to be 64×64 pixels, the kernels fixed to 5×5 pixels, and the layer had 32 input and output channels. Training is performed on a set of 1024 randomly generated images for 10 epochs. Figure 3.3 shows the relationship between minibatch size and run time. From this it can be seen that very small minibatches cause a significant slowdown compared to large minibatches for the frequency domain algorithm only. However, the spatial domain methods are still considerably slower in all cases. With a minibatch size of 128, which is a typical value in current research trends, the frequency domain approach is approximately 15 times faster than the conventional approach (7.2 seconds versus 106.5 seconds).

The size of the input images has a major impact on the running time of
Figure 3.3: A plot of the minibatch size versus the average time per epoch of training for a convolutional layer with 32 input and output channels of 64 × 64 pixels, with 5 × 5 kernels.
the training and inference algorithms for both spatial and frequency domain methods. When comparing the asymptotic theoretical performance of the algorithms one can see that the execution speed of both approaches depends on the size of the input images equally, so one should expect that the time taken to train should grow at the same rate for both methods. However, the worst case time complexity of an algorithm does not always give a good indication of what performance will be in practice, partially because there is no assumption made about the underlying hardware that is executing the algorithm. To see how the input image size impacts performance the previous experiment was repeated, except the batch size was fixed at 128 and the input size was varied instead. Figure 3.4 shows how the spatial and frequency domain methods compare. As expected, the performance of the two different methods scale to larger image sizes at similar rates, with the frequency domain approach performing 15 to 18 times faster than the conventional spatial domain approach.

The worst case time complexity analysis of the two different methods showed that the performance of the space domain approach does depend on the kernel sizes used, whereas the frequency domain approach does not. To demonstrate what kind of speedup one should expect to have over the spatial domain algorithm when using its frequency domain counterpart another experiment very similar to the earlier benchmarks was run, except the kernel sizes were varied as opposed to the minibatch size or input image dimensions, which were fixed to 128 and 64×64 respectively. Figure 3.5 presents the results of this experiment. Obviously the kernel dimensions have a huge impact on the overall performance of spatial domain algorithms, and the results of this experiment conclusively show that when scaling to larger kernels the frequency domain methods are the clear winner.

The two other network hyperparameters that dictate the performance of each algorithm, according the worst case time complexity, are the number of input channels and output channels. Two performance benchmarks were conducted to quantify the effect of having different numbers of input and output channels in a convolutional layer. The fixed parameters are the same as
Figure 3.4: A plot of the input dimensions versus the time (seconds) for training on a convolutional layer. Square input images are used, with the value of N used for both the width and height.
Figure 3.5: A plot of the kernel dimensions versus the time (seconds) for training on a convolutional layer. Square kernels are used, with the value of N used for both the width and height.
Figure 3.6: A plot of the relative speedup of the frequency domain approach over the spatial domain approach as the number of input channels is varied.

the previous experiment, and the kernel dimensions fixed at 5×5. Figure 3.6 shows the relative speedup when varying the number of input channels while having 32 output channels, and Figure 3.7 shows the relative speedup when varying the number of output channels while having 32 input channels.

Both of these figures show that the relative speedup of the frequency domain approach over the spatial domain approach increases approximately logarithmically (note the logarithmic scale of the x axes) as the number of input and output channels grow. This means the frequency domain method scales better to larger networks.
Figure 3.7: A plot of the relative speedup of the frequency domain approach over the spatial domain approach as the number of output channels is varied.
“By understanding a machine-oriented language, the programmer will tend to use a much more efficient method; it is much closer to reality.”

— Donald Knuth

Image classification algorithms are commonly applied in a sliding window fashion in order to perform object detection. Because CNNs have a fairly slow inference procedure, it is not always possible to use them for object detection in scenarios where there are real-time constraints. This makes the problem of accelerating the special case of sliding window classification for CNNs very enticing, yet there has been very little effort put into solving this problem. The most promising lead comes from a recent paper that introduced a framework for CNN based object detection [23]. The focus of this paper is primarily on the localisation aspect of object detection, and not the performance aspect, but the authors do describe a method that they devised for accelerating sliding window classification. Unfortunately, they do not quantify the speedup provided by this method or supply any run time
This chapter describes the method proposed by [23] in more detail, and also explains how it can be combined with the frequency domain methods presented in Chapter 3 to gain a further speedup. Following this, a detailed performance analysis is carried out to determine in what cases the different CNN inference algorithms perform best.

4.1 METHOD

4.1.1 ALGORITHMIC ENHANCEMENTS

The method presented by [23] achieves a significant performance boost by eliminating redundant calculations that occur when sub-windows are extracted from an input image and inference is performed on them individually. They observed that nearby sub-windows produce feature maps with a high level of data duplication due to the sliding window nature of the convolution operation. To avoid recomputing these overlapping areas of the feature maps, the network can be transformed to accept an image of larger dimensions.

Convolutional layers can be modified so that the kernels are applied to the entire input image, instead of a single sub-window at a time.

Fully Connected layers can be converted into convolutional layers with 1×1 pixel kernels, and then modified in the same way as convolutional layers.

Pooling layers can apply the pooling operation to the entire input feature map as usual, only the feature maps from the convolutional layers will now be much larger.

The primary way this is improved upon is by modifying the algorithm to use the same frequency domain methods presented in Chapter 3. This is a fairly trivial matter, as it is only really the structure of the network that has
been changed to allow for the faster sliding window inference, not the underlying algorithms used for performing the inference. Hence, after applying the transformations to each layer that were mentioned earlier, one can use the frequency domain algorithms for performing inference. This algorithm will now result in a set of belief maps where the corresponding pixels in each map form a probability distribution over the set of classes for a sub-window at that location in the input image.

Something worth mentioning about the method introduced by [23] is what happens to the pooling layers, and the impact it has on the stride of the resulting sliding window classifier. Because the pooling layers do not operate in the same sliding window manner as the convolutional layers do, in the sense that there is no overlap between different pools, the sliding window inference algorithm is forced into using a particular stride determined by the product of all the pool sizes in the network. In theory, this shouldn’t impact too greatly on the accuracy as the primary purpose of the pooling layers is to improve translation invariance.

To get around this forced stride, \((s_x, s_y)\), caused by the pooling layers, one can translate the input image by for all vectors \((t_x, t_y)\), where \(t_x, t_y \in \mathbb{Z}\) such that \(0 \leq t_x < s_x, 0 \leq t_y < s_y\), and then run the resulting images through the network. The resulting belief maps will then need to be interleaved before further processing can be done. This trick is not used by any of the networks developed during the course of this project, and is merely a suggestion to be considered in the event that the fixed stride is determined to be a problem.

4.1.2 Implementation Considerations

The fast sliding window algorithm presented in [23] transforms fully connected layers into convolutional layers. If one then indiscriminately modifies all convolutional layers to undertake computations in the frequency domain, huge memory and computation overheads will be incurred since the kernels consist of only a single value each. To gain a good speedup from combining these two methods a more sophisticated approach will be need to be
employed.

The first way this problem can be mitigated is by performing convolutions in the space domain if the kernels are only 1×1 pixels. This removes both the memory overhead of padding and also the overhead from computing the Fourier transform of a single pixel kernel. However, there is still a large number of redundant instructions being executed for the fully connected layers. Performing convolution involves several nested loops, two of which iterate over the kernel dimensions. As these dimensions are known to be 1×1, an alternate function can be used for applying these tiny kernels to the input feature maps. This alternate function can be optimised by unrolling the inner loops to remove the superfluous branch instructions.

4.2 Results

The goal of this section is to quantify the performance of several methods of applying a CNN to an image in sliding window fashion. The focus is on the intrinsic evaluation of how the convolutional layers perform, since that is what the algorithms that are being evaluated attempt to optimise the most, and these layers take up the vast majority of compute time in most networks.

These following algorithms are considered:

- Forward propagating each sub-window individually using the conventional space domain inference procedure (FP-S);
- Forward propagating each sub-window individually using the frequency domain methods described in Chapter 3 (FP-F);
- Computing the forward propagation on each sub-window simultaneously using the space domain method described in [23] (SWFP-S);
- Computing the forward propagation on each sub-window simultaneously using the frequency domain method described in this chapter (SWFP-F).
The first relationship to be analysed is how the input image size impacts the performance of each algorithm. This was accomplished by fixing the other network hyperparameters, varying the input image size, and applying the four inference algorithms of interest. The results of this experiment are given in Figure 4.1. The rate at which the execution time grows for FP-S and FP-F clearly eliminates the possibility of using either of these algorithms for real-time applications, whereas the speed of the other two methods looks quite promising. For a 1024 × 1024 pixel input image SWFP-S and SWFP-F take 2.78 seconds and 0.991 seconds respectively. While this still does not meet real-time constraints in most scenarios, SWFP-F takes 0.189 seconds to process a 512 × 512 input image which could be sufficient for some real-time applications.

An interesting property of the fast sliding window algorithms, SWFP-S and SWFP-F, is that neither of their worst case time complexities depend on the size of the sub-window. However, the algorithms that follow the conventional approach of extracting each sub-window separately do depend on the window size. To demonstrate the effect that the sub-window size has on the performance of these algorithms the previous experiment was repeated with the input image size fixed at 512 × 512 pixels, and the sub-window size was varied instead. The results of this experiment are presented in Figure 4.2. As expected, the performance of the two algorithms specialised for sliding window classification exhibit no change in speed as the sub-window size is changed, and the inverse happens for the two algorithms that are not specialised for sliding window classification. For a sub-window size of 128 × 128 pixels SWFP-F is over 2,000 times faster than FP-S and almost 400 times faster than FP-F.

Finally, the impact of unrolling the loops in the fully connected layers specialised for sliding window classification is investigated. This is explored by evaluating how performance changes when the input image grows, while the other network hyperparameters remain fixed. 32 input and output channels were used for this experiment, and the input image size varied from 32 to 1024. Figure 4.3 shows the relative speedup of the fully connected layer with
Figure 4.1: A plot of the input dimensions versus the time (seconds) for sliding inference with a convolutional layer. Square input images are used, with the value of N used for both the width and height. The kernels were 5×5 pixels, and there were 32 input and output channels. A sub-window size of 32×32 pixels is used.
Figure 4.2: A plot of the sub-window dimensions versus the time (seconds) for sliding inference with a convolutional layer. 512 × 512 pixel input images are used, the kernels were 5 × 5 pixels, and there were 32 input and output channels.
the unrolled loops over the convolutional layer with 1×1 kernels. From this plot it can be seen that when the input image size is reasonably small there is a significantly greater speedup than when the images large. Something important to keep in mind about this experiment in particular, but to a certain extent the experiments involving the fast convolutional layer, is the intrinsic nature of these evaluations. Since fully connected layers are found in the later stages of CNNs, the feature maps will have already been shrunk a considerable amount by the border effects from the convolutional layers and the downsizing from the pooling layers. Thus, when this experiment reports the speedup for a 1024×1024 pixel input image, it should be noted that this is the size of the feature maps being fed into the layer being evaluated. It would be very unlikely to encounter feature maps this size so late in the network – it would require the input image to be around 4000×4000 pixels, if using a relatively typical network architecture.

4.3 Memory Consumption

The main downside of using SWFP-F for efficient sliding window classification is the extra memory requirements. The frequency domain methods described in Chapter 3 pad the kernels in convolutional layers to be the same size of the input feature maps for that layer. Because SWFP-F deals with large input images, it means the kernels must have a huge amount of padding added. This can cause the model size to grow by orders of magnitude, greatly reducing the amount of memory available to the rest of the system. This is particularly bad for embedded environments, where memory is limited.

A solution to this problem, other than using SWFP-S, is to employ a hybrid approach. That is, instead of using the SWFP-F method on an entire image, apply it to large sub-windows of the input image with a stride big enough to have the minimum overlap between sub-windows that allows for processing the entire input image. By altering the dimensions of the sub-windows, one can decide how much memory will be consumed by the CNN model. The
Figure 4.3: A plot of the relative speedup of the unrolled sliding window fully connected layer over using a space domain convolutional layer with 1×1 kernels.
downside to this approach is that the algorithm will now exhibit a slowdown, due to redundant calculations being performed where the sub-windows overlap.
Chapter 5

Applications

“Anyone can build a fast CPU. The trick is to build a fast system.”

— Seymour Cray

This aim of this chapter is to provide an indication of how the algorithms perform in real world scenarios, as opposed measuring how the layers perform in isolation. A selection of classification and object detection tasks are presented to in order to compare and contrast the execution time for the different training and inference procedures given in Chapter 3 and Chapter 4. To show that the CNNs used in this chapter can actually be used in practice the accuracy achieved by each network is also reported, however the primary motive for providing these applications is to demonstrate how the algorithms compare in terms of execution speed.

5.1 Classification

Image classification is by far the most common application of CNN models, which is unsurprising since the motivation for their development was
to improve the accuracy of hand written digit recognition [24]. In order
to supply evidence supporting the correctness of the implementation developed for this project several different networks have been trained on publicly available image datasets. In addition to reporting how the classification accuracy achieved by the implementation described in Section 3.3, the time taken per epoch of training when using both frequency domain and spatial domain algorithms is measured. In the interests of demonstrating how the frequency domain training procedure compares with the traditional spatial domain methods in a wide variety of scenarios, the networks selected for each dataset have very different architectures. This provides a good extrinsic performance evaluation that complements the intrinsic evaluation given in Chapter 3.

5.1.1 MNIST

MNIST is one of the most commonly used datasets for demonstrating image classification algorithms, particularly those based on CNNs. It consists of 70,000 images of hand written digits that are 28 × 28 pixels, with a predefined split of 60,000 training images and 10,000 test images. The images in the dataset are preprocessed to have the background removed and the digits are contained in the central 20 × 20 pixels of each image. Figure 5.1 shows some sample images from MNIST.

The network chosen for this dataset was designed by [25], and differs from the other networks used in this chapter because it only has a single convolutional layer. Unfortunately not all the details of the network are supplied; there is no information about the learning rate used, which activation functions are used in each layer, or details about the weight update rule used. The choice was made to use rectified linear units in the convolutional layer, and softmax for the fully connected output layer. A learning rate of 0.01 was used for the first 20 epochs, and then 0.001 for the next 10 epochs. A momentum rate of 0.9 was used for the entire training process, and SGD was used for the update rule. These model hyperparameters were found through experimentation on
a 10,000 instance validation set taken from the training instances. Once these values were found, the validation set was merged with the rest of the training set and the model was retrained and evaluated on the test set.

The authors of [25] report a test set error rate of 0.99%, and when trained using the frequency domain implementation described earlier a test set error of 1.09% was achieved. This similar level of performance is a good indication that the algorithm has been implemented correctly.

5.1.2 GTSRB

GTSRB is the German Traffic Sign Recognition Benchmark dataset [26]. It consists of over 50,000 traffic sign images of varying scale, pose, and lighting conditions labelled with 43 different classes. Approximately 40,000 of these images are part of the training set, and the remainder are used as a test set. Unfortunately, the labels for the test set have not yet been released so a subset of the training data had to be used for determining the accuracy. This is not too concerning since the primary goal of this application is to provide a comparison between the performance of the space and frequency domain methods. The dataset was released to encourage research in the area of traffic sign recognition, which is a very important task for self-driving cars and driver assistance systems. Figure 5.2 contains a selection of sample images from this dataset.

An architecture more typical of modern trends in CNN research is used for this dataset. The network consists of six layers; two sets of alternating convolutional and maxpooling layers, each with 32 feature maps, and two fully
connected layers – the first with 32 units and the second with 43 units. A
learning rate of 0.001, momentum of 0.9, and L2 penalty of 0.0001 is used for
all layers. Additionally, the length of each weight vector is constrained to be
less than 3.0. Rectified linear units are used in all layers except the output
layer, where softmax is used. After training for 30 epochs on 35,000 of the
training instances, a validation accuracy of 98.6% is achieved.

5.1.3 CIFAR-10

CIFAR-10 [27] is a 60,000 image subset of the 80 Million Tiny Images dataset [28]
consisting of 10 classes. Under the standard protocol, 50,000 of the images
are used as training data and the remaining 10,000 are used for testing. Over
recent years it has replaced MNIST as the standard dataset for demonstrat-
ing advances in neural network methods. A sample of the instances can be
seen in Figure 5.3. To reduce the problem of overfitting, the training set was
doubled in size by adding the horizontal reflections of the existing training
instances, resulting in a training set of 100,000 instances.

The network used for this dataset is much larger than the previous two
networks, and the volume of data used for training is significantly larger
as well. The CNN consists of two alternating convolutional and maxpooling
layers, followed by two fully connected layers. Both convolutional layers have
64 output feature maps and use 5×5 pixel kernels, the maxpooling layers
both use 2×2 pools, and the two fully connected layers have 64 and 10 units
respectively. Once again, rectified linear units are used for all the hidden layers and the output layer uses the softmax activation function. The network was trained for 25 epochs with a learning rate of 0.001, which was lowered to 0.0001 after epoch 15 and 0.00001 after epoch 20. A momentum rate of 0.9 was used for the entire training process. These values were determined using a validation set drawn from the training set. When the entire training set was used to build the model an accuracy of 78.3% was achieved on the test set.

5.1.4 Extrinsic Performance Evaluation

The rigorous intrinsic performance evaluation conducted in Chapter 3 gave a good indication of the relative performance of the different convolutional layer algorithms in isolation. That is, the experiments gave performance results for only a single layer. This section aims to provide an extrinsic performance evaluation that shows how the execution speed of the spatial and frequency domain algorithms compare when applied to an entire network being used
for image classification. In addition to comparing the training time for the frequency domain and the space domain methods, measurements are also reported for unvectorised and vectorised implementations of these algorithms.

The experiments were run on the same system used during Chapter 3 and the average time taken to train on batches of 10,000 instances is given. Figure 5.4 shows the execution speed of the four different implementations on the MNIST, GTSRB, and CIFAR-10 networks.

From the MNIST benchmark it can be seen that a fairly small relative speedup of the frequency domain methods over the spatial domain methods has been achieved. This is because the network used was very shallow and contained only a single convolutional layer. The frequency domain methods focus solely on accelerating the performance of convolutional layers, so one would expect to see the relative speedup of the frequency domain approach over the space domain approach improve as a larger fraction of the computation is dedicated to convolutional layers. The benchmarks for GTSRB and CIFAR-10 further suggest that this is the case. Both of those networks have a significantly larger number of convolutional connections, and exhibit a far greater speedup than the shallow networks – over and order of magnitude speedup is gained by the frequency domain methods over the space domain approach.

5.2 Object Detection

Most object detection pipelines consist of several components that perform distinct tasks:

1. A binary sliding window classifier that gives a preliminary prediction of whether a given sub-window contains an object of interest or not. The output of this stage is a set of bounding boxes for potential matches.

2. Sliding window classifiers almost always generate a cluster of positive predictions when used for detection tasks. This second stage in the
Figure 5.4: A plot showing the average time over 10 runs required to train on 10,000 images from the MNIST, GTSRB, and CIFAR-10 datasets for the four different CNN implementations.
pipeline implements a policy for merging overlapping bounding boxes.

3. The sub-windows in the remaining bounding boxes are extracted and deemed regions of interest.

4. A second classifier is used to review the extracted regions of interest in order to reduce false positives.

5. The entire process is repeated on several resized copies of the input image in order to detect objects at multiple scales.

As the focus of this section is the performance of CNNs, the only part of this object detection pipeline that is inside the scope of this project is the first stage. As such, it was decided that the only this first stage would be evaluated, and the accuracy of the network would be measured using a validation set containing positive and negative examples in isolation. That is, the accuracy reported is on a hold out set drawn from the same source as the training data and inference is not performed using sliding window classification.

The network used for this demonstration consists of two convolutional layers, each followed by maxpooling layers, and two fully connected layers. Each of the convolutional and maxpooling layers has 32 feature maps, and the first and second fully connected layers have 32 and 2 units, respectively. The network was trained on the German Traffic Sign Detection Benchmark dataset [29] – not to be confused with the recognition benchmark dataset released by the same group. All traffic signs and an equal number of negative examples were randomly extracted from the GTSDB images to generate a training set. The accuracy achieved by this network is 99.1% on the hold out set.

5.2.1 Results

Figure 5.5 gives the average time over 10 runs taken to perform sliding window classification on images of several sizes using the network described
earlier. This, coupled with the evaluation in Chapter 4, convincingly shows that SWFP-F outperforms the other three methods in almost all cases by a wide margin. The only real competitor is SWFP-S, as the execution time for both methods grows at a noticeably slower rate than FP-S and FP-F.
Chapter 6

Conclusions

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”
— Alan Turing

The results that have been presented clearly show that the performance of training, inference, and sliding window classification with CNNs can be accelerated significantly through the use of frequency domain methods. This work finishes with a summary of the results and contributions made, as well as suggestions for future research that could be carried out in this area.

6.1 Summary

The results presented in Chapters 3, 4, and 5 show that frequency domain methods are significantly faster for performing training, inference, and sliding window classification operations on CNNs. In cases where computations involving convolutional layers consume a large fraction of the run time of a system, these frequency domain methods can be over an order of magnitude
faster than the conventional space domain approach used by all publicly available implementations.

The primary contributions of this work are as follows:

1. Algorithms were derived that utilise frequency domain methods to greater effect than previous work [16, 17], and a rigorous performance analysis was conducted that also gave an indication of how these methods compare to space domain methods in practical applications;

2. A generalisation of CNNs to tensors of arbitrary rank was presented and formulated in such a way that the fast frequency domain methods can be applied, improving performance for a much wider range of situations than just image classification;

3. Sliding window classification was accelerated using a combination of frequency domain methods and an observation previously made by [23]. In addition to this, the performance of the original fast sliding window inference algorithm that used space domain methods was quantified;

4. The algorithms described in this work have been implemented in C++ and released as open source.¹

6.2 Future Work

There are a multitude of ways in which this work can be further improved upon. This section describes several possible directions that could be taken:

1. Early experiments showed that the memory throughput of the computer system used for running the benchmarks was being saturated. Later, it was discovered that the required memory throughput is highly dependent on the structure of the network, with deep networks being compute bound, as opposed to memory bound. This suggests that multi-threading would be a good way to improve performance further;
2. Many popular CNN implementations utilise the GPGPU paradigm of computation, through the use of CUDA [4, 30]. Investigating how well these improved frequency domain methods generalise to GPUs and even other, more esoteric, architectures would be interesting;

3. Run-time code generation has the potential to have a positive impact on performance by generating machine code that is optimised for a particular network structure. Control instructions could be removed by dynamically unrolling some loops;

4. The fast sliding window method can be further improved upon when computing dense output maps (i.e., using a stride of 1 for the sliding window) by representing the layers in the network as a tree with many duplicated subtrees. In this case each branch in the tree would represent a different translation of the internal feature maps that are propagated between layers. The result of this would be that fewer translations need to be propagated through the earlier layers of the network than the later layers.
Bibliography

53

Appendices
Appendix A

Multi-Dimensional Algorithms

A number of algorithms are required to manipulate signal in arbitrary dimensions. They are mostly variants of cropping and padding operations, with rotating happening at the same time to reduce the number of passes over memory required. Pseudocode for these algorithms is given here.
Algorithm 9 Pads the rank R input tensor, I, of size D to be of size P.

1: function $\text{PAD}(I, D, P, R)$
2: if $R = 0$ then
3: $O \leftarrow I$
4: else
5: for $i = 1$ to D_R do
6: $O_i = \text{PAD}(I_i, D_{1,...,R-1}, P_{1,...,R-1}, R - 1)$
7: end for
8: for $i = D_R + 1$ to P_R do
9: $O_i = \text{ZEROS}(P_{1,...,R-1})$
10: end for
11: end if
12: return O
13: end function

Algorithm 10 Crops the rank R input tensor, I, from size D to size V, taking into account a translation in each dimension introduced by the frequency domain convolution algorithm.

1: function $\text{CROPVALID}(I, D, V, R)$
2: if $R = 0$ then
3: $O \leftarrow I$
4: else
5: $\text{offset} \leftarrow I_R - V_R$
6: for $i = 1$ to V_R do
7: $O_i = \text{CROPVALID}(I_{i + \text{offset}}, D_{1,...,R-1}, V_{1,...,R-1}, R - 1)$
8: end for
9: end if
10: return O
11: end function
Algorithm 11 Crops the rank R input tensor, I, from size D to size V, taking into account a translation in each dimension introduced by the frequency domain convolution algorithm. The output is also reversed in each dimension.

1: function \textsc{CropValidReverse}(I, D, V, R)
2: if $R = 0$ then
3: $O \leftarrow I$
4: else
5: $\text{offset} \leftarrow I_R - V_R$
6: for $i = 1$ to V_R do
7: $O_{V_R-i+1} = \textsc{CropValidRotate}(I_{i+offset}, D_{1,...,R-1}, V_{1,...,R-1}, R-1)$
8: end for
9: end if
10: return O
11: end function

Algorithm 12 Crops the rank R input tensor, I, from size D to size V and reverses the result in each dimension.

1: function \textsc{CropFullReverse}(I, D, V, R)
2: if $R = 0$ then
3: $O \leftarrow I$
4: else
5: for $i = 1$ to V_R do
6: $O_{V_R-i+1} = \textsc{CropFullRotate}(I_{i}, D_{1,...,R-1}, V_{1,...,R-1}, R-1)$
7: end for
8: end if
9: return O
10: end function
APPENDIX B

EFFICIENT COMPLEX MULTIPLICATION

Great care was taken to optimise the complex multiply and accumulate routine used due the procedure taking up a very large fraction of the overall runtime – particularly in larger networks. The following code shows how this was accomplished using AVX instructions.

```c
static inline _m256 VCFMA(_m256 c, _m256 a, _m256 b)
{
    _m256 b_flip = _mm256_shuffle_ps(b, b, 0xB1);
    _m256 a_re = _mm256_shuffle_ps(a, a, 0xA0);
    _m256 a_im = _mm256_shuffle_ps(a, a, 0xF5);
    _m256 arb = _mm256_fmadd_ps(a_re, b, c);
    _m256 aib = _mm256_mul_ps(a_im, b_flip);
    return _mm256_addsub_ps(arb, aib);
}
```