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Abstract. Publish/subscribe middleware provides efficient support for loosely
coupled communication in distributed systems. A number of different distributed
message-filtering algorithms have been proposed. So far, a systematiccomparison
and analysis of these filter algorithms is still missing.
This paper proposes a classification scheme for distributed filter algorithms that
supports the theoretical and practical analysis of these algorithms. We present a
first cut theoretical evaluation and a subsequent practical evaluation of promising
candidate algorithms. Factors that are considered include the characteristics of
the underlying network and application-related constraints.
Based on the findings of these evaluations, we conclude with a summary ofthe
strengths and weaknesses of the algorithms that we have studied.

1 Introduction

Large scale distributed systems increasingly rely on middleware-level publish/subscribe
services to implement loosely coupled communication between components. The ex-
changed messages are filtered and forwarded to the appropriate components. This paper
proposes a classification of distributed filter algorithms and provides an extensive theo-
retical and experimental analysis of selected algorithms.

An event notification system or publish/subscribe system isa middleware imple-
menting the event-based communication paradigm. Apublishercomponent sendsevent
messagesthat announce the occurrence of events, i.e., the occurrence of something of
interest within the distributed system.Subscribercomponents can subscribe to events
that are of interest to them; these subscriptions are calledprofiles. Components can
act as publishers and/or subscribers. The publish/subscribe system filters the incoming
messages according to the subscribers’ profiles and forwards matched messages to the
respective subscribers. The distributed components of thepublish/subscribe system are
referred to asbrokers.

We now briefly describe the current situation from which we will derive the re-
search questions that are addressed in this paper. Several distributed algorithms have
been proposed for the efficient filtering of event messages based on the context of the
messages [1, 3, 7, 9–12, 14]. Rendezvous nodes [11, 12] are particular brokers that spe-
cialize in the filtering of selected event types and act as meeting points for profiles and
event messages. Rendezvous nodes are a combination of a centralized and a distributed



filtering strategy, because brokers are responsible for a predefined set of profiles. Dis-
tributed filter algorithms employed in hierarchical networks exploit the hierarchical sys-
tem structure [1, 3, 14]. Either every broker knows all profiles and event information is
propagated down the tree starting at the root node [1], or each broker only knows the
profiles registered by its children [3, 14]. Events are forwarded first up to the root and
then down to the leaves. In point-to-point networks, each broker knows about its neigh-
bor nodes and either events or profiles are forwarded within the network [3].

Several optimizations [3, 7, 9, 10] have been proposed to minimize the number of
profiles that have to be forwarded to directly connected brokers. Covering uses the
selectivity among profiles to decrease filtering overhead; merging unites several profiles
to one profile for filtering [9, 10]. In [3], immediate computation of real covering is
suggested, which results in costly computation. In [7], computation of coverings on
request is proposed, which results in more network traffic, since all covered profiles are
computed and forwarded if necessary.

From this brief survey of algorithms, one key problem becomes apparent: Which is
the most efficient algorithm for a given network topology andapplication? So far, most
of the algorithms have only been analyzed based on simulations of network topolo-
gies. In consequence, the results obtained in these evaluations do not consider several
influential factors. In addition, most analyses have been carried out independently for
single algorithms and, thus, have been performed under differing evaluation bound-
ary conditions. As a consequence, we identify two open issues: (1) the definition of a
classification scheme for distributed filter algorithms; and (2) a uniform performance
analysis of filter algorithms that allows for a comparison ofthe algorithms’ efficiency.
Both issues are addressed in this paper. The contributions of this paper are as follows:

1. The introduction of a concise classification scheme for distributed filter algorithms.
2. A classification of existing filter algorithms according to the proposed scheme.
3. A theoretical performance analysis of filter algorithms.
4. An experimental performance analysis of selected filter algorithms.
5. Algorithm recommendations based on the applications andnetwork topologies.

The remainder of the paper is organized as follows: Section 2proposes a classi-
fication scheme for distributed filter algorithms. Section 3briefly introduces our test
system DAS. Section 4 presents the results and analysis of the experiments. The paper
is rounded off by a conclusion and directions for future research.

2 Classification of Filter Algorithms

Several algorithms for distributed filtering have been proposed. A comparison of these
algorithms and a general evaluation of filter approaches is difficult due to the diversity
of the approaches. What is needed is a concise classification scheme for distributed
filtering algorithms.

In this section, we propose such a classification scheme for distributed event fil-
tering algorithms. This scheme provides a fundament for comparing the properties of
the different types of algorithms. We classify existing filter algorithms with regard to
the proposed scheme. Additionally, we introduce the results of a theoretical evaluation



of the algorithms in the proposed classification space. Finally, we identify the most
promising filter algorithms to be evaluated in an experimental analysis.

Our classification scheme uses the following dimensions (see Table 1) that are sub-
sequently explained in detail: (1) location of filtering, (2) spreading of filter complexity
and memory strategy, and (3) communication with subscribers. We briefly present a
description of each dimension and provide a theoretical evaluation of conceivable com-
binations of alternatives in all dimensions.

1. Location of filtering: Filtering can be performed close to the subscribers (flooding
of events) or providers (flooding of profiles) [4], or at certain broker nodes [11,
12]. Flooding of events results in high network traffic, but less memory usage.
Flooding of profiles results in the opposite: less network traffic and high memory
consumption. Filtering at fixed (arbitrary) brokers gives the advantage of having
control of the filtering according to available resources, but has the disadvantage of
high load at filtering brokers in both network and computation.

2a. Spreading of filter complexity: The filter complexity can be spread over several
brokers by exclusive filtering at certain brokers or by distributed filtering. Exclu-
sive filtering can be implemented with little control overhead [12]. A disadvantage
is the danger of multiple notifications for a single event, because the event informa-
tion may be forwarded to several neighbour brokers. For distributed filtering, each
broker accomplishes the filtering steps necessary to find allneighbor brokers with
matching profiles [4, 11]. Beneficially, filter overhead is divided and the network
traffic is minimized (only brokers with matching profiles areinvolved in filtering).
The necessity of repeated filtering while forwarding the event message (to deter-
mine the appropriate neighbour) is a drawback. For distributed filtering, different
memory strategies may be applied (see 2b).

2b. Memory strategy: Preventive storing refers to the storage of all available profiles,
even duplicate and covered ones; this is beneficial in case ofunsubscriptions. The
resulting higher memory usage is a disadvantage. Optimistic storing minimizes the
numbers of stored profiles (e.g. by discarding covered ones). In this case, unsub-
scriptions produce high network load, but less memory is used.

3. Communication with subscribers: We distinguish three alternatives: direct com-
munication, forwarding via the network, and delivery via broker proxies (trans-
parent communication). In direct communication, only the filtering broker and the
subscriber are involved in communication [4] . A disadvantage is that either a con-
nectionless protocol has to be used (resulting in unreliable communications) or new
connections have to be established over time. When forwarding messages via the
network of brokers, only neighbor brokers and local clientsare communicating di-
rectly [12]. Local clients are publishers and subscribers that are directly connected
to a broker. A drawback is the higher memory consumption: Information about the
location of clients is needed, either by following the reverse path of the subscrip-
tions, indexing all clients, or flooding notifications. When using brokers as proxies,
brokers act as subscribers to their neighbor nodes [4, 11] and thus limit the num-
ber of subscribers each broker node has to deal with. Exploiting covering between
profiles of several subscribers is possible and beneficial. Adisadvantage is the ne-
cessity of post-filtering to notify client subscribers.



Table 1.Classification and theoretical evaluation of Distributed Filter Algorithms (EF - event for-
warding, PFx - profile forwarding, RNx - rendezvous nodes,× = feature is supported, Evaluation:
– – to ++ = poor to excellent results)

Algo- Filter Location Spreading of ComplexityCommunication Theor. Evaluation
rithm (Memory Strategy)

Subs- Publi- Arbi- Exclu- Distributed Direct Forwar- Trans- Network Memory Effi- Scala-

cribers shers trary sive Preventive Optimistic ding parent Traffic Usage ciency bility

Storing Storing

EF × × × – – + + + – –
PF1 × × × + – – + – – –
PF2 × × × + – – – + – – –
PF3 × × × + – + –
PF4 × × × + – – + –
PF5 × × × + + – ++ + –
PF6 × × × + + – + + –
PF7 × × × + – + – + + –
PF8 × × × + + ++ +
RN1 × × × – – – – – –
RN2 × × × – – – – – –
RN3 × × × + – – – + – –
RN4 × × × – – – + – –
RN5 × × × + – – + + –
RN6 × × × + – – + – –
RN7 × × × – – – –
RN8 × × × + – + + + –

From the previous characteristics, we categorize filter algorithms as shown in Table 1.
Columns 2–4 refer to the introduced dimensions. Our evaluation can be found in Col-
umn 5. Unfortunately, the available literature is not detailed enough to allow for a full
classification of existing systems. Moreover, not all 17 variations may be implemented
in existing systems. We identify three types of algorithms based on the filter location
(distinguished by their names in Column 1): event forwarding (EF), profile forwarding
(PF) and rendezvous nodes (RN).

Except in EF, we can find several subtypes of the algorithms. In EF each broker only
filters for local subscribers; this implies exclusive filtering and direct communication.
From the subtypes, we consider PF8 and RN8 as most promising because they have
the least memory requirements due to use of coverings between profiles of several sub-
scribers and an optimistic storage strategy. Our conclusion results from a combination
of the evaluations shown above. We select one of each group for experimental analysis
in our middleware: EF, PF8, RN8.

3 The Testbed: DAS - Distributed Alerting Service

We used the event notification service DAS as a flexible architecture with exchangeable
filter components in order to evaluate different filter approaches. In this section, we first
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describe DAS’s architecture and then give details about theimplementation of the three
algorithms selected based on our theoretical analysis.

3.1 Architecture

Our distributed system DAS consists of three component types: brokers, subscribers
and publishers, see Figure 1. To abstract from the physical network we use an acyclic
overlay network to exchange profiles and event messages. Here, problems such as cir-
culating messages and duplicates are displaced to lower communication layers. The
acyclicity is no restriction in case of link errors, since a path between two nodes is
found as long as any physical connection exists. Our reference implementation in DAS
uses communication via TCP/IP. DAS is implemented in Java.

Within each broker, profiles and events are processed according to the chosen al-
gorithm (EF, PF or RN), i.e., they are filtered or forwarded toneighbor nodes. Each
broker’s filter component maintains a profile repository; events are filtered against the
repository. This centralized filtering uses a tree-based algorithm [6]. After the filtering,
notifications are created from the processed event messages.

3.2 Implementation of the Distributed Filter Algorithms

We used three specialized implementations of the broker class for implementing the
distributed filter algorithms. This section describes the algorithms’ implementations in
DAS. Similar algorithms have been discussed in Section 1.

Event Forwarding (EF) This is the simplest algorithm, since events are flooded through
the network and brokers only filter for local subscribers. Subscriptions are added to and
removed from a broker’s filter structure. Profiles are registered only directly by sub-
scribers. Events are flooded to all neighbor brokers except the sender. Events are filtered
and on match, the profiles’ subscribers are notified.

Profile Forwarding (PF) Profile forwarding uses covering among profiles, therefore,
subscribing profilepx and unsubscribing profilepy are complex tasks. A profilepx can



be registered at a broker either directly by a subscriber or by a neighboring broker. If
px is registered by a broker, all profiles covered bypx that are registered by this broker
can be removed. If no profiles coveringpx exist, we registerpx at all neighbor brokers
except the sender. If covering profiles exist and all of them were registered by the same
neighbor broker, we registerpx at this broker. Then,px is added to the filter structure.
When unsubscribingpy, we register all profiles covered bypy at all neighbor brokers
except the sender. We also send the unsubscription to all neighbors except its sender.
Finally we removepy from the filter structure.

Published events are filtered and subscribers of matching profiles are notified. If
a subscriber is a broker, it is notified exactly once about each event even if several
profiles match. When notifications arrive at a broker, the contained event is filtered and
all subscribers except the sender are notified. Again, brokers are notified only once.

Rendezvous Nodes (RN)Rendezvous nodes are specified when configuring the net-
work. When brokers connect to each other to build up the overlay network they also
exchange information about known rendezvous nodes. Therefore, each broker knows
which neighbor to contact to reach the rendezvous node for specific event types.

RN also uses coverings among profiles. For subscribingpx at a rendezvous node, all
covered profiles registered by the subscribing broker are removed. For subscribingpx

at a non-rendezvous node,px is sent towards its rendezvous node. Finally,px is added
to the filter structure. When unsubscribingpy at a non-rendezvous node, all covered
profiles are sent towards the respective rendezvous node. Then, the unsubscriptionpy is
sent towards the rendezvous node. Finally,py is removed from the filter structure.

Events are filtered and in case of a match the neighbor brokers(except the sender)
are notified exactly once. Then, the event is forwarded towards the rendezvous node.
When a broker receives a notification, it filters the containedevent and in turn notifies
all subscribers excluding the sender. Again, brokers are notified only once per event.

Computation of Covering We used an interval-based computation of the profile cover-
ing. Our local filtering holds a separate profile tree for eachattribute (a variation of [6]).
The coverings are computed by analyzing the profiles in the leaves of the filter struc-
ture. For example, if a predicate contains the greater-thanoperator, all profiles that only
occur in subsequent edges are covered. By intersecting the results from all attributes we
can derive the coverings of profiles.

4 Experimental Analysis

In this section, we present the an overview of the results of our experimental analysis.
A detailed discussion of the results can be found in [2].

We used our prototype in a realistic setting in a LAN with 100 mbps bandwidth, and
machines with 1GHz and 256 MB main memory running under Linux. We evaluated
the influence of different system parameters, namely:

1. Proportion of matching events over all events (see Section 4.1),
2. Portion of matching profiles per events (see Section 4.1),



3. Number of brokers (see Section 4.2),
4. Number of profile coverings (see Section 4.3),
5. Number of event types (see Section 4.4),
6. Locality of profiles and events (see Section 4.5), and
7. Number of profiles (see Section 4.6).

Our analysis uses the following units of measurement:

Filter efficiency: This measure refers to the system’s performance, i.e., the number
of events per second that can be processed by the system. We computed the filter
time in the broker nodes and exclude the network forwarding time: The efficiency
(i.e, the number of filtered events processed per second) is computed by dividing
the number of published events by the time that the brokers took for the filter-
ing of these events. We also evaluated parallel efficiencye, which refers to the
speedup achieved by distributing the event filtering over several brokers; it is given
as speedup per broker. Parallel efficiency gives an indication of the scalability of
the algorithms.

Network load per event: The network load per event was computed by totaling the
size of event data received by all brokers and dividing by thenumber of published
events.

Duplication of profiles: This measure refers to the average number of brokers at which
a profile is registered. For example, the value2.0 states that each profile is registered
on average by 2 brokers. The system’s performance is influenced by duplication,
since more memory is needed to store the same number of profiles. This memory
consumption results in page swaps and less efficiency. Duplication is computed by
dividing the total number of registered profiles by the number of profiles registered
by clients.

We additionally use the following terms: the proportion of matching events over all
events is referred to bype. The portion of matching profiles per event is referred to
by pp; it is computed by the number of profile notifications dividedby the number of
events published. The utilization of eventsσ is defined byσ =

pp

pe . The utilizationσ

states how many profiles are notified by a matching event on average.
In the following experiments we only
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used event types with one attribute — we
can easily derive the behavior of our al-
gorithms in cases of more attributes. Fig-
ure 2 shows the filter time for the filtering
of 100, 000 events against10, 000 profiles
with different numbers of attributes and
values ofpe (pe = pp since only unique
profiles are used). Here, we assumed that
non-matching events are recognized af-
ter the evaluation of half of the type’s at-
tributes in average (mean value of recog-
nition after each attribute). Our filter al-
gorithm minimizes the number of attributes evaluated to recognize non-matching events,
for details see [6].



Another restriction is the connection of only one publisherand one subscriber to
each broker (see Figure 1). In realistic scenarios we expectmore clients with individ-
ually fewer profiles and events, which leads to the same overall quantity. Our results
can be generalized, because only the overall number of profiles and events influence
efficiency and scalability. For example, more clients wouldincrease the costs for syn-
chronization, but the use of proxies that handle connections to clients would decrease
the communication overhead with brokers. If not explicitlystated otherwise, events and
profiles are unique, i.e., they do not overlap. In the following subsections, we describe
our experimental results in detail. All experiments were performed with a standard de-
viation under1% regarding efficiency.

4.1 Influence of Matching Events and Profiles

Here, we analyze the influence of the proportion of matching eventspe and the average
number of matching profilespp on efficiency and network load. Duplication of pro-
files is not considered here, because it remains stable over the experiments. We used 4
brokers connected as a linear bus. The rendezvous node is located at an inner broker.
Each broker managed50, 000 local profiles. We also analyzed different values of the
utilizationσ.

Hypotheses: Extending our theoretical analysis (see Section 2), we expect the fol-
lowing behavior: With increasingpe andpp, the algorithms are less efficient (i.e., fewer
events are filtered per second). With smallpp andpe, PF should be more efficient than
the other two algorithms. The network load is expected to be lowest in PF, followed by
RN and EF. For EF we expect the maximum network load regardless ofpp andpe.

Results:Figure 3(a) shows efficiency in number of processed events per second over
the proportion of matching eventspe. As expected, PF is very efficient in case of small
pe. With increasingpe, a strong decline in efficiency is caused by costly notifications
and the post-filtering. The efficiency of EF changes less withincreasingpe, because no
post-filtering is necessary. The number of created notifications increases, which results
in a linear efficiency decrease. The influence of increasingpe on RN is greater than on
EF but less than for PF. The reasons are both the use of post-filtering and the creation
of more notifications.

Figure 3(b) shows the influence of increasingpp on the filtered events per second.
Again, PF shows the best efficiency. With increasingσ (i.e., increasing utilization of
events) efficiency increases, since less post-filtering is needed while the number of no-
tifications remains constant. EF is less influenced by changingpp — the event flooding
causes non-matching events to be rejected earlier. The efficiency of RN lies between EF
and PF for the same reasons as described above (post-filtering in rendezvous nodes and
more notifications).

The network load for the three algorithms is shown in Fig. 4 asbytes per event over
pe andpp. EF shows the highest load due to the flooding of all events. RN’s forwarding
of all events to the rendezvous nodes leads to less network load. The least load is caused
by PF, because only matching events are forwarded. With constantpe, the utilization of
eventsσ does not influence the network load (leading to identical graphs in Fig. 4(a),
not shown for the sake of clarity in the diagram). With constant pp, the network load
is influenced byσ (except for EF, which floods all events). Increasingσ (see Fig. 4(b)



with σ = 1 andσ = 9) results in decreasing network load, because fewer events notify
the same number of profiles (i.e., decreasingpe).

4.2 Influence of Number of Brokers

In this subsection, we analyze the
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Fig. 5.Network topology for brokers

influence of the number of brokers on
efficiency, parallel efficiency, duplication
of profiles, and network load. For the
experiments, we used the network topol-
ogy as shown in Fig. 5.1 The network
size was varied between 1 and 9 bro-
kers. We used a single event type; Bro-
ker 2 acts as rendezvous node.200, 000 unique profiles were used.

Hypotheses: Extending the theoretical evaluation from Section 2, we state the fol-
lowing hypotheses: When using more brokers, we expect improved efficiency for PF
and less efficiency improvement for RN. The efficiency of EF should not change. PF is
expected to show the best parallel efficiency and EF the worstone. The network load
is expected to increase for all three algorithms, most in PF,followed by RN and EF.
For profile duplication, we expect the opposite effect: EF duplicates no profiles, PF all
profiles and RN is a compromise between the two.

Results:Figure 6 shows the results for filter efficiency and parallel efficiency; both
are given as events per second over the number of brokers. PF has a steep increase in
efficiency when adding brokers (see Fig. 6(a)). The increaseis highest forpp = 0.1;
lower pp lowers the filter efficiency. Here, the main load is caused by the notifications.
EF’s efficiency is decreasing when adding more brokers (Fig.6(b)), which is due to
increased communication overhead. The influence ofpp when adding brokers is small,
because the additional overhead due to notifications is small compared to the overall

1 Many other topologies could have been tested. This is a first cut evaluationnot using a simu-
lation. Further large scale tests with more general and larger topologies are advised.
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communication complexity. The efficiency is lowest when using five brokers, because
Broker 2 (which is the system’s bottleneck) is overloaded. RN’s efficiency is nearly
unchanged when adding brokers (see Fig. 6(c)). Here, the system’s bottleneck is the
rendezvous node, which performs the same amount of filteringsteps regardless of the
network size. The filter efficiency decreases when reaching acertain number of brokers.
The reason is the asymmetrical network of brokers – some brokers encounter greater
load than others.

The results for parallel efficiency are shown in Fig. 6(d). Parallel efficiencye is
measured in speed increase per broker over the number of brokers. The measure is
computed ase =

fn
sat

n∗f1

sat

wheref i
sat refers to the maximal event frequency that can be

processed ini brokers andn is the number of brokers in the network. The best results
are recorded for PF due to its good load distribution. Overall, the parallel efficiency
decreases as the number of brokers increases. The results are disappointing; the main
reason for this behavior is the high communication overheadbetween the brokers.

The results for the duplication of profiles are shown in Fig. 7(a)). When using PF,
the duplication increases linearly. Since the profiles are unique (i.e., have no overlap),
each broker stores all profiles. EF shows a constant duplication value of1.0. Results for
RN lie between PF and EF with duplication values lower than2.5.

The results for the network load are shown in Fig. 7(b); compared to the profile
duplication, the order of the algorithms is reversed. EF shows a constant increase of
network load. Using PF, only matching events are distributed, which results in low net-
work load. For high values ofpp, the network loads for RN and PF are very similar.
Events are always forwarded to the rendezvous node, causinglittle additional expense.

4.3 Influence of Covering

In this subsection, we discuss the influence of coverings. Only equality operators are
used, so the utilization of eventsσ is equivalent to coverings (e.g.,σ = 5 stands for 5
covered profiles per profile). Coverings appear only betweenlocal profiles at the bro-
kers. We used the same network of brokers as described in Section 4.1, one event type
and200, 000 profiles. We analyzed efficiency, duplication of profiles andnetwork load.
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Hypotheses: We expect decreasing efficiency with increasing coverings using con-
stantpe (more load because of more notifications). Using constantpp, the result should
be the opposite (fewer forwarding and filtering steps). The duplication of profiles is ex-
pected to decrease when using higher covering (exploiting the covering feature). The
network load should remain unchanged under constantpe and changingσ. With con-
stantpp and increasingσ, the network load is expected to decrease, since fewer events
are forwarded (except when using EF).

Results:Figure 8(a) shows the efficiency over the covering under changing pro-
portion of matching eventspe. All three algorithms show decreasing efficiency when
using more coverings, since more notifications are generated. With a high value ofpe,
the differences among the algorithms are marginal, since nearly all events have to be
flooded. With smallpe, PF is by far the most efficient algorithm. With higherpe, effi-
ciency decreases less (changing the proportion of complexity of notifications to all-over
complexity). Using EF and RN, the decrease in efficiency is reduced.

Figure 8(b) shows the efficiency over the covering under changing proportion of
matching profilespp. Increasingσ and constantpp lead to higher efficiency. The rea-
son is the constant number of notifications while filtering fewer events. PF shows the
highest efficiency increase, since only events with matching profiles are forwarded. In
contrast to the behavior for matching eventspe as seen in Fig. 8(a), the differences for
the algorithms grow with increasingσ. RN’s efficiency improves more slowly, because
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events are always forwarded to the rendezvous node. EF is independent ofσ, because
events are always forwarded to all brokers.

The network load remains constant with unmodifiedpe (Fig. 9(a)), because the same
number of events is forwarded (but there are more notifications). As expected, a high
pe increases the network load and EF causes the highest load. Constantpp (Fig. 9(b))
results in decreasing network load because each event matches multiple profiles (which
decreases communication among brokers). With growingσ, this effect becomes less
influential. Highpp increases the network load (except for EF). The duplicationof pro-
files (Fig. 9(c)) decreases with growing coverings. PF showsthe largest duplication,
followed by RN and EF (which never distributes profiles). Forhigh coverings, the du-
plication graphs of PF and RN converge to the graph of EF.

4.4 Influence of Event Types

In this subsection, we analyze the influence of the number of event types on efficiency,
duplication of profiles and network load. We used the networktopology illustrated in
Fig. 5 with each broker being rendezvous node for at most one event type.180, 000

unique profiles were registered, which were evenly distributed between the event types.
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Fig. 9. Network load and duplication of profiles depending on the utilization of eventsσ with
various portions of matching eventsp

e and profilespp

Hypotheses: We expect that the number of event types will have little effect on effi-
ciency. PF and EF should be almost independent. RN’s efficiency should increase when
arranging rendezvous nodes well. Duplication of profiles and network load should be
independent of the number of event types, except when using RN. There, the paths to the
rendezvous nodes affect the duplication of profiles and the network load.

Results:The filter efficiency is illustrated in Fig. 10 (note the different scales). PF
shows nearly constant values (see Fig. 10(a)). The small performance increase is due
to our central filter algorithm, which builds a separate filter structure per event type.
Increasingpp decreases performance because more notifications are created. EF be-
haves similarly (see Fig. 10(b)), except thatpp has almost no influence, because the
flooding overhead dominates over the processing of notifications. RN’s efficiency de-
pends on the location of the rendezvous nodes in the network (see Fig. 10(c)). For up
to three nodes, if the rendezvous nodes are central nodes, the efficiency increases. The
rendezvous nodes have lower burden, because fewer events have to be filtered. The ef-
ficiency decreases when using more than four event types. Thereason is that some of
the rendezvous nodes are outer nodes of the network – inner nodes have to forward all
events and become a bottleneck.

The duplication of profiles is independent of the number of event types (Fig. 11(a)).
Since only unique profiles are used, the duplication is9.0 using PF and1.0 using EF.
Using more than two event types in RN increases the duplication based on the position
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of the rendezvous nodes. The results for network load are similar (see Fig. 11(b), log-
arithmic ordinate). PF and EF cause stable network load. Using RN causes an increase
of network load after an initial decrease (longer paths to rendezvous nodes). Increasing
pp increases the network load for PF and RN. Here, RN is less influenced due to the
superfluous forwarding to the rendezvous nodes.
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4.5 Influence of Locality

In this subsection, we analyze the influence of locality of profiles and events on effi-
ciency and network load. Locality refers to the fact that events from a broker’s local
publishers only match profiles from local subscribers. We used four brokers as a linear
bus, as described in Sect. 4.1.160, 000 profiles referred to a single event type. We in-
creased the number of matching profiles per event per broker (pp per broker = locality).
The duplication of profiles is not considered, since profilesremained unchanged.

Hypotheses: We expect an efficiency increase based on higherlocality between pro-
files and events for PF (since fewer notifications are forwarded to neighbors). When
using RN a small increase should occur: Due to the overall event forwarding to the
rendezvous node only a smaller part of communication complexity is saved. For EF, we
expect independence between locality and efficiency. Analogous results are expected for
the network load: Less load for PF and RN, independence for EF.

Results:Figure 12 shows the efficiency
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depending on locality. PF’s efficiency in-
creases by a factor of2 to 3.5 when in-
creasing locality from0 to 1. The reason
is the early rejection of events at their lo-
cal brokers. As expected, EF is indepen-
dent of the locality; all events are flooded.
RN is less influenced by locality than PF;
the efficiency improves only by a factor
of 1.25. The reason is the overall forward-
ing of events to rendezvous nodes. PF shows
a better adaptation to locality than the other
two algorithms. RN does not support the
hypothesis due to the communication over-
head between brokers on the path to the rendezvous node (overcomes the advantage of
filtering in fewer brokers). The network load is shown in Fig.13: EF is not influenced
by the locality due to flooding. PF and RN show decreasing loaddue to early rejection
of unmatched events.

4.6 Influence of Number of Profiles

In this subsection, we discuss the influence of the total number of profiles on the effi-
ciency. We used four brokers connected as a linear bus. We subscribed different num-
bers of unique profiles (σ = 1). The proportion of matching events was set tope = 0.8.

Hypotheses: Efficiency is expected to decrease rapidly withincreasing number of
profiles. Using PF and RN, the main memory is expected to quickly be fully loaded and
swapped out to secondary memory. EF should be more stable when using large numbers
of profiles, since they are not duplicated.

Results:Figure 14 shows the efficiency over increasing number of profiles. As can
be seen in the figure, PF and RN can process up to100, 000 unique profiles and EP can
process up to350, 000 unique profiles in main memory (not shown in the graph: this
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value increases for PF or RN when using coverings). PF shows the best efficiency as
long as the profiles are stored in main memory, followed by EF and RN. Due to the large
proportion of matching events (pe = 0.8), RN is less efficient than EF (as discussed in
Section 4.1). Using more than100, 000 profiles causes an efficiency plunge for PF and
RN: All rendezvous nodes (RN) or all brokers (PF) create bottlenecks. Using EF, this
effect appears at350, 000 profiles, since the four brokers can process approximately
four times more profiles (no duplications).

5 Conclusions

Several distributed filter algorithms have been proposed for publish/subscribe systems.
So far, a systematic comparison and analysis of these filter algorithms had not been
achieved. In this paper, we proposed the first classificationscheme for distributed fil-
tering algorithms for publish/subscribe systems. In a second step, we classified existing
filter algorithms according to the proposed concise scheme.As a third step, we ana-
lytically evaluated 17 algorithms based on their features according to the classification
dimensions. Out of the 17 algorithms, we selected the 3 most promising ones: event
forwarding (EF), profile forwarding (PF), and rendezvous nodes (RN). In an extensive
experimental analysis, we evaluated these three algorithms. The results of the experi-
mental analysis support the findings of the theoretical analysis and yield a finer grained
insight into the behavior of each algorithm under differentconditions. A detailed discus-
sion of the results can be found in [2]. Many existing evaluations have used simulated
data, e.g., in [4, 12, 13]; others have measured different factors [8]. We used no simu-
lation data nor a simulated network topology. The real publish/subscribe system DAS
was used throughout upon real data sets. DAS has been developed for event monitoring
in facility management systems.

We conclude our experimental analysis of algorithms with the following recom-
mendations based on the underlying applications and network topologies. We refer to
our key measurements filter efficiency, network load, and duplication of profiles:

Filter efficiency: For most applications, profile forwarding (PF) is the most efficient
algorithm. Especially if there is a low proportion of matching profiles or events, PF



is significantly more efficient than EF or RN. For a high proportion of matching
profiles, the three algorithms converge, since all events have to be flooded. In rare
cases with high proportions of matching profiles, EF is the most efficient algorithm.
The reason is the simplicity of the filter protocol with its low overhead. Rendezvous
nodes show mediocre results for all applications and topologies: They prove to be
of no benefit, as inner nodes always have to forward all events.

Network load per event: The network load in event forwarding (EF) is independent
from any other system parameters (except the number of brokers), since all events
are always flooded. PF causes the least network load because only matching events
are forwarded. Rendezvous nodes show mediocre results, since events are always
forwarded to the rendezvous nodes. When increasingpe or pp, the network load
also increases for PF and RN, but never reaches that of EF.

Duplication of profiles: Duplication is highest when using PF. For unique profiles,
the duplication is especially high, because each broker filters each profile – this
implies high memory usage. The same picture holds for RN but in a smaller degree.
Coverings eliminate duplications for PF and RN. In EF, profiles are not duplicated
and therefore the highest number of profiles can be filtered.

Due to this dependency of the filter algorithms on the system’s parameters, a pub-
lish/subscribe system should support different filter algorithms. According to the system
load and application, the system can choose an optimal algorithm:

If many profiles match an event we should choose event forwarding (EF) with its
simple protocol. Event forwarding does not cause significant network load since the
events have to be forwarded through the network anyway. We should also use EF in
case of high numbers of subscribed profiles (profile duplication and memory use are
lowest). In most of the other cases (fewer profiles, small portions of matching events,
coverings), profile forwarding (PF) should be used. This algorithm causes less network
load and the filtering is significantly more efficient than forEF and RN. Unfortunately,
rendezvous nodes (RN) have not been advantageous in any tested system configuration.
One of the reasons is the limited size and variation of the used broker topology. This
first cut analysis is scheduled to be extended using larger and more general topologies
in computer grids.

The idea of an adaptive system that uses the appropriate filter algorithm depending
on the applications parameters has been implemented in A-mediAS, an adaptable medi-
ating event notification system [5]. A-mediAS uses adaptation only for local filtering of
primitive and composite events. We plan to integrate DAS’s adaptable distributed filter
algorithms within A-mediAS. Another step for future research is the use of distributed
filter algorithms for composite events in grid topologies and mobile environments, im-
posing advanced requirements on the algorithms and the system’s adaptability.
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7. G. Mühl. Generic Constraints for Content-Based Publish/Subscribe Systems.In Proceedings
of the 6th International Conference on Cooperative Information Systems (CoopIS ’01), pages
211–225, Trento, Italy, September 2001.
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