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Abstract. Publish/subscribe middleware provides efficient support for loosely
coupled communication in distributed systems. A number of differentioliséd
message-filtering algorithms have been proposed. So far, a systeoraparison
and analysis of these filter algorithms is still missing.

This paper proposes a classification scheme for distributed filter algsriten
supports the theoretical and practical analysis of these algorithms. &&ergra
first cut theoretical evaluation and a subsequent practical evaludtworising
candidate algorithms. Factors that are considered include the chistictenf
the underlying network and application-related constraints.

Based on the findings of these evaluations, we conclude with a summérg of
strengths and weaknesses of the algorithms that we have studied.

1 Introduction

Large scale distributed systems increasingly rely on neigdte-level publish/subscribe
services to implement loosely coupled communication betweomponents. The ex-
changed messages are filtered and forwarded to the apgeomimponents. This paper
proposes a classification of distributed filter algorithmd provides an extensive theo-
retical and experimental analysis of selected algorithms.

An event natification system or publish/subscribe system fisiddleware imple-
menting the event-based communication paradigmpuilishercomponent sendsvent
messagethat announce the occurrence of events, i.e., the occerr@gimsomething of
interest within the distributed systerfSubscribercomponents can subscribe to events
that are of interest to them; these subscriptions are callefles Components can
act as publishers and/or subscribers. The publish/siigssyistem filters the incoming
messages according to the subscribers’ profiles and foswaadched messages to the
respective subscribers. The distributed components gfibésh/subscribe system are
referred to abrokers

We now briefly describe the current situation from which wé dérive the re-
search questions that are addressed in this paper. Seisrdduded algorithms have
been proposed for the efficient filtering of event messagesdan the context of the
messages [1, 3,7,9-12, 14]. Rendezvous nodes [11, 12] dieufsx brokers that spe-
cialize in the filtering of selected event types and act agimgeoints for profiles and
event messages. Rendezvous nodes are a combination ofalizedtand a distributed



filtering strategy, because brokers are responsible foedgfined set of profiles. Dis-
tributed filter algorithms employed in hierarchical netk®exploit the hierarchical sys-
tem structure [1, 3, 14]. Either every broker knows all pexfiand event information is
propagated down the tree starting at the root node [1], dn baaker only knows the
profiles registered by its children [3, 14]. Events are fouked first up to the root and
then down to the leaves. In point-to-point networks, eadkédrknows about its neigh-
bor nodes and either events or profiles are forwarded wittémetwork [3].

Several optimizations [3, 7,9, 10] have been proposed tonmie the number of
profiles that have to be forwarded to directly connected érekCovering uses the
selectivity among profiles to decrease filtering overheagtging unites several profiles
to one profile for filtering [9, 10]. In [3], immediate comptitan of real covering is
suggested, which results in costly computation. In [7], patation of coverings on
request is proposed, which results in more network trafficesall covered profiles are
computed and forwarded if necessary.

From this brief survey of algorithms, one key problem beceaggparent: Which is
the most efficient algorithm for a given network topology amplication? So far, most
of the algorithms have only been analyzed based on simoktd network topolo-
gies. In consequence, the results obtained in these eialsato not consider several
influential factors. In addition, most analyses have beenethout independently for
single algorithms and, thus, have been performed undegrififf evaluation bound-
ary conditions. As a consequence, we identify two open &s(1¢ the definition of a
classification scheme for distributed filter algorithms¢ g8) a uniform performance
analysis of filter algorithms that allows for a comparisorthaf algorithms’ efficiency.
Both issues are addressed in this paper. The contributidhssgaper are as follows:

The introduction of a concise classification scheme fatridiuted filter algorithms.
A classification of existing filter algorithms accordimgthe proposed scheme.
A theoretical performance analysis of filter algorithms.

An experimental performance analysis of selected filgwrahms.

Algorithm recommendations based on the applicationsatdork topologies.
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The remainder of the paper is organized as follows: Sectipnoposes a classi-
fication scheme for distributed filter algorithms. Sectiobrifly introduces our test
system DAS. Section 4 presents the results and analysie @xeriments. The paper
is rounded off by a conclusion and directions for future agshb.

2 Classification of Filter Algorithms

Several algorithms for distributed filtering have been ps@@. A comparison of these
algorithms and a general evaluation of filter approachedfisudt due to the diversity
of the approaches. What is needed is a concise classificatimme for distributed
filtering algorithms.

In this section, we propose such a classification schemeidtrilaited event fil-
tering algorithms. This scheme provides a fundament forpaying the properties of
the different types of algorithms. We classify existingefilalgorithms with regard to
the proposed scheme. Additionally, we introduce the resflf theoretical evaluation



of the algorithms in the proposed classification space.llyinae identify the most
promising filter algorithms to be evaluated in an experirakanalysis.

Our classification scheme uses the following dimensiores Table 1) that are sub-
sequently explained in detail: (1) location of filtering) &reading of filter complexity
and memory strategy, and (3) communication with subsaibéle briefly present a
description of each dimension and provide a theoreticduatian of conceivable com-
binations of alternatives in all dimensions.

1. Location of filtering: Filtering can be performed close to the subscribers (flapdin
of events) or providers (flooding of profiles) [4], or at cémtéroker nodes [11,
12]. Flooding of events results in high network traffic, besd memory usage.
Flooding of profiles results in the opposite: less netwoalfit and high memory
consumption. Filtering at fixed (arbitrary) brokers givhe advantage of having
control of the filtering according to available resources,Has the disadvantage of
high load at filtering brokers in both network and computatio

2a. Spreading of filter complexity: The filter complexity can be spread over several
brokers by exclusive filtering at certain brokers or by distted filtering. Exclu-
sive filtering can be implemented with little control ovealdg12]. A disadvantage
is the danger of multiple notifications for a single eventéaese the event informa-
tion may be forwarded to several neighbour brokers. Foribiged filtering, each
broker accomplishes the filtering steps necessary to fingeadhbor brokers with
matching profiles [4, 11]. Beneficially, filter overhead isided and the network
traffic is minimized (only brokers with matching profiles angolved in filtering).
The necessity of repeated filtering while forwarding thentveessage (to deter-
mine the appropriate neighbour) is a drawback. For digiibdiltering, different
memory strategies may be applied (see 2b).

2b. Memory strategy: Preventive storing refers to the storage of all availabidiles,
even duplicate and covered ones; this is beneficial in casaxfbscriptions. The
resulting higher memory usage is a disadvantage. Optisgtring minimizes the
numbers of stored profiles (e.g. by discarding covered omeshis case, unsub-
scriptions produce high network load, but less memory isluse

3. Communication with subscribers: We distinguish three alternatives: direct com-
munication, forwarding via the network, and delivery viaoker proxies (trans-
parent communication). In direct communication, only titerfing broker and the
subscriber are involved in communication [4] . A disadvgetés that either a con-
nectionless protocol has to be used (resulting in unreiebinmunications) or new
connections have to be established over time. When forwgudiessages via the
network of brokers, only neighbor brokers and local cliearscommunicating di-
rectly [12]. Local clients are publishers and subscribkes &re directly connected
to a broker. A drawback is the higher memory consumptiorarimiition about the
location of clients is needed, either by following the reseepath of the subscrip-
tions, indexing all clients, or flooding notifications. Whesing brokers as proxies,
brokers act as subscribers to their neighbor nodes [4, Id }taus limit the num-
ber of subscribers each broker node has to deal with. Expdoibvering between
profiles of several subscribers is possible and beneficidisAdvantage is the ne-
cessity of post-filtering to notify client subscribers.



Table 1.Classification and theoretical evaluation of Distributed Filter Algorithms (Bfen&for-
warding, PE - profile forwarding, RN - rendezvous nodes, = feature is supported, Evaluation:
——to ++ = poor to excellent results)

Algo-|| Filter Location||Spreading of Complexity Communication Theor. Evaluation
rithm (Memory Strategy)
Subs-|Publi-|Arbi- |[Exclu-| Distributed Direct| Forwar{ Trans{|Network Memory| Effi- |Scala:
criberd shers| trary|| sive |Preventive Optimistic ding |parent| Traffic | Usage |ciency| bility
Storing Storing

EF X X X —— ++ | +—| —
PR X X X + —_— | +=] -
PR X X X +— | = | +-|—-
PF; X X X + - + -
PF, X X X +— - + -
PR X X X + +— | ++ |+ =
PFs X X X + +— + | +-
PF, X X X +— +— + | +-
PR X X X + + ++ | +
RN; X X X - - - | --
RN; X X X - - = | ==
RN3 X X X +— | —= | +—| -
RNy X X X - - | *+=] -
RN5 X X X +— - + | +-
RNg X X X +— - +—| —
RN~ X X X - - - -
RNg X X X +— + + | +-

From the previous characteristics, we categorize filteprittyms as shown in Table 1.
Columns 2—4 refer to the introduced dimensions. Our evialnatan be found in Col-
umn 5. Unfortunately, the available literature is not dethienough to allow for a full
classification of existing systems. Moreover, not all 17atésns may be implemented
in existing systems. We identify three types of algorithrasda on the filter location
(distinguished by their names in Column 1): event forweagdiF), profile forwarding
(PF) and rendezvous nodes (RN).

Except in EF, we can find several subtypes of the algorithm&H each broker only
filters for local subscribers; this implies exclusive filtgy and direct communication.
From the subtypes, we considerd&nd RN, as most promising because they have
the least memory requirements due to use of coverings batpredles of several sub-
scribers and an optimistic storage strategy. Our conatusisults from a combination
of the evaluations shown above. We select one of each grawgxferimental analysis
in our middleware: EF, Pf; RNs.

3 The Testbed: DAS - Distributed Alerting Service

We used the event notification service DAS as a flexible achite with exchangeable
filter components in order to evaluate different filter agtues. In this section, we first
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Fig. 1. Architecture of the distributed system DAS

describe DAS'’s architecture and then give details abouttipementation of the three
algorithms selected based on our theoretical analysis.

3.1 Architecture

Our distributed system DAS consists of three componentstybmkers, subscribers
and publishers, see Figure 1. To abstract from the physeatalork we use an acyclic
overlay network to exchange profiles and event messages, pl@blems such as cir-
culating messages and duplicates are displaced to lowemooination layers. The
acyclicity is no restriction in case of link errors, since attp between two nodes is
found as long as any physical connection exists. Our referenplementation in DAS
uses communication via TCP/IP. DAS is implemented in Java.

Within each broker, profiles and events are processed dngotal the chosen al-
gorithm (EF, PF or RN), i.e., they are filtered or forwardecht&sghbor nodes. Each
broker’s filter component maintains a profile repositoryeree are filtered against the
repository. This centralized filtering uses a tree-basgdrahm [6]. After the filtering,
notifications are created from the processed event messages

3.2 Implementation of the Distributed Filter Algorithms

We used three specialized implementations of the brokesdiar implementing the
distributed filter algorithms. This section describes tlypdthms’ implementations in
DAS. Similar algorithms have been discussed in Section 1.

Event Forwarding (EF) This is the simplest algorithm, since events are floodedityino
the network and brokers only filter for local subscriberdoQuiptions are added to and
removed from a broker’s filter structure. Profiles are reged only directly by sub-
scribers. Events are flooded to all neighbor brokers exbegmender. Events are filtered
and on match, the profiles’ subscribers are notified.

Profile Forwarding (PF) Profile forwarding uses covering among profiles, therefore,
subscribing profile, and unsubscribing profile, are complex tasks. A profile, can



be registered at a broker either directly by a subscriberya heighboring broker. If
ps 1S registered by a broker, all profiles coverediythat are registered by this broker
can be removed. If no profiles coveripg exist, we registep,, at all neighbor brokers
except the sender. If covering profiles exist and all of theznewvegistered by the same
neighbor broker, we registexr, at this broker. Thery, is added to the filter structure.
When unsubscribing,, we register all profiles covered by, at all neighbor brokers
except the sender. We also send the unsubscription to glhbeis except its sender.
Finally we removep, from the filter structure.

Published events are filtered and subscribers of matchiofijgs are notified. If
a subscriber is a broker, it is notified exactly once abouhea@nt even if several
profiles match. When notifications arrive at a broker, the @ioed event is filtered and
all subscribers except the sender are notified. Again, Ibsake notified only once.

Rendezvous Nodes (RN)Rendezvous nodes are specified when configuring the net-
work. When brokers connect to each other to build up the oyeréawork they also
exchange information about known rendezvous nodes. Tdrereéach broker knows
which neighbor to contact to reach the rendezvous node &ifipevent types.
RN also uses coverings among profiles. For subscripjrat a rendezvous node, all
covered profiles registered by the subscribing broker ar®ved. For subscribing,,
at a non-rendezvous node, is sent towards its rendezvous node. Finallyjs added
to the filter structure. When unsubscribipg at a non-rendezvous node, all covered
profiles are sent towards the respective rendezvous node, Tie unsubscriptiop, is
sent towards the rendezvous node. Finailyis removed from the filter structure.
Events are filtered and in case of a match the neighbor bré&ecept the sender)
are notified exactly once. Then, the event is forwarded tds/éine rendezvous node.
When a broker receives a notification, it filters the contaieesht and in turn notifies
all subscribers excluding the sender. Again, brokers atiiegbonly once per event.

Computation of Covering We used an interval-based computation of the profile cover-
ing. Our local filtering holds a separate profile tree for eatttibute (a variation of [6]).
The coverings are computed by analyzing the profiles in theele of the filter struc-
ture. For example, if a predicate contains the greater-dpanator, all profiles that only
occur in subsequent edges are covered. By intersectingshés from all attributes we
can derive the coverings of profiles.

4 Experimental Analysis

In this section, we present the an overview of the resultauofeaperimental analysis.
A detailed discussion of the results can be found in [2].

We used our prototype in a realistic setting in a LAN with 106p® bandwidth, and
machines with 1GHz and 256 MB main memory running under Lindfg evaluated
the influence of different system parameters, namely:

1. Proportion of matching events over all events (see Sedtib),
2. Portion of matching profiles per events (see Section 4.1),



Number of brokers (see Section 4.2),

Number of profile coverings (see Section 4.3),
Number of event types (see Section 4.4),

Locality of profiles and events (see Section 4.5), and
Number of profiles (see Section 4.6).

Nookw

Our analysis uses the following units of measurement:

Filter efficiency: This measure refers to the system’s performance, i.e., Wihebar
of events per second that can be processed by the system.riyeiisal the filter
time in the broker nodes and exclude the network forwardmegtThe efficiency
(i.e, the number of filtered events processed per secondnipuated by dividing
the number of published events by the time that the brokesk tfor the filter-
ing of these events. We also evaluated parallel efficienoyhich refers to the
speedup achieved by distributing the event filtering oveesd brokers; it is given
as speedup per broker. Parallel efficiency gives an indicaif the scalability of
the algorithms.

Network load per event: The network load per event was computed by totaling the
size of event data received by all brokers and dividing bynilnaber of published
events.

Duplication of profiles: This measure refers to the average number of brokers at which
a profile is registered. For example, the valuistates that each profile is registered
on average by 2 brokers. The system’s performance is infetehg duplication,
since more memory is needed to store the same number of prafliés memory
consumption results in page swaps and less efficiency. €tjn is computed by
dividing the total number of registered profiles by the nundferofiles registered
by clients.

We additionally use the following terms: the proportion oftehing events over all
events is referred to by®. The portion of matching profiles per event is referred to
by p?; it is computed by the number of profile notifications dividedthe number of
events published. The utilization of evenrtss defined byo = Z—p The utilizationo
states how many profiles are notified by a matching event oragee

In the following experiments we only

. . 4500

used event types with one attribute —we 01
can easily derive the behavior of our al- 3500}
gorithms in cases of more attributes. Fig- £ 3000
ure 2 shows the filter time for the filtering g 2>
of 100, 000 events against, 000 profiles

1500
with different numbers of attributes and 1000 -

Time units

values ofp® (p® = p? since only unique 500
profiles are used). Here, we assumed that O, 3 45678 910
non-matching events are recognized af- Number of attributes

ter the evaluation of half of the type’s at-

tributes in average (mean value of recogFig. 2. Filter time depending on #attributes
nition after each attribute). Our filter al-

gorithm minimizes the number of attributes evaluated togaize non-matching events,
for details see [6].



Another restriction is the connection of only one publishad one subscriber to
each broker (see Figure 1). In realistic scenarios we expect clients with individ-
ually fewer profiles and events, which leads to the same twguantity. Our results
can be generalized, because only the overall number of ggddihd events influence
efficiency and scalability. For example, more clients wanlctease the costs for syn-
chronization, but the use of proxies that handle connestiorclients would decrease
the communication overhead with brokers. If not explic#ifsted otherwise, events and
profiles are unique, i.e., they do not overlap. In the follogvsubsections, we describe
our experimental results in detail. All experiments werdq@ened with a standard de-
viation underl% regarding efficiency.

4.1 Influence of Matching Events and Profiles

Here, we analyze the influence of the proportion of matchimyesp¢ and the average
number of matching profileg? on efficiency and network load. Duplication of pro-
files is not considered here, because it remains stable logexperiments. We used 4
brokers connected as a linear bus. The rendezvous nodeaigdbat an inner broker.
Each broker manage#, 000 local profiles. We also analyzed different values of the
utilizationo.

Hypotheses: Extending our theoretical analysis (see &@@@&), we expect the fol-
lowing behavior: With increasing® andp?, the algorithms are less efficient (i.e., fewer
events are filtered per second). With smalland p¢, PF should be more efficient than
the other two algorithms. The network load is expected tmhest in PF, followed by
RN and EF. For EF we expect the maximum network load regasdigs” and p©.

ResultsFigure 3(a) shows efficiency in number of processed eventsgoend over
the proportion of matching event§. As expected, PF is very efficient in case of small
p¢. With increasingp®, a strong decline in efficiency is caused by costly notifarai
and the post-filtering. The efficiency of EF changes less imitheasing, because no
post-filtering is necessary. The number of created notifinatincreases, which results
in a linear efficiency decrease. The influence of increagfngn RN is greater than on
EF but less than for PF. The reasons are both the use of gesinfijl and the creation
of more notifications.

Figure 3(b) shows the influence of increasptgon the filtered events per second.
Again, PF shows the best efficiency. With increasing.e., increasing utilization of
events) efficiency increases, since less post-filteringéled while the number of no-
tifications remains constant. EF is less influenced by cimangi — the event flooding
causes non-matching events to be rejected earlier. Thesafficof RN lies between EF
and PF for the same reasons as described above (post-fjlieri@ndezvous nodes and
more notifications).

The network load for the three algorithms is shown in Fig. #yss per event over
p® andp?. EF shows the highest load due to the flooding of all eventss Rixwarding
of all events to the rendezvous nodes leads to less netwadk Tihe least load is caused
by PF, because only matching events are forwarded. Withtaot)s, the utilization of
eventso does not influence the network load (leading to identicaplgsain Fig. 4(a),
not shown for the sake of clarity in the diagram). With const&, the network load
is influenced by (except for EF, which floods all events). Increasin¢see Fig. 4(b)



with o = 1 ando = 9) results in decreasing network load, because fewer evetifyg n
the same number of profiles (i.e., decreagifig

4.2 Influence of Number of Brokers

In this subsection, we analyze the

influence of the number of brokers on G 9 @
efficiency, parallel efficiency, duplication

of profiles, and network load. For the 0 9 @
experiments, we used the network topol-

ogy as shown in Fig. 5.The network @ @ @

size was varied between 1 and 9 bro-
kers. We used a single event type; Bro-
ker 2 acts as rendezvous node0, 000 unique profiles were used.

Hypotheses: Extending the theoretical evaluation fronti®e@, we state the fol-
lowing hypotheses: When using more brokers, we expect wagrefficiency for PF
and less efficiency improvement for RN. The efficiency of BEldmot change. PF is
expected to show the best parallel efficiency and EF the veorst The network load
is expected to increase for all three algorithms, most in fleffpwed by RN and EF.
For profile duplication, we expect the opposite effect: Eplauates no profiles, PF all
profiles and RN is a compromise between the two.

ResultsFigure 6 shows the results for filter efficiency and paralfétiency; both
are given as events per second over the number of brokersa®& $teep increase in
efficiency when adding brokers (see Fig. 6(a)). The incré&abighest forp? = 0.1;
lower p? lowers the filter efficiency. Here, the main load is causedhgyrtotifications.
EF’s efficiency is decreasing when adding more brokers (&fig)), which is due to
increased communication overhead. The influenge afhen adding brokers is small,
because the additional overhead due to notifications isl sroalpared to the overall

Fig. 5. Network topology for brokers

1 Many other topologies could have been tested. This is a first cut evaluattarsing a simu-
lation. Further large scale tests with more general and larger topologiesleised.
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eventp?.
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communication complexity. The efficiency is lowest whemagsiive brokers, because
Broker 2 (which is the system’s bottleneck) is overloadeN.sRefficiency is nearly
unchanged when adding brokers (see Fig. 6(c)). Here, thersigsbottleneck is the
rendezvous node, which performs the same amount of filtestieyys regardless of the
network size. The filter efficiency decreases when reachaagtain number of brokers.
The reason is the asymmetrical network of brokers — someebsancounter greater
load than others.
The results for parallel efficiency are shown in Fig. 6(d)tafal efficiencye is

measured in speed increase per broker over the number oérsrokhe measure is

computed ag = nﬁ}f wherefi , refers to the maximal event frequency that can be

processed in brokers and: is the number of brokers in the network. The best results
are recorded for PF due to its good load distribution. OVetla¢ parallel efficiency
decreases as the number of brokers increases. The resuttisappointing; the main
reason for this behavior is the high communication overtestdieen the brokers.

The results for the duplication of profiles are shown in Fig)y. When using PF,
the duplication increases linearly. Since the profiles aique (i.e., have no overlap),
each broker stores all profiles. EF shows a constant dujplicealue of1.0. Results for
RN lie between PF and EF with duplication values lower than

The results for the network load are shown in Fig. 7(b); camgdo the profile
duplication, the order of the algorithms is reversed. ERnsha constant increase of
network load. Using PF, only matching events are distrithutéhich results in low net-
work load. For high values gf?, the network loads for RN and PF are very similar.
Events are always forwarded to the rendezvous node, calitie@dditional expense.

4.3 Influence of Covering

In this subsection, we discuss the influence of covering$y @quality operators are
used, so the utilization of eventsis equivalent to coverings (e.gr,= 5 stands for 5
covered profiles per profile). Coverings appear only betweeal profiles at the bro-
kers. We used the same network of brokers as described im&dct, one event type
and200, 000 profiles. We analyzed efficiency, duplication of profiles aetvork load.
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Hypotheses: We expect decreasing efficiency with incrgasiwerings using con-
stantp® (more load because of more notifications). Using consténthe result should
be the opposite (fewer forwarding and filtering steps). Tinglidation of profiles is ex-
pected to decrease when using higher covering (exploitiegcovering feature). The
network load should remain unchanged under consgérdand changings. With con-
stantp? and increasing, the network load is expected to decrease, since fewersevent
are forwarded (except when using EF).

Results:Figure 8(a) shows the efficiency over the covering under gimanpro-
portion of matching eventg®. All three algorithms show decreasing efficiency when
using more coverings, since more notifications are gerckréltéh a high value op®,
the differences among the algorithms are marginal, sineglyhall events have to be
flooded. With smalp®, PF is by far the most efficient algorithm. With higher, effi-
ciency decreases less (changing the proportion of contpleknotifications to all-over
complexity). Using EF and RN, the decrease in efficiencydsiced.

Figure 8(b) shows the efficiency over the covering under gimnproportion of
matching profileg?. Increasings and constanp? lead to higher efficiency. The rea-
son is the constant number of notifications while filteringgde events. PF shows the
highest efficiency increase, since only events with matgpiofiles are forwarded. In
contrast to the behavior for matching eventsas seen in Fig. 8(a), the differences for
the algorithms grow with increasing RN'’s efficiency improves more slowly, because
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events are always forwarded to the rendezvous node. EFeépémdient of, because
events are always forwarded to all brokers.

The network load remains constant with unmodifiédFig. 9(a)), because the same
number of events is forwarded (but there are more notifina}icAs expected, a high
p¢ increases the network load and EF causes the highest loadtadp? (Fig. 9(b))
results in decreasing network load because each eventesatulitiple profiles (which
decreases communication among brokers). With growinthis effect becomes less
influential. Highp? increases the network load (except for EF). The duplicatiqro-
files (Fig. 9(c)) decreases with growing coverings. PF shitheslargest duplication,
followed by RN and EF (which never distributes profiles). Rayh coverings, the du-
plication graphs of PF and RN converge to the graph of EF.

4.4 Influence of Event Types

In this subsection, we analyze the influence of the numbevexritdypes on efficiency,
duplication of profiles and network load. We used the netwogology illustrated in
Fig. 5 with each broker being rendezvous node for at most gastdype.180, 000
unique profiles were registered, which were evenly disteétietween the event types.



L TPRp=0l —— ] L PEpP=0L ——
350 PF,p=0,7 —— 350 PF,pP=0,7 ———-
£ 300 | o EF e ] £ 300} EF ox
g RN, p’=0,1 —8 o RN,pP=0,1 =
5 250 RN, p®=0,7 === | ® 250 RN, pP=0,7 —=—
[} Q
o
o 200 | o 200 |
2 2
> >
o 150 0 150 - - RS | §_CEEEE T
100 t 1 100 b e
X Y SR gememen V.
50 ! ! ! ! ! ! ! 50\?7 f f t f f i
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Utilisation of eventsy Utilisation of eventsy
(a) Network load, changing® (b) Network load , changing?
4 L
3
= 35¢
(=]
& 3|
5
§ 257
S 2x
g :
2 15¢
1

1 2 3 4 5 6 7 8 9
Utilisation of eventsy
(c) Duplication of profiles

Fig. 9. Network load and duplication of profiles depending on the utilization of eventsth
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Hypotheses: We expect that the number of event types wélliitle effect on effi-
ciency. PF and EF should be almost independent. RN's effigisinould increase when
arranging rendezvous nodes well. Duplication of profiles aetwork load should be
independent of the number of event types, except when uNingRre, the paths to the
rendezvous nodes affect the duplication of profiles and éheark load.

Results:The filter efficiency is illustrated in Fig. 10 (note the diéat scales). PF
shows nearly constant values (see Fig. 10(a)). The smdbrpeance increase is due
to our central filter algorithm, which builds a separate ffik&ucture per event type.
Increasingp? decreases performance because more notifications ared:rédt be-
haves similarly (see Fig. 10(b)), except théthas almost no influence, because the
flooding overhead dominates over the processing of nofificat RN'’s efficiency de-
pends on the location of the rendezvous nodes in the netweskKig. 10(c)). For up
to three nodes, if the rendezvous nodes are central nodesffitiency increases. The
rendezvous nodes have lower burden, because fewer everttohae filtered. The ef-
ficiency decreases when using more than four event typestedsen is that some of
the rendezvous nodes are outer nodes of the network — indesr@ve to forward all
events and become a bottleneck.

The duplication of profiles is independent of the number efigtypes (Fig. 11(a)).
Since only unique profiles are used, the duplicatiof.isusing PF and.0 using EF.
Using more than two event types in RN increases the dupicdtased on the position
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of the rendezvous nodes. The results for network load ardesi(see Fig. 11(b), log-
arithmic ordinate). PF and EF cause stable network loachdRN causes an increase
of network load after an initial decrease (longer paths talezvous nodes). Increasing
pP increases the network load for PF and RN. Here, RN is lesseinfled due to the
superfluous forwarding to the rendezvous nodes.
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4.5 Influence of Locality

In this subsection, we analyze the influence of locality affipgs and events on effi-
ciency and network load. Locality refers to the fact thatrésdrom a broker’s local
publishers only match profiles from local subscribers. Wediufsur brokers as a linear
bus, as described in Sect. 4150, 000 profiles referred to a single event type. We in-
creased the number of matching profiles per event per brpReref broker = locality).
The duplication of profiles is not considered, since profileaained unchanged.

Hypotheses: We expect an efficiency increase based on higladity between pro-
files and events for PF (since fewer natifications are forwdrdo neighbors). When
using RN a small increase should occur: Due to the overalhef@rwarding to the
rendezvous node only a smaller part of communication cotiiplis saved. For EF, we
expect independence between locality and efficiency. oatoresults are expected for
the network load: Less load for PF and RN, independence for EF

ResultsFigure 12 shows the efficiency

depending on locality. PF's efficiency in- — PF,;sg(totau)fo,z
creases by a factor & to 3.5 when in- £ 100000 . EE:EPS‘SE'R);SE
creasing locality frond to 1. The reason ~ § I ERpfloalos

is the early rejection of events at theirlo- & | 7~ RN, p(total}=0.8 g
cal brokers. As expected, EF is indepen- % e
dent of the locality; all events are flooded. @ s e

RN is less influenced by locality than PF; 10000 *f§§'§'§jg‘gfggjéjgféé%féig,gfé%
the efficiency improves only by a factor o0 02 04 06 08 1
of 1.25. The reason is the overall forward- pP (per broker)

ing of events to rendezvous nodes. PF shows

a better adaptation to locality than the otheig. 12. Efficiency depending on locality

two algorithms. RN does not support theand differentp”

hypothesis due to the communication over-

head between brokers on the path to the rendezvous nodedgaves the advantage of
filtering in fewer brokers). The network load is shown in Fi§: EF is not influenced

by the locality due to flooding. PF and RN show decreasing thagto early rejection

of unmatched events.

4.6 Influence of Number of Profiles

In this subsection, we discuss the influence of the total rarrobprofiles on the effi-
ciency. We used four brokers connected as a linear bus. Weshéd different num-
bers of unique profiless(= 1). The proportion of matching events was septo= 0.8.

Hypotheses: Efficiency is expected to decrease rapidly mitfeasing number of
profiles. Using PF and RN, the main memory is expected to lyuiekfully loaded and
swapped out to secondary memory. EF should be more stablewgimgy large numbers
of profiles, since they are not duplicated.

Results:Figure 14 shows the efficiency over increasing number of leofAs can
be seen in the figure, PF and RN can process up@p000 unique profiles and EP can
process up t8d50, 000 unique profiles in main memory (not shown in the graph: this
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value increases for PF or RN when using coverings). PF shioevbést efficiency as
long as the profiles are stored in main memory, followed by Bd-RN. Due to the large
proportion of matching evente{ = 0.8), RN is less efficient than EF (as discussed in
Section 4.1). Using more thdr0, 000 profiles causes an efficiency plunge for PF and
RN: All rendezvous nodes (RN) or all brokers (PF) createl&ogicks. Using EF, this
effect appears &850, 000 profiles, since the four brokers can process approximately
four times more profiles (no duplications).

5 Conclusions

Several distributed filter algorithms have been proposegdblish/subscribe systems.
So far, a systematic comparison and analysis of these filgjeritams had not been
achieved. In this paper, we proposed the first classificatabreme for distributed fil-
tering algorithms for publish/subscribe systems. In asdctep, we classified existing
filter algorithms according to the proposed concise scheeea third step, we ana-
lytically evaluated 17 algorithms based on their featuEoeding to the classification
dimensions. Out of the 17 algorithms, we selected the 3 mwshiging ones: event
forwarding (EF), profile forwarding (PF), and rendezvoude®(RN). In an extensive
experimental analysis, we evaluated these three algaitfiime results of the experi-
mental analysis support the findings of the theoreticalyeabhnd yield a finer grained
insight into the behavior of each algorithm under differeamditions. A detailed discus-
sion of the results can be found in [2]. Many existing evabret have used simulated
data, e.g., in [4, 12, 13]; others have measured differaribfa [8]. We used no simu-
lation data nor a simulated network topology. The real m@iitubscribe system DAS
was used throughout upon real data sets. DAS has been degdtopevent monitoring
in facility management systems.

We conclude our experimental analysis of algorithms with fibllowing recom-
mendations based on the underlying applications and nktigpologies. We refer to
our key measurements filter efficiency, network load, andidaifon of profiles:

Filter efficiency: For most applications, profile forwarding (PF) is the mosicimnt
algorithm. Especially if there is a low proportion of matahiprofiles or events, PF



is significantly more efficient than EF or RN. For a high prdfor of matching
profiles, the three algorithms converge, since all events lmbe flooded. In rare
cases with high proportions of matching profiles, EF is thetrefficient algorithm.
The reason is the simplicity of the filter protocol with itsdoverhead. Rendezvous
nodes show mediocre results for all applications and tapeto They prove to be
of no benefit, as inner nodes always have to forward all events

Network load per event: The network load in event forwarding (EF) is independent
from any other system parameters (except the number of l&plsince all events
are always flooded. PF causes the least network load becalysaatching events
are forwarded. Rendezvous nodes show mediocre resultg suents are always
forwarded to the rendezvous nodes. When increagingr p?, the network load
also increases for PF and RN, but never reaches that of EF.

Duplication of profiles: Duplication is highest when using PF. For unique profiles,
the duplication is especially high, because each brokerdileach profile — this
implies high memory usage. The same picture holds for RNrbasimaller degree.
Coverings eliminate duplications for PF and RN. In EF, pesfiare not duplicated
and therefore the highest number of profiles can be filtered.

Due to this dependency of the filter algorithms on the systgmarameters, a pub-
lish/subscribe system should support different filter atgmns. According to the system
load and application, the system can choose an optimalitdguor

If many profiles match an event we should choose event foimgdEF) with its
simple protocol. Event forwarding does not cause significestwork load since the
events have to be forwarded through the network anyway. Waldhalso use EF in
case of high numbers of subscribed profiles (profile dupboaand memory use are
lowest). In most of the other cases (fewer profiles, smallipos of matching events,
coverings), profile forwarding (PF) should be used. Thigatgm causes less network
load and the filtering is significantly more efficient than Eff and RN. Unfortunately,
rendezvous nodes (RN) have not been advantageous in aeg system configuration.
One of the reasons is the limited size and variation of thel iseker topology. This
first cut analysis is scheduled to be extended using largknere general topologies
in computer grids.

The idea of an adaptive system that uses the appropriatediidferithm depending
on the applications parameters has been implemented indM8ean adaptable medi-
ating event notification system [5]. A-mediAS uses adaptadinly for local filtering of
primitive and composite events. We plan to integrate DA8&paable distributed filter
algorithms within A-mediAS. Another step for future resgais the use of distributed
filter algorithms for composite events in grid topologiesl amobile environments, im-
posing advanced requirements on the algorithms and thersigshdaptability.
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