
A Detailed Investigation of Memory Requirements for
Publish/Subscribe Filtering Algorithms

Sven Bittner and Annika Hinze

University of Waikato, New Zealand
{s.bittner, a.hinze }@cs.waikato.ac.nz

Abstract. Various filtering algorithms for publish/subscribe systems have been
proposed. One distinguishing characteristic is their internal representation of Bool-
ean subscriptions: They either require conversions into DNFs (canonical approa-
ches) or are directly exploited in event filtering (non-canonical approaches).
In this paper, we present a detailed analysis and comparison of the memory re-
quirements of canonical and non-canonical filtering algorithms. This includes a
theoretical analysis of space usages as well as a verification of our theoretical re-
sults by an evaluation of a practical implementation. This practical analysis also
considers time (filter) efficiency, which is the other important quality measure of
filtering algorithms. By correlating the results of space and time efficiency, we
conclude when to use non-canonical and canonical approaches.

1 Introduction

Publish/subscribe (pub/sub) is a communication pattern targeting on the active noti-
fication of clients: Subscribers define Boolean subscriptions to specify their interests;
publishers disseminate their information by the help of event messages containing at-
tribute/value pairs. A pub/sub system is acting as broker; it filters all incoming event
messages and notifies subscribers if their registered subscriptions are matching. An
integral and essential part of pub/sub systems is this filtering process, i.e., the deter-
mination of all subscribers interested in an incoming event message (also referred to
as primitive event filtering). Generally, filtering algorithms for pub/sub systems should
fulfil two requirements [6]:

– Efficient event filtering (fast determination of interested subscribers)
– Scalable event filtering (supporting large numbers of subscriptions)

For efficiency, current pub/sub systems apply main memory filtering algorithms. Thus,
we can directly deduce the scalability characteristics of the central components of these
systems from their memory requirements [2, 3, 10]. This characteristic implies the need
to economize the usage of memory resources.

We can distinguish between two classes of filtering approaches for pub/sub sys-
tems: (i) algorithms directly filtering on Boolean subscriptions [3, 4, 11] (referred to as
non-canonical approaches in the following), and (ii) algorithms filtering on subscrip-
tions in canonical forms [1, 5, 6, 8, 12] (referred to as canonical approaches). Internally,

algorithms of Class (ii) either filter on disjunctive normal forms (DNF) [5] or only sup-
port conjunctive subscriptions [1, 6, 8, 12]. Thus, if supporting arbitrary Boolean sub-
scriptions, these approaches always require conversions of subscriptions to DNFs. If
algorithms only allow conjunctions, each disjunctive element of a DNF is treated as a
separate subscription [9].

Canonical approaches store subscriptions plainly as canonical forms. Hence, if sub-
scriptions merely utilize such forms, this class of algorithms allows for efficient event
filtering. This results from the ability to neglect arbitrary Boolean expressions while
filtering. However, due to the need of converting Boolean subscriptions to DNFs, sub-
scriptions consume more space than required by their original forms [3]. Additionally,
the matching process works over more (or, in case of supporting DNFs, larger) sub-
scriptions. For non-canonical approaches holds the opposite: Subscriptions demand less
memory for storage but involve a more sophisticated matching. Hence, the benefits and
drawbacks (you can find a more detailed discussion in [3]) of both classes of filtering
algorithms are twofold and necessitate a thorough analysis to allow solid statements
about their advantages and disadvantages.

In this paper, we present a thorough analysis and evaluation of the memory re-
quirements of canonical and non-canonical filtering algorithms. This includes a theo-
retical analysis as well as a practical investigation of space usages. Furthermore, we
correlate the memory requirements of the analyzed algorithms to their filter efficiency
(time efficiency). As representatives of canonical algorithms we analyzed the count-
ing [1, 12] and the cluster approach [6, 8], which are known to be efficient and reason-
ably memory-friendly [3]. Non-canonical algorithms are represented by the filtering
approach in [3] because of its time efficiency due to the utilization of indexes. Our de-
cision to compare these particular algorithms is also driven by their similar exploitation
of one-dimensional indexes for filtering. In detail our contributions in this paper are:

1. A characterization scheme for qualifying primitive subscriptions
2. A theoretical analysis and comparison of the memory requirements of canonical

and non-canonical filtering algorithms
3. A practical verification of our theoretical results of memory usages
4. A correlation of memory usage and filter efficiency of filtering algorithms
5. Recommendations for the utilization of non-canonical and canonical algorithms

The rest of this paper is structured as follows: Section 2 gives an overview of the an-
alyzed algorithms and presents related work. Our characterization scheme qualifying
subscriptions can be found in Sect. 3 as well as our theoretical analysis of memory
requirements. Section 4 includes a comparison of the theoretical memory usages and
their graphical presentation. We practically verify our results in Sect. 5.1, followed by
the correlation of memory usage to filtering efficiency in Sect. 5.2. Finally, we conclude
and present our future work in Sect. 6.

2 Analyzed Algorithms and Related Work

In this section, we outline the three filtering algorithms used in our later analysis. Af-
terwards, we present related work that is evaluating and comparing different filtering
approaches in Sect. 2.2.

2.1 Review of Analyzed Algorithms

We now give a brief overview of the algorithms analyzed in Sect. 3, namely the counting
algorithm [1, 12], the cluster algorithm [6, 8], and the non-canonical algorithm [3]. We
have chosen these algorithms for our analysis due to their time and space efficiency
characteristics1. We restrict this subsection to a short review of the approaches and
refer to the original works for thorough study and description of the algorithms.

Review of the Counting Algorithm. The counting algorithm was originally pro-
posed in [12] for filtering on plain text in combination with secondary storage. Later, it
was adopted as pure main memory filtering approach working on attribute/value pairs,
e.g., [1]. It only supports conjunctive subscriptions and requires the conversion of sub-
scriptions involving disjunctions into DNFs. Then, each element (i.e., a conjunction)
participating in the one disjunction of a DNF is treated as separate subscription [9].

Filtering works in two steps: Firstly, matching predicates are determined by utilizing
one-dimensional indexes (predicate matching). Secondly (subscription matching), all
subscriptions involving these predicates are derived by exploiting a predicate subscrip-
tion association table. Counters in hit vectors are increased for each matching predicate
per subscription. Finally, hit and subscription predicate count vector are compared.

Review of the Cluster Algorithm. The cluster algorithm is described in detail in [6]
and is based on the algorithm presented in [8]. Similar to the counting algorithm, only
conjunctive subscriptions are supported by this approach. This requires a conversion to
DNFs when supporting arbitrary Boolean subscriptions. Subscriptions are grouped into
clusters according to their access predicates2 and total number of predicates.

Again, event filtering works in two steps: In predicate matching all matching pred-
icates are determined by the help of one-dimensional indexes. For all matching access
predicates, clusters with potentially matching subscriptions can be found by utilizing a
cluster vector. Then, the subscriptions inside these clusters are evaluated by testing if
all their predicates have been fulfilled (subscription matching).

Review of the Non-Canonical Algorithm. The non-canonical algorithm is presented
in [3]. It comprises no restriction to conjunctive subscriptions as the previous two ap-
proaches. Instead, it directly exploits the Boolean expressions used in subscriptions.

Also the non-canonical algorithm utilizes one-dimensional indexes to efficiently de-
termine predicates matching incoming events. Subscriptions are encoded in subscrip-
tion trees representing their Boolean structure and involved predicates. A minimum
predicate count vector states the minimal number of fulfilled predicates required for
each subscription to match (variation of [3]). A hit vector is used to accumulate the
number of fulfilled predicates per subscription (also a variation from [3]).

Once more, this matching approach involves a two-step event filtering process be-
ginning with the determination of matching predicates (predicate matching). Then, by

1 Refer to [2] and Sect. 1 for a more detailed argumentation.
2 Common predicates that have to be fulfilled by an event to lead to fulfilled subscriptions.

the help of a predicate subscription association table all potential candidate subscrip-
tions are determined (subscription matching step). The work in [3] proposes to evaluate
all candidate subscriptions. However, if using a minimum predicate count vector, only
subscriptions with more than the minimum number of matching predicates (minimum
number of fulfilled predicates required for matching|pmin|) have to be evaluated. An
example is the following: If a subscription consists of three disjunctive elements that
contain conjunctions of nine, five, and seven predicates it holds|pmin| = 5. The accu-
mulation of matching predicates per subscription is obtained using a hit vector.

2.2 Previous Evaluations

There have already been some comparative evaluations of event filtering approaches
for primitive events. However, nearly all of them merely target evaluations of time ef-
ficiency in specifically chosen settings. Additionally, a detailed theoretical analysis of
memory requirements of filtering algorithms cannot be found so far. The results of cur-
rent practical evaluations of space efficiency are too restricted to be generalizable.

In [1] several implementations of the counting algorithm have been evaluated, but
there is no comparison of this approach to other filtering solutions. For the investigation
of subscription matching, subscriptions consist of only one to five predicates over do-
mains of only ten different values. Thus, we cannot generalize the results of [1] to more
complex and sophisticated settings utilizing expressive Boolean subscription languages.
Additionally, a satisfactory theoretical evaluation is missing.

The work in [6] compares implementations of counting and cluster algorithm. How-
ever, the assumptions are similarly restricted as in [1]: only five predicates are used per
subscription, domains consist of thirty-five possible values. Furthermore, subscriptions
mainly define equality predicates in [6]. Naturally, this leads to a well-performing clus-
ter algorithm, which is specifically designed to exploit this characteristic. Hence, the
results of [6] do not present general settings and are mainly targeting filter efficiency.

In [3] the counting and the non-canonical approach are compared briefly. Thus, this
analysis allows only limited conclusions about the behaviors of these algorithms. Again,
a theoretical analysis of memory requirements is missing.

3 Theoretical Characterization and Analysis of Memory Usage

In this section we firstly present our characterization scheme allowing for a general rep-
resentation of Boolean subscriptions. Our theoretical analysis of memory requirements
based on our characterization can then be found in Sect. 3.2.

3.1 Characterization of Boolean Subscriptions

We now present our approach of characterizing subscriptions (and their management in
algorithms). Since we target an evaluation of memory requirements, our methodology
is based on attributes affecting the memory usage for storing subscriptions for efficient
event filtering. Our approach also allows for a successful representation of the space
requirements of the three filtering algorithms presented in Sect. 2.1.

Table 1. Overview of parameters characterizing subscriptions (Class S – subscription-related,
Class A – algorithm-related, Class C – conversion-related, Class E – subscription-event-related)

Symbol Parameter Name (Calculation) Class

|p| Number of predicates per subscription S

|op| Number of Boolean operators per subscription S

opr Relative number of Boolean operators per subscription (opr = |op|
|p|) S

|s| Number of subscriptions S

|pu| Number of unique predicates S

rp Predicate redundancy (rp = 1.0− |pu|
|p||s|) S

w(s) Width of subscription identifiers A

w(p) Width of predicate identifiers A

w(l) Width of subscription locations A

w(c) Width of cluster references A

Ss Number of disjunctively combined elements after conversion C

sp Number of conjunctive elements per predicate after conversion C

sr Relative no. of conjunctive elements per predicate after conversion (sr =
sp

Ss
) C

pe Number of fulfilled predicates per event E

We have identified 14 parameters, which are compactly shown in Table 1. The pa-
rameters of Class S allow for both a representation of the characteristics of subscriptions
and a determination of their memory requirements for index structures. These six pa-
rameters directly describe subscriptions in their quantity|s| and their average number
of predicates|p| and operators|op|. Parameteropr expresses the number of operators
relatively to the number of predicates. To determine predicate redundancyrp, we also
require the number of unique predicates registered with the system|pu|.

Class A of parameters explicitly deals with filtering algorithm-related character-
istics influencing the internal storage of subscriptions. The behavior of canonical ap-
proaches is expressed by the three parameters of Class C. The number of disjunctively
combined elements in a converted DNF (which have to be treated as separate subscrip-
tions [9]) is described bySs. The average number of such elements containing a predi-
cate from an original subscriptionsp also strongly influences the behavior of canonical
approaches. We can combine these two parameters to the relative number of conjunc-
tive elements per predicatesr. The parameterpe of Class E incorporates the relation
between subscriptions and events, which influences both space and time efficiency of
filtering algorithms. For a detailed description of these parameters, we refer to [2].

Altogether, these fourteen parameters allow to characterize subscriptions, to derive
the major memory requirements of filtering algorithms, and to describe the relation
between events and subscriptions affecting the time efficiency of event filtering.

3.2 Theoretical Analysis of Memory Requirements

After presenting the parameters required to analyze the memory usage of filtering algo-
rithms, we now continue with our theoretical analyzes. Note that our theoretical obser-
vations do not take into account implementation issues and other practical considera-
tions. Our results are a base line helping to find a suitable filtering algorithm. An actual
comparison of the theoretical memory requirements can be found in Sect. 4 as well as
considerations for practical implementations.

Theoretical Memory Analysis of the Counting Algorithm. We now analyze the
memory requirements of the counting algorithm [1, 12] in respect to the characteriz-
ing parameters defined in Sect. 3.1. According to [1] and our review in Sect. 2.1, the
counting algorithm requires a fulfilled predicate vector, a hit vector, a subscription pred-
icate count vector, and a predicate subscription association table. To efficiently support
unsubscriptions, we also necessitate a subscription predicate association table. In the
following we describe these data structures and derive their minimal memory require-
ments. We start our observations for cases with no predicate redundancy (rp = 0.0).
Subsequently, we extend our analysis to more general settings involving predicate re-
dundancy.

Fulfilled predicate vector: The fulfilled predicate vector is required to store matching
predicates in the predicate matching step. In an implementation, we might apply
an ordinary vector (pew(p) bytes) or a bit vector implementation (|p||s|8 bytes) de-
pending on the proportion of matching predicates.
In cases of high predicate redundancy there is only a small number of unique predi-
cates. Thus, a bit vector implementation might require less memory compared to an
ordinary vector implementation. However, if the fraction of fulfilled predicates per
eventpe and totally registered predicates (|p||s| predicates in total) is quite small,
utilizing an ordinary vector might be advantageous.

Hit vector: The hit vector accumulates the number of fulfilled predicates per subscrip-
tion. For simplicity, we assume a maximum number of255 predicates per sub-
scription (we can easily relax this assumption). Thus, each entry in the hit vector
requires 1 byte. Altogether, for|s| subscriptions creatingSs disjunctively combined
elements due the canonical conversion, the space requirements are|s|Ss bytes for
the hit vector. Since this vector consists of one entry per subscription, its memory
usage is independent of predicate redundancyrp.

Subscription predicate count vector: We also require to store the total number of
predicates each subscription consists of. According to our assumption for the hit
vector, each subscription can be represented by a 1-byte entry. Thus, we require
|s|Ss bytes in total due to the applied canonical conversions (cp. hit vector).
Similar to the hit vector, the subscription predicate count vector does not depend
on predicate redundancyrp (it consists of entries per subscription).

Predicate subscription association table:This table has to be applied to efficiently
find all subscriptions a predicate belongs to. In an implementation, each predicate
has to be mapped to a list of subscriptions due to the required canonical conver-
sions. This also holds in cases of no predicate redundancy (rp = 0). Least memory

is demanded if predicate identifiers might be used as indexes in this table (this re-
quires consecutive predicate identifiers). For storing the list of subscriptions we
have to store the corresponding number of subscription identifiers at a minimum
(neglecting additional implementation overhead, such as the length of each list).
Thus, altogether we have to record the list of subscription identifiers (requiring
w(s)sp bytes per predicate) for all registered predicates (|p||s| predicates in total),
which requiresw(s)sp|p||s| bytes in total.
If considering predicate redundancyrp, for unique predicates (including one of
each redundant predicate) the following amount of memory is required in bytes:
(1.0 − rp)w(s)sp|p||s|. Redundant predicates userpw(s)sp|p||s| bytes. Thus,rp

does not influence the size of the predicate subscription association table.
Subscription predicate association table:The previously described data structures are

required to support an efficient event filtering. However, unsubscription are sup-
ported very inefficiently. This is due to missing associations between subscriptions
and predicates [1].
Least memory for subscription predicate associations is utilized when using a sub-
scription identifier as index in a subscription predicate association table. Each entry
maps this identifier to a list of predicate identifiers (there is also some implemen-
tation overhead as described for the previous table). Thus, we have to store a list
of predicates for each subscription (|s|Ss subscriptions in total due to conversions).
Each list has to hold|p| sp

Ss
predicate identifiers, which leads tow(p)|s|Ss|p| sp

Ss

=w(p)|s||p|sp bytes in total for a subscription predicate association table.
Predicate redundancyrp does not influence this table because it contains entries for
each subscription. Thus, redundant predicates do not allow for the storage of less
associations between subscriptions and predicates.

When accumulating the former memory usages, we require the following amount of
memory in bytes (we exclude the fulfilled predicate vector since it is utilized by all
three analyzed algorithms)

memcounting = |s|(2Ss + w(s)sp|p|+ w(p)sp|p|) . (1)

This observation holds in all cases of predicate redundancyrp as shown above.

Theoretical Memory Analysis of the Cluster Algorithm. This section presents an
evaluation of the memory requirements of the cluster algorithm [6, 8] according to the
characterizing parameters defined in Sect. 3.1. However, this algorithm has several re-
strictions (e.g., usage of highly redundant equality predicates) and strongly depends on
the subscriptions actually registered with the pub/sub system. Thus, we are not able
to express all memory requirements of this algorithm based on our characterization
scheme. In our following analysis we neglect the space usage of some data structures
(cluster vector, references to cluster vector) and focus on the most space consuming
ones, which leads to an increased amount of required memory in practice.

To efficiently support unsubscriptions, [6] suggests to utilize a subscription cluster
table to determine the cluster each subscription is stored in. In our opinion, this data
structure is not sufficient for a fast removal of subscriptions: The subscription cluster

table allows for the fast determination of the cluster a subscription is stored in. Thus, we
are able to remove subscriptions from clusters. It remains to determine when predicates
might be removed from index structures due to the inherent assumption of predicate
redundancy in [6]3. Also the necessity of canonical conversions leads to shared pred-
icates. Thus, to allow for a deletion of predicates in index structures, we require an
association between predicates and subscriptions utilizing these predicates, e.g, by the
application of a predicate subscription association table or by storing these associations
inside index structures themselves.

The memory requirements of the cluster algorithm are as follows. Again, we firstly
derive the space usage of the algorithm in case of no predicate redundancy (rp = 0.0).
Secondly, we generalize our results to cases involving predicate redundancy.

Predicate bit vector: This vector is similar to the fulfilled predicate vector applied in
the counting algorithm. However, we require a bit vector implementation (as stated
in [6]) due to the requirement of accessing the state of predicates (fulfilled or not
fulfilled) directly. Thus, we demand|p||s|8 bytes for the predicate bit vector. High
predicate redundancy does not influence these memory requirements.

Clusters: Subscriptions themselves are stored in clusters according to both their access
predicates and their total number of predicates. Clusters consist of a subscription
line storing an identifier for each subscription (w(s) bytes required per subscrip-
tion). Furthermore, they contain a predicate array holding the predicates each sub-
scription consists of (on averagesp

Ss
|p|w(p) bytes per subscription if only storing

predicate identifiers). Clusters storing subscriptions with the same number of pred-
icates and access predicates are linked together in a list structure. However, we
neglect the memory requirements for this implementation-specific attribute.
Altogether, clusters require|s|Ss(w(s) + sp

Ss
|p|w(p)) bytes to store|s|Ss subscrip-

tions. Predicate redundancy does not influence the size of clusters. This results from
the observation that clusters store predicates for all subscriptions. This storage hap-
pens in all cases ofrp and does not vary according to the uniqueness of predicates.

Subscription cluster table: This table is an additional data structure required to sup-
port efficient unsubscriptions (see argumentation above). It allows for the determi-
nation of the cluster each subscription is stored in. Utilizing subscription identifiers
as indexes for the subscription cluster table, we require|s|Ssw(c) bytes for the
storage of|s|Ss cluster references. Also this table is focussed on a mapping of
subscriptions. Thus, its size is independent of predicate redundancyrp.

Predicate subscription association table:As shown above, an association between
predicates and subscriptions is required to allow for an efficient support of un-
subscriptions. This information could be stored in a separate predicate subscription
association table or as part of indexes themselves. Both options require the same
amount of additional memory. If using predicate identifiers as indexes (or storing
associations inside indexes), we requirew(s)sp|p||s| bytes for these associations of
|p||s| predicates. Each predicate is contained inw(s)sp subscriptions on average.
Similar to our observation for the counting algorithm, predicate redundancy does
not influence the size of predicate subscription associations.

3 The motivation for [6] is the existence of shared predicates (predicate redundancy) because the
clustering of subscriptions is obtained via access predicates, i.e., predicates need to be shared.

Accumulating the memory requirements of the formerly mentioned data structures (ex-
cluding the predicate bit vector) leads to the following number of bytes

memcluster = |s|(Ssw(s) + sp|p|w(p) + Ssw(c) + sp|p|w(s)) . (2)

Again, our observation represents the memory requirements of the cluster algorithm
regardless of predicate redundancyrp as shown before.

Theoretical Memory Analysis of the Non-Canonical Algorithm. As last algorithm
for our analysis, we have chosen a variant of the non-canonical approach [3] as pre-
sented in Sect. 2. According to [3], inner nodes of subscription trees store Boolean
operators and leaf nodes store predicate identifiers. Each leaf node requiresw(p) bytes
to store its predicate identifier and 1 byte to denote itself as a leaf node. For inner nodes,
we store the Boolean operator in 1 byte and use 1 byte to denote the number of chil-
dren (this implies that at least255 predicates are supported per subscription as in the
other algorithms presented before). In contrast to [3], we do not store the width of the
children of inner nodes in bytes. Hence, to access the last out ofn children, we have to
compute the widths of alln− 1 previously stored children.

The non-canonical approach inherently supports efficient unsubscriptions due to its
characteristic to store associations between subscriptions and predicates and vice versa.
In the following, we analyze the memory requirements of the non-canonical approach
beginning with the case of no predicate redundancy (rp = 0.0). Afterwards, our analysis
is extended to general settings involving predicate redundancyrp > 0.

Fulfilled predicate vector: This vector serves the same purpose as its counterpart in
the counting algorithm. Therefore, it requires the same amount of memory accord-
ing to its realization and depending onrp (min(|p||s|8 , pew(p)) bytes).

Subscription trees: The encoding of subscription trees has been presented above. For
predicates stored in leaf nodes, we require(w(p) + 1)|p| bytes per subscription.
Inner nodes demand2|op| bytes of memory for each subscription. Thus, for all
registered subscriptions, we need|s|((w(p) + 1)|p| + 2|op|) bytes. Subscription
trees have to store operators and predicate identifiers in all cases. Thus, they do not
depend on predicate redundancyrp.

Subscription location table: This table is applied to associate subscription identifiers
and subscription trees. If utilizing subscription identifiers as indexes in this table
(consecutive identifiers necessitated), we requirew(l)|s| bytes. Since the subscrip-
tion location table stores entries per subscription, its memory usage is not influ-
enced by predicate redundancyrp.

Predicate subscription association table:The predicate subscription association ta-
ble requires less memory than its counterparts in the previously analyzed algo-
rithms. This is implied by the fact that subscriptions do not need a conversion
in canonical forms. Thus, predicates are involved in less subscriptions (only one
subscription in case ofrp = 0.0). Altogether, we require|s||p|w(s) bytes for the
predicate subscription association table.
Similar to the counterparts of this table in the two other algorithms, the memory
usage of the predicate subscription association table is independent of predicate
redundancyrp.

Hit vector: Similar to the hit vector in the counting approach, this vector accumulates
the number of fulfilled predicates per subscription. The hit vector requires|s| bytes
of memory since no conversions to canonical expressions are required by the non-
canonical approach and according to the common assumption of a maximum of
255 predicates per subscription.

Minimum predicate count vector: This vector stores the minimum number of pred-
icates per subscription that are required to be fulfilled|pmin| in order to lead to
a fulfilled subscription. According to our assumption of a maximum of255 pred-
icates per subscription, the minimum predicate count vector requires|s| bytes of
memory.

The required data structures (excluding the fulfilled predicate vector) sum up to the
following amount of memory in bytes

memnon−canonical = |s|(w(p)|p|+ |p|+ 2|op|+ w(l) + |p|w(s) + 2) . (3)

Analogous to the previously described algorithms, the theoretical memory usage of the
non-canonical approach does not depend onrp as shown in our analysis.

4 Comparison of Theoretical Memory Requirements

After our analysis of three filtering algorithms and the derivation of their theoretical
memory requirements, we now compare the memory usage of the two canonical ap-
proaches (counting and cluster algorithm) to the non-canonical algorithm. From this
analysis we can deduce under which circumstances a non-canonical approach should
be preferred (in respect to memory usage and thus scalability) and which settings favor
canonical filtering algorithms.

In our following analysis, we focus on differing data structures of algorithms, i.e.,
we neglect the fulfilled predicate/predicate bit vector, which is incidentally required by
all three algorithms. Thus, we directly compare (1) to (3).

All memory requirements derived in the last section grow linearly with increasing
numbers of subscriptions. Moreover, all of them cut the ordinate in zero. Hence, for a
comparison we solely need to analyze the first derivations of (1) to (3) in|s|

mem′
counting(|s|) = 2Ss + w(s)sp|p|+ w(p)sp|p| . (4)

mem′
cluster(|s|) = Ssw(s) + sp|p|w(p) + Ssw(c) + sp|p|w(s) . (5)

mem′
non−canonical(|s|) = w(p)|p|+ |p|+ 2|op|+ w(l) + |p|w(s) + 2 . (6)

To eliminate some parameters, let us assume fixed values for parameters of Class
A: w(s) = 4, w(p) = 4, w(l) = 4, andw(c) = 4, i.e., the widths of subscription
identifiers, predicate identifiers, subscription locations and cluster references are 4 bytes
each. Furthermore, let us reduce the number of characterizing parameters specifying
fixed values by utilizing the relative notions ofopr andsr as introduced in Sect. 3.1.

We now compare the memory requirements (using the gradients) of the canonical
algorithms (Equations (4) and (5)) to the memory requirements of the non-canonical ap-
proach (Equation (6)). We use the following notation to denote the canonical algorithm
compared to the non-canonical approach:Ss(algorithm

non−canonical).

The inequalities shown in the following denote the point when the non-canonical
approach requires less memory for its event filtering data structures than the respective
canonical solution. These points are described in terms of the characterizing parameter
Ss, i.e., if more than the stated number of disjunctively combined elements is created
by the canonical conversion to DNF, the non-canonical approach requires less memory.

Ss(
counting

non− canonical
) >

|p|(2opr + 9) + 6
2 + 8sr|p| . (7)

Ss(
cluster

non− canonical
) >

|p|(2opr + 9) + 6
8 + 8sr|p| . (8)

In the following subsection we illustrate these observations graphically.

4.1 Graphical Illustration of Interchanging Memory Requirements

After the determination if the inequalities denoting the point when a non-canonical
approach requires less memory than canonical algorithms (Equations (7) and (8)), we
now present this turning point graphically.

Figure 1 shows the point of interchanging memory requirements for the counting al-
gorithm and the cluster algorithm. We have chosenopr = 1.0 in Fig 1(a) and Fig. 1(b);
the parametersr is varied from0.3 to 0.7. The abscissae of both figures show the
number of predicates per subscription|p|, the ordinates are labeled with the number of
disjunctively combined elements per subscription after conversionSs. Both graphs de-
note which number of disjunctively combined elements have to be created by canonical
conversions to DNF to favor the non-canonical approach in respect to memory require-
ments (cf. (7), (8)).

We can realize that the counting algorithm requires less memory in cases of small
predicate numbers|p| than the cluster algorithm. However, with increasing predicate
numbers|p| both algorithms behave nearly the same, i.e., for50 or more predicates per
subscription, it holdsSs ≈ 2.0 (counting) andSs < 2.0 (cluster) in case ofsr = 0.7.
Thus, even if DNFs only consist of approximately2 disjunctively combined elements, a
non-canonical approach requires less memory. Smaller values ofsr favor the counting
and the cluster algorithm. This is due to the fact of requiring less associations between
predicates and subscriptions in these cases.

In Fig. 1(a) and Fig. 1(b), we have chosenopr = 1.0, which describes the worst case
scenario of the non-canonical algorithm. In practice, it always holdsopr < 1.0, since
each inner node of a subscription tree has at least two children. Hence, a subscription
tree containing|p| leaf nodes (i.e., predicates) consists of a maximum of|p| − 1 inner
nodes (i.e., operators). This impliesopr ≤ |p|−1

|p| < 1.0. In practice, we have to expect
much smaller values than1.0 for opr, because in subscription trees consecutive binary
operators can be subsumed to n-ary ones.

These observations for the characterizing parameteropr lead to further improved
memory characteristics of the non-canonical approach. Figure 1(c) shows this behav-
ior usingopr = 0.5 for the counting approach; the cluster algorithms is presented in
Fig. 1(d). Thus, even if subscriptions use only one disjunction, a non-canonical ap-
proach shows less memory usage and better scalability than the counting algorithm
(sr = 0.7).

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

No. of predicates per subscription |p|

opr=1.0, sr=0.3
opr=1.0, sr=0.5
opr=1.0, sr=0.7

(a) Counting vs. non-canonical,opr = 1.0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

No. of predicates per subscription |p|

opr=1.0, sr=0.3
opr=1.0, sr=0.5
opr=1.0, sr=0.7

(b) Cluster vs. non-canonical,opr = 1.0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

No. of predicates per subscription |p|

opr=0.5, sr=0.3
opr=0.5, sr=0.5
opr=0.5, sr=0.7

(c) Counting vs. non-canonical,opr = 0.5

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

No. of predicates per subscription |p|

opr=0.5, sr=0.3
opr=0.5, sr=0.5
opr=0.5, sr=0.7

(d) Cluster vs. non-canonical,opr = 0.5

Fig. 1. Theoretically required number of disjunctively combined elementsSs to achieve less
memory usage in the non-canonical approach compared to the counting and cluster algorithm
usingopr = 1.0 (Fig. 1(a) and Fig. 1(b)) andopr = 0.5 (Fig. 1(c) and Fig. 1(d))

4.2 Considerations in Practice

Our previous analysis shows a comparison of the theoretical memory requirements of
three algorithms. However, a practical implementation requires additional space for
managing data structures, e.g., to link lists together, store lengths of variable-sized ar-
rays, or practically realize hash tables. Thus, a practical implementation implies increas-
ing space requirements of filtering algorithms compared to our theoretical analysis.

Next to this general increase in memory requirements, data structures have to be im-
plemented in a reasonable way, e.g., they have to support dynamic growing and shrink-
ing if this is demanded in practice. Generally, constantly required data structures require
a dynamic implementation. For data structures solely used in the event filtering process,
i.e., fulfilled predicate, predicate bit and hit vector, a static implementation is sufficient
due to the requirement of initializing them for each filtered event.

We have implemented such dynamic data structures in a space-efficient manner for
our practical evaluation. Their comparison to the memory requirements of standard im-
plementations, i.e., STL hash (multi) sets, has resulted in much less space consumptions
for our implementations. We present our practical analysis in the next section.

5 Practical Analysis of Memory Requirements and Efficiency

In Sect. 3 and 4 we have presented a theoretical investigation of memory requirements
of filtering algorithms and described the influence of a practical implementation on our
theoretical results. In this section we extend our theoretical work and show the applica-
bility of our theoretical results to practical settings (Sect. 5.1). Furthermore, we present
a brief comparison of efficiency characteristics of the compared algorithms (Sect. 5.2).

We compare the non-canonical approach to one canonical algorithm by experiment.
Because of the restrictions of the cluster approach (cf. Sect. 3.2), we have chosen the
counting algorithm as representative of canonical algorithms for our practical analysis.
This allows the generalization of our results to other settings than equality predicate-
based application areas and areas dealing with less predicate redundancy as assumed by
the cluster approach. Furthermore, the counting algorithm behaves more space efficient
than the cluster approach (cf. Fig. 1). In a practical implementation the cluster approach
without efficiently supported unsubscriptions and the counting approach show nearly
the same memory requirements [6].

5.1 Practical Analysis of Memory Requirements

In this section, we compare the memory requirements of the counting algorithm and
the non-canonical approach. Our actual implementations of these algorithms follow our
descriptions in Sect. 4.2.

In our experiments, we want to verify our results shown in Fig. 1(c), i.e., in case
of opr = 0.5. Here we present the memory usage of the required data structures4 in
case of1, 000, 000 registered subscriptions with a growing number of predicates per
subscription|p| and a growing number of disjunctively combined elements after con-
versionSs. For the parametersr (relative number of conjunctive elements per predicate
after conversion), we have chosen to present the casessr = 0.3 andsr = 0.7.

Our results are presented in three-dimensional figures. Figure 2(a) shows both al-
gorithms in case ofsr = 0.3; Fig. 3(a) presents the case ofsr = 0.7. The x-axes in
the figures represent the number of predicates per subscription|p| ranging from5 to 50,
z-axes show the number of disjunctively combined elements after conversionSs in the
range of1 to 5. The actually required amount of memory for holding the required data
structures is illustrated at the y-axes of the figures.

There are two surfaces shown in each of the figures. The brighter ones illustrate
the behaviors of the counting algorithm, the darker ones represent the non-canonical
approach. As shown in our theoretical analysis, the non-canonical approach does not
change its memory usage with growingSs. Thus, its surface does always show the same
memory requirements (y-axis) regardless ofSs (z-axis), e.g, approx.900 MB for |p| =
50. This holds for both figures, Fig. 2(a) and 3(a), since the memory requirements of the
non-canonical approach are independent ofsr. The counting algorithm, however, shows
increasing memory requirements with growingSs as described in (1). Furthermore,
according to (1), increasingsp (and thussr) results in advanced space usage.

4 We show the total memory requirements of our filtering process to allow for the incorporation
of all influencing parameters, e.g., heap management structures.

Predicates per subscription |p| Disju
nctive elements S s

 5 15 25 35 45 1
 2

 3
 4

 5
 0

 200
 400
 600
 800

 1000

Memory in MB

(a) Perspective view

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

 5 15 25 35 45
Predicates per subscription |p|

 1

 2

 3

 4

 5

(b) Top view

Fig. 2. Memory requirements in our practical experiments in case ofsr = 0.3, opr = 0.5 and
|s| = 1, 000, 000 (cf. Fig. 1(c) for theoretical results in the same scenario)

As depicted in our theoretical comparison in Fig. 1(c), there exists a point of inter-
changing memory requirements of canonical and non-canonical algorithms. This point
is denoted by a cutting of the surfaces of the two algorithms. In Fig. 2(a), this cutting
occurs atSs ≈ 4, in Fig. 3(a) it happens atSs ≈ 2. To exactly determine the point
of cutting surfaces we present a top view of the diagrams in Fig. 2(b) and Fig. 3(b),
respectively. Figure 2(b) shows that the point of interchanging memory requirements
can be found betweenSs = 3 andSs = 5 dependent on|p|. Forsr = 0.7 (Fig. 3(b)), it
is always located slightly belowSs = 2. Comparing these practical results to our theo-
retical results in Fig. 1(c), we realize that our theoretical analysis has predicted nearly
the same behavior of the two algorithms: Even if only 2 (sr = 0.7) or 4 (sr = 0.3) dis-
junctively combined elementsSs are created by canonical conversions, a non-canonical
approach is favorable. Thus, our practical experiments verify our theoretical results and
show their correctness even in case of a certain practical implementation.

Practical Analysis of Influences of Redundancy.In our theoretical analysis we have
shown that predicate redundancyrp does not influence the memory requirements of al-
gorithms. However, in a practical realization this property does not hold. The influence
of rp on our implementation is illustrated in Fig. 4. Ordinates show an increasing num-
ber of predicates per subscription|p|, abscissae are labeled with the required memory
in MB. In this experiment we have registered1, 000, 000 subscriptions, further charac-
terizing parameters areopr = 0.5 andsr = 0.3. The behavior of the non-canonical
approach with varying predicate redundancy is shown in Fig. 4(a), the counting algo-
rithm is presented in Fig. 4(b) for varyingSs andrp.

Both algorithms show decreasing memory requirements with increasingrp. This
behavior results out of the decreasing memory overhead in a practical implementation:
Both algorithms utilize a predicate subscription association table, which requires a dy-
namic implementation causing more memory usage. If there are less unique predicates,

Predicates per subscription |p| Disju
nctive elements S s

 5 15 25 35 45 1
 2

 3
 4

 5
 0

 400
 800

 1200
 1600

Memory in MB

(a) Perspective view

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

 5 15 25 35 45
Predicates per subscription |p|

 1

 2

 3

 4

 5

(b) Top view

Fig. 3. Memory requirements in our practical experiments in case ofsr = 0.7, opr = 0.5 and
|s| = 1, 000, 000 (cf. Fig. 1(c) for theoretical results in the same scenario)

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40 45 50

M
em

or
y

in
 M

B

Predicates per subscription |p|

Ss varies, rp=0.0
Ss varies, rp=0.25
Ss varies, rp=0.5

(a) Non-canonical algorithm

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40 45 50

M
em

or
y

in
 M

B

Predicates per subscription |p|

Ss=2, rp=0.0
Ss=2, rp=0.25
Ss=2, rp=0.5
Ss=5, rp=0.0
Ss=5, rp=0.25
Ss=5, rp=0.5

(b) Canonical: counting algorithm

Fig. 4. Influence of predicate redundancyrp on the algorithms in case of|s| = 1, 000, 000,
opr = 0.5 andsr = 0.3

which is caused by predicate redundancy, the amount of memory overhead decreases.
Thus, the total memory requirements decrease as observable in Fig. 4.

5.2 Practical Analysis of Efficiency

We are aware of the correlation between memory usage and filter efficiency of filter-
ing algorithms: We cannot utilize the most space efficient algorithm in practice if it
shows poor time efficiency. Vice versa, time efficient solutions, such as [7], might be-
come inapplicable due to their memory requirements [3]. Thus, in our analysis we also
compared the time efficiency of the counting (CNT) and the non-canonical approach
(NCA) to confirm the applicability of the non-canonical approach in practice. In our ex-
periments, we only have to compare the time efficiency of subscription matching, since
predicate matching works the same in both algorithms. Time efficiency is represented

 0

 0.05

 0.1

 0.15

 0.2

1m700,000400,000100,000

T
im

e
in

 s
ec

on
ds

Number of subscriptions |s|

CNT rp=0, Ss=4
CNT rp=0.5, Ss=4
CNT rp=0, Ss=8
CNT rp=0.5, Ss=8
NCA rp=0
NCA rp=0.5

(a) |p| = 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1m700,000400,000100,000

T
im

e
in

 s
ec

on
ds

Number of subscriptions |s|

CNT rp=0, Ss=4
CNT rp=0.5, Ss=4
CNT rp=0, Ss=8
CNT rp=0.5, Ss=8
NCA rp=0
NCA rp=0.5

(b) |p| = 30

Fig. 5. Influence of number of subscriptions|s| for varyingrp andSs

by the average filtering time for subscription matching per event, i.e., increasing times
denote decreasing efficiency. We ran our experiments several times to obtain negligible
variances. Thus, in the figures we only show the mean values of filtering time.

Figure 5 shows the influence of the number of subscriptions registered with the
pub/sub system. In Fig. 5(a), we have used|p| = 10, Fig. 5(b) illustrates time efficiency
in case of|p| = 30. We show the behavior of the counting algorithm for the two cases
Ss = 4 andSs = 8. Predicate redundancy is chosen withrp = 0.0 andrp = 0.5.
We also present the non-canonical approach assuming the worst case behavior, i.e., if
a candidate subscription is evaluated, its whole Boolean expression is analyzed. Thus,
we always test entire subscription trees in our experiments. In this experiment, we have
increased the number of fulfilled predicates per eventpe with growing subscription
numbers:pe = |s||p|

50 . We have chosen the minimum number of fulfilled predicates
required for matching|pmin| with 5 in case of|p| = 10 and with 10 in case of|p| = 30.

Figure 5 illustrates the average filtering times at the ordinates. Both algorithms show
linearly increasing filtering times in case of growing subscription numbers. In case of
Ss = 8 and |p| = 30 (Fig. 5(b)), the counting algorithm requires more memory than
the available resources (sharp bends in curves). Thus, the operation system starts page
swapping resulting in strongly increasing filtering times in case of more than700, 000
and800, 000 subscriptions (according torp, cf. Sect. 5.1). Generally, increasing predi-
cate redundancyrp leads to growing filtering times for both algorithms in the evaluated
setting. This is due to the fact that more candidate subscriptions have to be evaluated
(non-canonical algorithm) and more counters have to be increased in the hit vector (both
algorithms). The counting algorithm in case ofSs = 8 always shows the worst time ef-
ficiency. According to the number of predicates|p|, either the non-canonical approach
(Fig. 5(b)) or the counting algorithm withSs = 4 (Fig. 5(a)) are the most efficient
filtering approaches (nearly on par with the other approach).

The influence of|p| is shown in Fig. 6. In Fig. 6(a), it holdspe = 50, 000, Fig. 6(b)
shows the case ofpe = 1, 000, 000. For the non-canonical approach we analyzed the
two settings|pmin| = 5 and|pmin| = 10. The counting approach is presented in two
variants withSs = 4 andSs = 8. We have registered1, 000, 000 subscriptions.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 15 20 25 30 35 40 45 50

T
im

e
in

 s
ec

on
ds

Predicates per subscription |p|

NCA |pmin|=5
NCA |pmin|=10
CNT Ss=4
CNT Ss=8

(a) pe = 50, 000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 15 20 25 30 35 40 45 50

T
im

e
in

 s
ec

on
ds

Predicates per subscription |p|

NCA |pmin|=5
NCA |pmin|=10
CNT Ss=4
CNT Ss=8

(b) pe = 1, 000, 000

Fig. 6. Influence of number of predicates|p| for varyingpe

Again, sharp bends in the curves in Fig. 6 denote the point of exhausted main mem-
ory resources. The non-canonical approach shows the best scalability, followed by the
counting approach in case ofSs = 4. We can also observe improved time efficiency
in the non-canonical approach in case of higher|pmin|. This effect becomes more ap-
parent with a high value ofpe (Fig. 6(b)) due to more candidate subscriptions requiring
evaluation. In case of a small number of fulfilled predicates per eventpe, the counting
(caseSs = 4) is more efficient than the non-canonical algorithm; large numbers ofpe

clearly favor the non-canonical approach. The reason is the increased number of hits
(incrementing the hit vector) in the counting approach due to canonical conversions.

Our efficiency analysis shows that counting and non-canonical approach perform
similarly for increasing problem sizes. In some cases, the counting approach shows
slightly better time efficiency, other settings favor the non-canonical approach. For large
Ss, the non-canonical approach shows both better time and space efficiency. Thus, a
non-canonical solution offers better scalability properties in these situations.

6 Conclusions and Future Work

In this paper, we have presented a detailed investigation of two classes of event filtering
approaches: canonical and non-canonical algorithms. As a first step we introduced a
characterization scheme for qualifying primitive subscriptions in order to allow for a
description of various practical settings. Based on this scheme, we thoroughly analyzed
the memory requirements of three important event filtering algorithms (counting [1,
12], cluster [6, 8] and non-canonical [3]). We compared our results to derive conclu-
sions about the circumstances under which canonical algorithms should be preferred in
respect to memory usage and which settings favor non-canonical approaches.

To show the applicability of our theoretical results in a practical implementation, we
proposed an implementation and investigated its memory requirements by experiment.
This practical evaluation clearly verified our theoretical results: Even when conversions
to canonical forms result in only two canonical subscriptions (i.e., subscription use only
one disjunction), a non-canonical approach is favorable.

We also correlated the memory requirements of the practically analyzed algorithms
to their filter efficiency. Generally, non-canonical algorithms show approximately the
same time efficiency as canonical ones. In case of increasing numbers of disjunctions
in subscriptions, the time efficiency of non-canonical approaches improves compared
to canonical solutions. In this case, a non-canonical approach also shows much better
scalability properties as demonstrated in our analysis of memory requirements. Thus, if
subscriptions involve disjunctions, non-canonical algorithms are the preferred class of
filtering solutions due to their direct exploitation of subscriptions in event filtering.

For future work, we plan to describe different application scenarios using our char-
acterization scheme. A later analysis of these scenarios will allow conclusions about
the preferred filtering algorithm for these applications. We also plan to further extend
the non-canonical filtering approach to a distributed algorithm.

References

1. G. Ashayer, H. A. Jacobsen, and H. Leung. Predicate Matching and Subscription Matching
in Publish/Subscribe Systems. InProceedings of the 22nd IEEE International Conference on
Distributed Computing Systems Workshops (ICDCSW ’02), Vienna, Austria, July 2–5 2002.

2. S. Bittner and A. Hinze. Investigating the Memory Requirements for Publish/Subscribe
Filtering Algorithms. Technical Report 03/2005, Computer Science Department, University
of Waikato, May 2005.

3. S. Bittner and A. Hinze. On the Benefits of Non-Canonical Filtering in Publish/Subscribe
Systems. InProceedings of the 25th IEEE International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW ’05), pages 451–457, Columbus, USA, June 6–10 2005.

4. A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient Filtering in Publish-
Subscribe Systems using Binary Decision Diagrams. InProceedings of the 23rd Interna-
tional Conference on Software Engineering (ICSE 2001), Toronto, Canada, May 2001.

5. A. Carzaniga and A. L. Wolf. Forwarding in a Content-Based Network. InProceedings of the
2003 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (SIGCOMM ’03), Karlsruhe, Germany, March 2003.

6. F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha. Filtering Algorithms
and Implementation for Very Fast Publish/Subscribe Systems. InProceedings of the 2001
ACM SIGMOD, pages 115–126, Santa Barbara, USA, May 21–24 2001.

7. J. Gough and G. Smith. Efficient Recognition of Events in a Distributed System. InPro-
ceedings of the 18th Australasian Computer Science Conference, Adelaide, Australia, 1995.

8. E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A Predicate Matching Algo-
rithm for Database Rule Systems. InProceedings of the 1990 ACM SIGMOD International
Conference on Management of Data (SIGMOD 1990), Atlantic City, USA, May 23–25 1990.

9. G. Mühl and L. Fiege. Supporting Covering and Merging in Content-Based Pub-
lish/Subscribe Systems: Beyond Name/Value Pairs.IEEE DSOnline, 2(7), 2001.

10. F. Peng and S. S. Chawathe. XPath Queries on Streaming Data. InProceedings of the 2003
ACM SIGMOD International Conference on Management of Data (SIGMOD 2003), pages
431–442, San Diego, USA, June 9–12 2003.

11. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service
with quenching. InProceedings of the Australian UNIX and Open Systems User Group
Conference (AUUG97), Brisbane, Australia, September 3–5 1997.

12. T. W. Yan and H. Garćıa-Molina. Index Structures for Selective Dissemination of Informa-
tion Under the Boolean Model.ACM Transactions on Database Systems, 19(2), 1994.

