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Abstract

RDF is the first W3C standard for enriching information
resources of the Web with detailed meta data. The seman-
tics of RDF data is defined using a RDF schema. The most
expressive language for querying RDF is RQL, which en-
ables querying of semantics. In order to support RQL, a
RDF storage system has to map the RDF graph model onto
its storage structure. Several storage systems for RDF data
have been developed, which store the RDF data as triples in
a relational database. To evaluate an RQL query on those
triple structures, the graph model has to be rebuilt from the
triples.

In this paper, we presented a new approach to store RDF
data as a graph in a object-oriented database. Our ap-
proach avoids the costly rebuilding of the graph and effi-
ciently queries the storage structure directly. The advan-
tages of our approach have been shown by performance test
on our prototype implementation OO-Store.

1. Introduction

The Resource Description Framework (RDF) is the first
W3C standard for enriching information resources of the
Web with detailed descriptions. Information resources are,
for example, web pages or books. Descriptions can be char-
acteristics of resources, such as author or content of a web
site. We call such descriptions meta data. The enrichment
of the Web with meta data enables the development of the
so-called Semantic Web [2]. The usability of the Sematic
Web depends on the compatibility and processing possibil-
ities of these meta data.

RDF supports creating and processing meta data by
defining a default structure. This structure can be used for
any data, independent of their character. Thus, the appli-
cation areas of RDF are numerous, e.g., web-based ser-
vices, peer-to-peer networks, and semantic caching models.
They all have in common that huge amounts of data have
to be processed when querying RDF data. Consequently,

for an extensive use of RDF data, the applications need ef-
ficient storage systems. Several systems have been devel-
oped for the storage and querying of RDF data, for exam-
ple, Sesame [4] and RDFSuite [1].

RDF data can be represented using XML, a triple struc-
ture or a graph. Only the graph representation enables
the semantic interpretation of the RDF schema. All exist-
ing RDF systems store RDF data as triples in an object-
relational database. To support the semantic interpretation,
current implementations map the formal graph model onto
the storage structure. In order to query the semantics, the
graph has to be constructed from the triples. This map-
ping constitutes an unnecessary impact on the system per-
formance.

This paper presents the new approach of storing RDF
data as a graph in an object oriented database. Our approach
has several advantages over the existing solutions:

� It simplifies the storage design because the graph can
be directly stored without further reorganization.

� It allows to interpret the graph already in the storage
without mapping.

� It efficiently uses the relationship between the RDF
query language RQL and OQL for query processing.

We have verified these advantages in the performance
test results achieved on our prototypical implementation.

The remainder of this paper is organized as follows: Sec-
tions 2 and 3 introduce the basic concepts of RDF and RDF
schema and discuss the querying options. Our approach
for storing RDF data is illustrated in Section 4, the subse-
quent Section 5 describes our prototypical implementation.
In Section 6, we discuss the results of the performance anal-
ysis of our prototype. Finally, we conclude the paper by dis-
cussing possible future research directions in Section 7.

2. Background

In this section, we introduce the context of our study. We
describe the RDF data model and the RDF schema.

Proceedings of the First Latin American Web Congress (LA-WEB 2003) 
0-7695-2058-8/03 $17.00 © 2003 IEEE 



2.1. RDF

The Resource Description Framework (RDF) is a lan-
guage for representing meta-data. The RDF data model [10]
defines the structure of the RDF language. The data model
consists of three data types:

� Resources: All data objects described by a RDF state-
ment are called resources. For example, resources are
web sites or books.

� Properties: A specific aspect, characteristic or relation
of a resource is described by a property. For example,
properties are the creation date of a web site or the au-
thor of a book.

� Statements: A statement combines a resource with its
describing property and the value of the property. RDF
statements are the structural building blocks of the lan-
guage.

A RDF statement is typically expressed as ”resource -
property - value” - triple, commonly written as P(R,V): A
resource R has a property P with value V. These triples can
also be seen as object-attribute-value triple.

Statements can also be expressed as graphs with nodes
for resources and values where directed edges represent the
properties. Figure 1 shows the graph of the resource R with
an edge for the property P directed to the property value V.

R

P

V

Figure 1. Graph representation of a ”resource
- property - value” - triple

Resources are represented in the graph as circles. Proper-
ties are represented by directed arcs. (Property-)values are
represented by a box. These values are called graph end-
nodes. Values can also become resources if they are de-
scribed by further properties, i.e., if a value forms a resource
in another triple. They are then represented by a circle.

The Example 1 shows both the triple and the graph rep-
resentation for the meta-data of a particular web page.

Example 1 (Different representations of a statement)
Let us consider a webpage specified by the URL
www.valerie.de. This webpage has the author Valerie.
We model this page as a resource with the property ”cre-
ator”. We show the triple and graph representation of this
data.

data: Valerie is the creator of the resource www.valerie.de.

triple: hasCreator(www.valerie.de, Valerie)

graph: see Figure 2

Valerie 

hasCreator

www.valerie.de

Figure 2. Graph representation of RDF triple
in Example 1

2.2. RDF Schema

The RDF data model does not make any assumptions
about the application area in which the data is used. There
are no reserved terms to model the data. Additionally, the
RDF data model has no mechanism to define names for
properties or resources. For that purpose, the RDF schema
is needed to define resource types and property names. Dif-
ferent RDF schemas can be defined and used for different
application areas.

The W3C proposed a RDF schema called RDF-
Schema [3]. The RDFSchema defines a basic type sys-
tem for RDF data. The main RDFSchema constructs
are Class and Property as resource types and subClas-
sOf and subPropertyOf as property names. This termi-
nology allows to declare resources as an instance of one
or more classes by using the type-property. The subClas-
sOf - property allows the specification of hierarchies of
classes. The subPropertyOf -property defines a hierar-
chy of properties. The basic type system defined by RDF-
Schema can be extended by new terms into a new type
system.

RDF schema statements are valid RDF statements be-
cause their structure follows the structure of the RDF data
model. The only difference to a pure ”resource - property -
value” - triple is, that an agreement about the specific mean-
ing for reserved terms and statements has been made. Thus,
the RDF schema provides a vocabulary for defining the se-
mantics of RDF statements.

Example 2 shows the usage of the properties type, do-
main, range and subClassOf and resources Resource, Prop-
erty and Class defined by RDFSchema.

Example 2 (Application of RDF Schema to Example 1)
The original data of Example 1 are now enriched by us-
ing the RDF Schema.

data: Valerie is the creator of the resource www.valerie.de.

triples: subClassOf(Website, Document)
domain( hasCreator, Document)
range( hasCreator, Literal)
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type(www.valerie.de, Web Site)
type( Valerie, Literal)
hasCreator(www.valerie.de, Valerie)

graph: see Figure 3

subClassOf

type

domain range

type

hasCreator

data

Document

www.valerie.de

Web Site

hasCreator Literal

schema

Valerie 

Figure 3. Graph representation of RDF
Schema in Example 2

We can see that a complex graph with a specific seman-
tics can be built.

3. Querying RDF/S

We have seen that RDF data can be represented as a set
of triples (structure level) or as a graph (semantic level).
A third representation form uses XML(syntax level). It has
been shown that the XML representation has several draw-
backs for query processing (see [4]). Therefore, we concen-
trate on querying of RDF data at the structure and seman-
tic level. As we shall see, the abstraction level determines
the query language.

3.1. Querying the structure level

At the structure level, queries on RDF data are based on
the data model structure, i.e., on the triples. For an overview
of query languages for the structure level see the survey of
Tuan Anh TA [14]. The best known RDF query language
on this level is RDQL [6], which is derived from SQUISH
[11].

Querying RDF data on the structure level does not sup-
port the evaluation of data semantics. We illustrate this
drawback in the following Example 3.

Example 3 (Querying RDF data with RDQL) We re-
fer to the data set defined by the triples in Example 2. The

following queries are formulated in RDQL. Let us con-
sider the following question: Return all resources of type
‘Document‘.

1. SELECT ?x WHERE (?x, �type�, �Document�)
This query evaluates the data at the structure level.
Each single triple is evaluated. That means that each
triple will be interpreted individually, but transitive
correlations of several triples are not detected. In our
example, ‘www.valerie.de‘ is of type ‘Web Site‘, and
‘Web Site‘ is a subclass of ‘Document‘. Therefore, the
RDFSchema semantics of ‘type‘ and ‘subClassOf‘ de-
fine that ‘www.valerie.de‘ is also of type ‘Document‘.
But the document ‘www.valerie.de‘ is not retrieved by
the query. It would only be detected if the explicit state-
ment ‘type (www.valerie.de, Document)‘ existed.

2. SELECT ?x WHERE (?x, �type�, ?c1) , (?c2,
�subClassOf�, �Document�) AND ?c1 = ?c2
This query would solve the first problem because it
evaluates the triple and, additionally, considers corre-
lations of two triples. But for further correlations (sec-
ond level) of ‘subClassOf‘-triples this query would not
work.

RDQL and other languages that query at the structure level
do not provide transitive closure, which would be required
for finding all correlations. In general, languages that query
at the structure level do not support the interpretation of the
semantics. To follow the correlations, i.e., class hierarchies,
the graph representation of the data has to be used.

3.2. Querying the semantic level

At the semantic level, queries on RDF data are based
on the graph representation of the data. Thus, queries do
not only retrieve results about explicit statements but also
consider correlations between statements. Correlations rep-
resent the data’s semantics as defined by a RDF schema.
RQL [13, 9] is the first standardized query language at the
semantic level for RDF. RQL is a typed language with a
syntax based on OQL. RQL uses the graph model, there-
fore, it is possible to query data, schema, or both. In Exam-
ple 4, we show queries on data and schema, respectively.

Example 4 (Querying RDF data with RQL) Again,
we refer to the data set defined by the triples in Exam-
ple 2. The query language is RQL. Again, we consider the
following question: Return all resources of type ‘Docu-
ment‘.

1. SELECT y FROM y type Document
A data-related RQL query is processed without inter-
preting the graph. The query gives all resources of type
‘Document‘. The pattern of the triple ‘type(?, Docu-
ment)‘ will be searched for in the graph. As before, the
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result of this query is empty because the semantic has
not been interpreted.

2. SELECT $y FROM � :$y � . type Document
Schema related queries in RQL use a path search in
the graph. The query retrieves all direct and indirect
resources of type Document. Now, we receive the cor-
rect result ‘www.valerie.de‘.

Only queries interpreting the schema make use of the se-
mantic level. Only those queries retrieve the correct result
including transitive closure. So far, only RQL enables the
interpretation of the graph and the evaluation of the com-
plete and correct result in terms of the semantic.

This analysis of querying at the semantic level shows that
RQL is currently the most powerful query language. There-
fore, an efficient RDF storage system has to support RQL
and the formal graph model has to be mapped onto the stor-
age structure. Our approach for solving this problem is pre-
sented in the next section.

4. An object-oriented concept to store RDF

We briefly introduced the representation of RDF as a
graph in Section 2. In this section we introduce a complete
new approach to map the graph model on the storage struc-
ture. All existing concepts are based on triple storages. That
means, the RDF data is stored as a set of triples, mostly in
tables of a relational database. In systems that support RQL
queries, the graph has to be rebuilt from the triples before
the semantic can be interpreted. This is unnecessary if the
graph is directly mapped onto the storage structure.

A direct mapping can be realized using an object ori-
ented storage concept. All edges and nodes/vertices of the
graph are realized as complex objects. The graph is encoded
by references between these complex objects. This enables
to directly map the graph onto the storage structure.

Our object-oriented concept needs different object types.
The graph representation of the data in Figure 1 shows that
nodes are always resources or values. In a RDF schema
properties can also be used as resources. That means, both
the edges and nodes, representing the RDF statements, are
instances of an object type. A statement is created by the re-
source object referencing the value object using a property
object.

Example 5 (The object-oriented storage concept for RDF)
The graph of Example 2 is mapped onto the object-oriented
storage structure. Figure 4 shows that the structure of the
original RDF graph is preserved. Resources, properties
and values are modelled as objects. A statement is graphi-
cally represented as a directed arc from the resource object
over the property object ending at the value object. For ex-
ample the triple hasCreator(www.valerie.de, Valerie) is

represented in the graph by having a reference from ob-
ject ‘www.valerie.de‘ across the object ‘hasCreator‘ to
‘Valerie‘.

Literal

www.valerie.de

hasCreator

Valerie 

Web Site

type

Document

subClassOf

domain range

Figure 4. Object oriented concept of RDF
graph in Example 2

To store the RDF graph within a object oriented concept
has the following advantages:

� The storage concept is simplified due to the direct map-
ping of the graph onto connected objects. All nodes
and edges can be translated directly into objects. All
relations between nodes and edges are described by
references.

� The usage of the concept is easy: all operations, such as
uploading, deleting and searching data, that are needed
in a RDF storage system, are executable on the stored
graph without further translations.

A prototypical implementation of our approach is pre-
sented in the next section.

5. Implementation

In this section, we describe our prototypical implementa-
tion OO-Store of a RDF storage system based on an object-
oriented database system. First, we discuss possible storage
systems for object-oriented graphs. Then, we introduce the
details of our specific implementation. Finally, we point out
the advantages of the chosen storage design.

5.1. A storage system for the object oriented con-
cept

The object oriented concept enables the mapping of the
graph on the storage structure. For storing the graph persis-
tently, an object oriented storage system is required. Typi-
cally either object-oriented database systems (oodb), such
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as FastObjects, or persistent storage systems for objects,
such as PDOM of GMD for XML objects [7], are used. Both
systems allow the user to store and manage complex objects
with attributes referencing each other. Thus, for the mere
storage of RDF graphs, both system types may be used. But
the RDF data contained in the graph has to be retrieved ef-
ficiently. An oodb enables access to objects and their rela-
tions using the query language OQL. RQL queries can be
easily translated into OQL queries because the RQL syn-
tax is based on OQL (see Section 3). Persistent storage sys-
tems do not provide any specific means for object retrieval,
such as a query language. Because of the close relationship
between RQL and QQL, oodb are advantageous over per-
sistent storage systems in terms of retrieval of RDF data.
Therefore, our implementation of an RDF storage system is
based on an object-oriented database system, namely Fas-
tObjects [8].

5.2. RDF storage design for oodb

In an object-oriented concept to store RDF data, the re-
source object references the value object using a property
object. Each resource, property and value is represented by
a single object. If a component appears several times in the
RDF triple set, multiple references to the single object are
used. Our implementation for storing the RDF graph in an
oodb uses three types of objects: Resources, Literals, and
Values as shown in Figure 5. The components of an RDF
triple (resource, property, and value) are represented in the
database as follows: resources are represented by objects
of type Resources. Properties are represented by objects of
type Resources. Values are either objects of type Resources
or Literals. They are of type Resources if they reference
other objects, i.e., they additionally represent resources of
other triples. They are of type Literals if they represent end-
nodes of graphs (see Section 2). If a value is solely a re-
source of a triple in the applied RDF schema, it has the type
Literal. The object types Resources and Literals are sub-
classes of the superclass Values and inherit the attribute out-
edges. This attribute is used to create RDF triples from the
single components: each Resource or Literal object stores
a list of references to properties and values. The outedges
attribute maps property keys (����...����) onto value lists
(�����...�����).

Each property key points to its respective list of values.
The properties and values of a specific resource can be re-
trieved by following the mappings in the outedges attribute
of the resource. Thus, the RDF graph is stored in the oodb
by an object/reference structure and not as single triples.
The database schema stores the RDF data as a graph with
an object oriented storage structure. The storage structure it-
self represents the formal graph model in a physical form of
objects and references.

name

Values

outedges

Resources

id

namespace

localname

Literals

language

id

Figure 5. The object types of our oodb imple-
mentation

The Example 6 shows the transformation of a formal
graph model into the object-oriented storage structure.

Example 6 (Storage structure for the oo storage concept)
We show the application of the database schema on our ex-
emplary data structure (as introduced in Figure 5). The fol-
lowing tables in Figure 6 list the created objects with their
attributes. In the table of Resource objects we find, for ex-
ample, the object with id 9. The object represent the re-
source ‘www.valerie.de‘. The outedges attribute contains
two triples ‘type(www.valerie.de, Web site)‘ and ‘hasCre-
ator(www.valerie.de, Valerie)‘.

Objects of type Literals

id outedgeslocalname

Literal

type

Web Site

subClassOf

Document

hasCreator

subClassOf−>Document

domain

range

domain−>Document, 
range−>Literal

www.valerie.de type−>Web Site,
hasCreator−>Valerie

namespace

9

8

3

2

1

4

5

6

7

ExpSchema

ExpSchema

ExpSchema

ExpSchema

ExpSchema

ExpSchema

ExpData

ExpData

ExpData

id language

9 type−>LiteralValerie

value

en

outedges

Objects of type Resources

Figure 6. Objects for data in Example 2
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5.3. Design discussion

The direct usage of the graph, instead of triples, implies
several advantages for the object-oriented DB approach
compared to existing relational solutions, such as Sesame1.
It simplifies the storage concept compared to existing stor-
ages. For example, inferred semantic data is not explicitly
stored because all semantics can be derived from the graph.
For more details on a discussion about differences in storage
concepts see [5]. The second advantage is the direct inter-
pretation of the data semantics instead of building the graph
from triples. RQL can query the semantics of the data di-
rectly, i.e., the hierarchies of and relationships between the
data. These semantic queries follow the edges inside the
graph. OQL realizes this search on the stored graph by fol-
lowing the references of the objects.
The main advantage of storing RDF data in an object ori-
ented database is the close relationship of OQL and RQL,
which allows simple translation and processing of queries.
The queries do not have to be divided into triple filters as
necessary in existing relational RDF storages. There, each
query is divided into a set of basic SQL statements query-
ing triple sets, which have to be combined for the final re-
sults. In our oodb solution, each query retrieves the desired
data directly. These different ways of processing a RQL
query have different processing performances, as we will
illustrate using two examples of RQL queries. Example 7
shows that the degree of performance difference depends
on the applied SQL query optimization. As optimizations,
we considered in this example join order and indexing. Ex-
ample 8 shows that querying triples with SQL can demand
additional query or storage effort.
Both examples show that querying the triple with SQL
can retrieve identical results with the same performance as
querying the graph with OQL. They additionally confirm
the advantage of our object-oriented approach, which guar-
antees to process the RQL query with the same performance
that SQL can only achieve with optimization and additional
effort.

Example 7 (Processing a RQL data query) This exam-
ple refers to the data of Example 2. We present how to
to process the given RQL data query with either SQL
or OQL. As can be seen, SQL has the same perfor-
mance as OQL only if the optimal way to process the triple
filters is used.

RQL: Of which type are the creators of www.valerie.de?

1 Sesame is a framework that supports different RDF storages. The RDF
data access is realized by using an API layer for translating the RQL
queries into storage specific queries. Using this layer instead of a di-
rect translation has an additional impact on the system performance.
We consider the original Sesame implementation using a relational
database.

SQL: The following triple-filters have to be processed:
TF1 ( www.valerie.de hasCreator X )
TF2 ( X type ? )
( ? is the queried result set.)

We assume that the triple table contains N triples, with
N1 triple relevant for TF1 and N2 triples relevant for TF2.
N? is the number of triples of the result set and N � N1, N2,
N?.
Optimal join order and indexing: The optimal join order of
the triple-filters is first to process TF1 and then to use the
set X for processing TF2. By using an index, we directly find
all N1 triples relevant for TF1 and, with the knowledge of
set X, we also find all N? triples of the result set for TF2 di-
rectly. In total, we have to consider N1 + N? objects.
No join order and no indexing: Not using the optimal order
means to process triple-filter TF2 without knowing the set X.
This demands an additional join of filters TF1 and TF2 to
evaluate set X. Without using an index, we have to consider
N triples for triple-filter TF1 and TF2 and N2 triples for
their join, which gives 2N + N2 in total.

OQL: The RQL query is processed on the graph by follow-
ing the outgoing hasCreator-edge of object www.valerie.de
to all objects (which are N1 objects) and from there all out-
going type-edges to all objects of the result set (which are
N? objects). Thereby we only consider objects (in total N1
+ N?) that are relevant for the RQL query and are there-
fore part of the result set.

Example 8 (Processing a RQL schema query) This ex-
ample refers to the data of Example 2. We present how
to process the given RQL schema query either SQL or
OQL. As can be seen, querying triples demands addi-
tional query or storage effort to achieve the same result as
querying the graph.

RQL: Of which type is www.valerie.de?

SQL: The following triple-filters have to be processed:
TF1 ( www.valerie.de type X1 )
TF2 ( X1 subClassOf X2 )
TF3 ( X2 subClassOf X3 )
TF4 ( ..... )
( X1 + X2 + X3 .... is the queried result set.)

To calculate the transitive closure induced by this RQL
query, we have to apply additional subClassOf - filters as
long as relevant triples can be found. The last filter will
have no result and is unnecessary effort. Some relational
RDF systems like Sesame [4] do not calculate the transi-
tive closure but store all implicit triples. Thereby only filter
TF1 gives the queried result set.

OQL: The transitive closure can be calculated on the graph
by following all outgoing subClassOf-edges as long as any
exists. Thereby we only consider objects that are relevant
for the RQL query and therefore are part of the result set.
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Nr Query Description
QD1 select X, Z from Z http://www.w3.org/2000/01/rdf-

schema#subClassOf X. http://www.w3.org/1999/02/22-
rdf-syntax-ns#type Y where Y =
http://www.w3.org/2000/01/rdf-schema#Class

Returns all possible
instances X and their
sub-classes Z, if X is
of #type #class.

QD2 http://www.w3.org/2000/01/rdf-schema#Resource Returns all com-
plete instances of
class #Resource.

QD3 http://www.w3.org/1999/02/22-rdf-syntax-ns#type Returns all instances
of property #type.

Table 1. Example queries regarding the data

6. Experiences

In this section, we present our experiences with the im-
plementation introduced in the previous section. We first de-
scribe the technical environment and our test settings. Then,
we present the performance data obtained in our tests. Fi-
nally, the test results are discussed.

6.1. Test environment

We compared our prototypical implementation OO-
Store with the one from Sesame. The tests have been car-
ried out on a Windows 2000 machine with 500 MB RAM
and a Intel Pentium CPU 1.60 GHz. Both implementa-
tions have been tested in the context of the Sesame Frame-
work (version 0.3 with Tomcat server 4.0), which has been
written in Java. Within this framework, for our project
we exchanged the query processing component. We re-
fer to the original implementation as Sesame with a
MySql-database (version 3.23.49) and to our implementa-
tion as OO-Store. We used test data taken from the Open
Vine Catalog [12].

In this paper, we present the test results regarding ten
selected RQL queries as listed in Table 1 to 3. The RQL
queries have been directly tested in Sesame and using a
OQL translation in our implementation OO-Store. The per-
formance has been measured as response time between sub-
mission of a query until all results are returned, including
connection time to the database.

We evaluated two aspects: first, the performance of
queries that belong to different query categories: queries
on data, on the schema, and hybrid queries. Second, the in-
fluence of a growing data base on the query perfor-
mance.

6.2. Performance of different query categories

At first we show the test results regarding different cate-
gories of RQL-queries: queries on the data, on the schema

and on both of them together (hybrid queries). We expect
that different categories will show different performance be-
havior because of the differences of interpretation effort.
For example, processing a schema and data related query
takes more time than processing a data related query be-
cause the interpretation of the semantics is more complex.

Our hypothesis is that in general our implementation
should perform better because of the advantages described
in Section 5. We also expect that the impact of the advan-
tages differs depending on the character of the query (see
above).

The following three Figures 7(a) to 7(c) show the per-
formance results observed in each category of queries(data,
schema, hybrid). In each figure, we compare the perfor-
mance of both implementations based on the same data base
of 5000 triples. Each figure shows the response time in mil-
liseconds(msec) on the y-axis for three different queries (on
the x-axis).

During the tests, a cache effect could be observed for
both implementations, which will not be discussed in de-
tail here. Because of caching, the response times decrease
a lot after the first execution. Therefore, all response times
shown here are mean values of measurements taken after
the second execution. We observed the following test re-
sults:

1. In general, the times for quering in OO-Store are lower
than Sesame’s, independent of the size of the data base
and the character of the query.

2. The different categories of the queries have an impact
on the performance for both implementations. Within
each category (schema, data or hybrid), the query re-
sponse times show a similar time behavior for each of
the implementations. For example, the response times
for data queries on our OO-Store are all in the or-
der of 100 msec, while the response time of the same
queries on Sesame are in the order of 1000 msec. We
see that on average schema and hybrid queries (see
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Nr Query Description
QS1 select $super, $sub from Class $su-

per, Class $sub where $sub in subClas-
sOf($super)

Returns all classes and their sub-
classes.

QS2 select $super, $sub from Class $su-
per, Class $sub where $sub in subClas-
sOf($super)

Returns all classes and their direct
sub-classes.

QS3 select @P, @Q from Property @P, Prop-
erty @Q where @P in subPropertyOf(@Q)

Returns all properties and their di-
rect sub-properties.

Table 2. Example queries regarding the schema

Nr Query Description
QH1 select * from X @P . @Q Y Returns for all values of all properties of all

possible instances again all properties and
their respective values.

QH2 select * from X : $X @Q Y : $Y Returns for all possible properties all range
- and domain - classes and their respective
instances.

QH3 select * from @P X : $X.@Q Y :
$Y

Returns for range - classes and their in-
stances of all possible properties again all
properties and range - classes and their re-
spective instances.

Table 3. Example queries regarding the data and schema(hybrid)

Figures 7(b) and 7(c)) need more time than data re-
lated queries (Figure 7(a)).

3. Comparing the three categories (i.e., the data in the
three Figures), the performance curves for OO-Store
and Sesame do not show the same behavior. While
for OO-Store the performance of schema queries and
data queries is almost similar, in Sesame we see strong
performance differences. The reasons for this behav-
ior lies in the different strategies for query processing
in the two implementations. Sesame splits the queries
into triple filters to query the tables of triples. So more
complex queries (i.e schema and data related) demand
the usage of more triple filters. By using an oodb, ev-
ery query interprets the graph no matter whether it is
a complex query or not. More complex queries only
have to follow the paths of the graph more deeply. That
means that the category of the query does not influence
the times for oodb as much as for Sesame.

6.3. Influence of data base size

Here, we discuss the test results of a single RQL-query
on a growing database. We distinguish two cases:

1. Increasing amount of data (in the database) with simi-
larly increasing amount of query relevant data (i.e., the
result set is also increased)

2. Increasing amount of data (in the database) with con-
stant amount of relevant data (i.e., the result set is not
changed)

Our hypothesis is that when the amount of relevant data
grows with the database, the response times become higher
because more data has to be evaluated. We assume, based
on the previous tests, that our implementation performs bet-
ter than Sesame.

The following two figures present the results observed
for a growing database with a growing result set (Fig-
ure 8(b)) and for a growing database with the same result
set (Figure 8(a)) for both implementations.

Both figures show the response time in msec on the y-
axis, and the amount of triples stored in the database in
thousands on the x-axis. We observed the following test re-
sults:

1. The response times for both implementations depend
on the size of the data base and the size of the result
set. A growing data base implies increasing response
times if the amount of relevant data grows similarly. In
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Figure 7. Performance for the different cate-
gories of RDF queries on 5000 triples

that case, for both implementations the time for query
evaluation grows because more relevant data has to be
processed.

2. A growing data base with constant amount of relevant
data causes a different behavior for both implementa-
tions. The response time for Sesame increases because
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Figure 8. Performance of a single query on a
growing database

independent of the relevant data more triples in the ta-
bles exist. Sesame’s triple filter have to extract the rel-
evant data from a larger amount of data. The response
time for our implementation OO-Store remains con-
stant because queries are evaluated by starting at a cer-
tain point in the graph and by following the relevant
paths. The paths to process are of the same length if
the amount of relevant data remains constant.

However, for all evaluated cases, our OO-Store imple-
mentation shows better performance than Sesame. Our ex-
periments confirm the assumption about the advantages of
querying the stored graph.
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7. Conclusion and outlook

In this paper we presented a new approach to store RDF
data as a graph.

First we discussed the RDF data model that defines
triples as the base structure of the RDF language. Based
on this data model, RDF schema gives a certain seman-
tics for the data. Then, we have shown that these seman-
tics can be only interpreted by using the graph representa-
tion of RDF data. Therefore, a powerful query language has
to be based on the graph model. Currently, only the RQL
query language fulfills this requirement.

In order to support RQL, a RDF system has to map the
graph model onto its storage structure. Existing systems
store the triples in tables of a relational database system.
Consequently, for the evaluation of a schema-related query,
i.e., a query requiring a semantic interpretation of RDF data,
the graph has to be built from the triples. In our approach,
this additional step is not necessary. We proposed to directly
store the graph representation of the RDF data in an object-
oriented database. This approach simplifies the storage con-
cept, enables us to directly and efficiently query the stored
graph, and take advantage of the close relation of RDF and
OQL.
As proof of concept we presented our reference implemen-
tation of OO-Store, an RDF storage system based on the ob-
ject oriented database system Fast Objects. We have com-
pared our system with Sesame, a well-known RDF system.
We have shown that for all evaluated cases, our OO-Store
implementation has better performance than Sesame. Our
experiments confirm the assumption about the advantages
of querying the stored graph.
Currently, we are implementing a full RQL parser, which
automatically translates RQL queries into OQL. We are also
investigating the incorporation of RDF into user profiling
systems and the usage of RDF for content-based routing.
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