A Generic Alerting Service for Digital Libraries

George Buchanan
UCL Interaction Centre
31/32 Alfred Place
London, United Kingdom

g.buchanan@cs.ucl.ac.uk

ABSTRACT

Users of modern digital libraries (DLs) can keep themselves
up-to-date by searching and browsing their favorite collec-
tions, or more conveniently by resorting to an alerting ser-
vice. The alerting service notifies its clients about new or
changed documents. Proprietary and mediating alerting ser-
vices fail to fluidly integrate information from differing col-
lections. So far, no sophisticated service has been proposed
that is integrated with the digital library software and cov-
ers heterogeneous and distributed collections. This paper
analyses the conceptual requirements of this much-sought
after service for digital libraries. We demonstrate that the
differing concepts of digital libraries and its underlying tech-
nical design has extensive influence (a) the expectations,
needs and interests of users regarding an alerting service,
and (b) on the technical possibilities of the implementation
of the service. Our findings will show that the range of is-
sues surrounding alerting services for digital libraries, their
design and use is greater than one may anticipate. We also
show that, conversely, the requirements for an alerting ser-
vice have considerable impact on the concepts of DL design.
Our findings should be of interest for librarians as well as
system designers. We highlight and discuss the far-reaching
implications for the design of, and interaction with, libraries.
This paper discusses the lessons learned from building such
a distributed alerting service. We present our prototype im-
plementation as a proof-of-concept for an alerting service for
open DL software.

Categories and Subject Descriptors

H.3.4 [Information storage and retrieval]: Systems and
Software—User profiles and alert services; H.3.3 [Infor-
mation storage and retrieval]: Information Search and
Retrieval—Information filtering

Keywords

alerting, publish/subscribe, digital libraries

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are qqq
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific 1

permission and/or a fee.
JCDL'05,June 7-11, 2005, Denver, Colorado, USA.
Copyright 2005 ACM 1-58113-876-8/05/000655.00.

Annika Hinze
Department for Computer Science
University of Waikato
Hamilton, New Zealand

a.hinze@cs.waikato.ac.nz

1. INTRODUCTION

Active information seeking is often followed by the task of
monitoring useful sources for new, or changed, information
on the same topic. Users of modern digital libraries can keep
themselves up-to-date by repeatedly searching and browsing
their favorite collections (see dashed lines in Fig. 1, left).
The Hermes [10] and Dias [15] project have shown that an
alerting service which integrates information from a wide va-
riety of information providers can be indispensable to users:
It relieves them from the tedious and cumbersome tasks of
searching and browsing, or even from subscribing to indi-
vidual alert services such as Springer Link Alert!, Elsevier
Contents Direct?, or ACM Table-of-Contents Alerts® (see
solid lines to independent DLs in Fig. 1, left). Both Her-
mes and Dias are independent mediating alerting services
for digital libraries which support the filtering and notifica-
tion of event messages regarding documents stored in digital
libraries. These alerting services act as brokers between the
digital libraries and their users (see Fig. 1, right).

This mediating approach has shortcomings on both the
providers’ sides and on the users’ sides: (1) On the provider
side, this approach requires the providers of digital libraries
and publishing houses to both provide the data and also
to agree on a common protocol for alerting. Hermes at-
tempted to overcome these problem by employing observers
and wrappers for providers. Their experience has shown
that it is a tedious and ongoing task to adapt the service for
the changing interfaces of the publishers. (2) On the user
side, the interaction with the alerting service is separated
from the interaction with the digital library. That is, the
alerting service is a complementary service to the digital li-
brary, which is inhibiting a fluid user interaction with all
the library services: Consider a user who retrieves a docu-
ment from their favorite collection; the user cannot readily
turn their regular search into an alerting query because the
services are not integrated. The flow of interaction is in-
terrupted and the mediating alerting service might not even
support the same retrieval methods as the DL search engine.

We propose to integrate the alerting service into the dig-
ital library software as a complementary service to infor-
mation seeking in the digital library (see Fig. 2). We see
alerting as the natural extension of the information seek-
ing paradigm into temporally-continuous information ac-
Consequently, we propose to tightly integrate a dis-
tributed alerting service within the software that manages

available via http://springerlink.metapress.com/
http://www.contentsdirect.elsevier.com/
3available via http://portal.acm.org

search/browse B
subscribe/notify /_,,/‘”

M

solitary distributed federated

DL DL DL

Digital Libraries

Figure 1: Information access in DL

a digital library. Our approach leads to a more homoge-
nous (and less interrupted) user experience while accessing
the documents using the two different retrieval paradigms
of information seeking and alerting. The following technical
advantages can also be achieved: immediate internal access
to the document-related data without problems in access
rights and observation of document changes, and reuse of
the information seeking functionality offered by the library.

This design approach creates new challenges and opportu-
nities that are neither addressed by existing digital libraries
(and their alerting services), mediating alerting services such
as Hermes and Dias, nor independent event-notification sys-
tems. In particular, the challenges addressed are to (1) build
a distributed system for alerting in digital libraries inte-
grated with the DL software and collections; (2) support
distributed as well as local collections that are federated
under homogenous access points; and (3) create fluent user
access to documents independent of access paradigm (seek-
ing or alerting), i.e., alerting equivalent of searching and
browsing.

In the next section, we introduce some basic terminology
and key concepts regarding alerting services. In Section 3 we
explore user scenarios for alerting in digital libraries so that
we may discover opportunities that an alerting service may
hold for designers and users of a digital library. Based on the
scenarios, we present in Section 5 the results of our require-
ment analysis of different types of libraries, their users, and
the offered services. In the following section (Section 6),
we propose the architecture and design for an open alert-
ing service for DLs. As a proof of concept, we describe our
prototypical implementation of a distributed alerting service
that is integrated into the Greenstone Digital Library soft-
ware in Section 7. A comparison of our design proposal and
the prototype with existing work is presented in Section 8.
In Section 9, we discuss our findings and lessons learned re-
garding the design of alerting services for digital libraries ,
which also impact the design of the digital library software.
We summarize this paper in the last section.

2. ALERTING TERMINOLOGY

In this section, we briefly introduce some terminology to
assist the reader in understanding the rest of the paper. The
concept of alerting has a number of names, such as selective
dissemination of information (SDI) [17], information filter-
ing [2], or event notification system (for details see [12]).

An event occurs when a change occurs in a digital library.
This results in an event message being sent that carries the
information about the event. Often, alerts are generated
during the library’s building cycle (when a number of new

o 0 0 e

Digital Libraries solitary distributed federated

Figure 2: Proposed integrated alerting in DLs

documents are added and indexed in the library). User’s
interests are represented by profiles. Profiles may have dif-
ferent structures, such as queries, or keywords. The alerting
service stores and indexes the profiles in a profile repository.
Changes in the library ar either automatically reported to
the alerting service, or they have to be observed (i.e., passive
and active observer).

Incoming event messages are filtered against the stored
profiles. We distinguish subject-based and content-based
filtering. In subject-based filters, the user profiles contain
topics or subjects (often selected from a list); event mes-
sages are grouped into these subjects. Content-based filter-
ing analyses the content of the event messages; the filtering
is more sophisticated and may be better tailored to each
users needs.

A filtering engine executes profiles on a stream of incom-
ing event messages. When a match is found by the filtering
engine, it passes the matched event message to a notifier
which, obtaining the user’s preferred method of receiving
the message from the matching profile, sends a notification
to the user.

3. USER SCENARIOS

We present a representative selection of use cases (UCs)
to highlight the variety of purposes that notifications could
serve. These scenarios were developed by eliciting user re-
quirements through literature analysis (focussing on DL user
requirements), claims analysis [4] (addressing DL users and
librarians), and a questionnaire [18] send to a DL mailing list
(reaching mainly developers, also users and administrators).
Our user study for alerting is the first one that addresses a
wide range of groups that interact with, and are affected by,
digital libraries. This provided a previously untapped scope
for the use of alerting technologies in DLs.

UC1: Recommending Texts A professor at a university
keeps a list of recommended texts for students on her
ICT courses. When the university library catalog is
updated, she wants to be notified to ensure that her
recommendations are up-to-date. It is critical to her
that when a new edition of an existing text becomes
available, or when a reference document is no longer
available through the library that she learns of this
at once. She also wants to ensure that when a new
ICT book arrives in the library, that she hears of this
within a week so that she is able to advise students of
its value.

UC2: Changing documents A computer science student
at a university keeps track of the arrival of Java pro-

gramming books in the university library. However, he
also uses a number of open source programs whose doc-
umentation is kept on a free-access independent digi-
tal library. He wants to ensure that when changes are
made to key parts of the documentation of his database
management software of choice, he finds out as soon
as possible.

UC3: Music A music lover is interested in music of a cer-
tain period. In her personal DL, she collects different
versions or recordings of the same pieces. She is in-
terested in being notified once the library collections
add some new music pieces, or documents about the
music. She has access to a Low-Fi recording of a life
broadcast and wants to be notified when a high qual-
ity version becomes available. For some older music
pieces, she has bitmap scans of the sheet music; she is
interested in acquiring the same piece in a computer-
readable format. Once a new DL is founded that also
offers music from the period she is interested in, she
would like to be notified about its collections.

UC4: Direct ingest E-Garden, a publisher of electronic
gardening books supplies some of its works direct into
the catalog of a public library using an awareness ser-
vice [8]. The librarian who is responsible for the cat-
aloging of horticultural items, wishes to be notified
when new books arrive so that he can fully catego-
rize the new document into the library’s own scheme.
A patron [11] of the library also likes to track new
publications from E-Garden, to keep the recommen-
dations list she publishes in the library up-to-date. If
a publisher withdraws a book, the librarian will have
to introduce a placeholder for the deleted work. The
patron also wants to be notified when there are any
changes in the topic classifications for horticulture of
the DL.

UCS5: System administration Both the administrator of
the DL and a local software developer for the library
are interested in new version of the DL software being
released by the DL-software publisher. The software
is open source and therefore the software developer
would like to know about new bugs encountered in a
new version she is working on with other programmers.
She also likes to know about new libraries installing her
software to see how much it is used.

As can already be seen from these simple use cases, alerts
can be caused not only by changes to documents (UC1), but
also other parts of the digital library such as classifications
(UC4) and the underlying software (UC5). In order to ad-
dress all facets of the use cases, we have to extend our model
for digital libraries in the light of alerting services.

4. MODEL OF DIGITAL LIBRARIES

In this section, we introduce our model of digital libraries
and its services in the light of alerting services.

4.1 Types of Libraries

As library users are not uniform, neither are libraries
themselves. Goals and objectives vary due to management,
history, funding, role and many other factors. We will show
that this has influence on the DL’s alerting service.

One distinctive form of library is the archival library, which
seeks to preserve documents for posterity. Documents may
be chosen not for their current interest, but for their poten-
tial interest in the future. In such institutions, destroying
or removing documents from the library is a rare and un-
desirable event. In addition to new documents, superseding
versions of existing documents, such as a new edition of a
book, will be added to the corpus of the library. Often, ex-
isting stocks are large and funding is substantial. However,
such libraries are, if famous, relatively rare. Use cases that
may apply here are UC1 and UCS5.

In contrast, reference libraries seek to provide information
of immediate relevance, and documents of declining impor-
tance are soon discarded. Preservation is an additional cost
only met in cases of high demand. The library will often
keep only the latest edition of documents for immediate ref-
erence. Reference libraries are small or mid sized with often
highly specialized collections. [UC1, UC4, and UC5]

A sub-class of the reference library is the small special-
ized library. These libraries are often provided by enthusi-
astic experts of a certain field, who also act as patrons of
the collections. Work practices that are commonplace in
traditional libraries may not be done at all. An example
collection could be the documentation for an open software
project. Here, new versions of documents, such as the lat-
est version of the documentation, replace older ones; doc-
uments may change while published. Documents may un-
dergo structural changes, caused, e.g., by group authoring.
Specialized libraries are numerous, may be short-lived and
idiosyncratic when compared to standard library practice.
[UC2, UC3, and UCH]

Clearly, many libraries are situated somewhere between
these extremes. The varied forms of library will give rise to
differing user interests and profiles.

4.2 Document ldentity

To provide an alerting service, each document in a library
must have a consistent identifier over time. Some web-based
DL systems do not provide consistent identifiers for content
that are honored across different user sessions. Such sys-
tems cannot, therefore, be used as a basis for providing an
effective alerting service.

The issue of identity also emerges in a second manner
when a document is changed [8]. A new version of a doc-
ument could be assigned a new identifier while the old one
retains its identifier. Alternatively, the new document may
take the identify of the previous version, while the old doc-
ument is archived (and obtains a new identifier) or deleted.
In addition, both the new and old version could be assigned
new identifiers. These problem are even more acute if the
digital library and its collections are distributed. To the li-
brary system, it may not be clear that two versions of the
same document are handled.

Conceptually, librarians abstract beyond a particular edi-
tion or format by identifying the work of the author. For
example, a new edition or an audio recording of a book are
only further variations on the one work. So far, none of the
widely accepted DL systems has a strong model of the work.

4.3 Distributed and federated Libraries

Digital libraries can be solitary (stand-alone), distributed,
federated, or even a hybrid of these (see Figures 1 and 2).
In a stand-alone DL, providing an alerting service is rela-

tively straightforward. When a library is distributed across
a number of separate DL servers, or is federated alerting
becomes more complex. The library needs to be aware of
changes in its constituent servers, and to inform its users
of those changes. A single server’s content may be used by
more than one distributed or federated service.

Another difficulty that arises for distributed library sys-
tems is the inconsistent availability of parts of the library.
However reliable the network and the servers are, it is in-
evitable that at some point part of the library is unavailable
whilst the rest can still be accessed. This also affects per-
formance and design of an alerting service in such contexts.

5. CONCEPTUAL DESIGN DESIDERATA

In this section, we discuss considerations for the design
of an alerting system as a component in a digital library.
These considerations emerge from analysis of our scenarios
(see Sect. 3) as well as organizational and technical consid-
erations (see Sect. 4). For an overview see Table 1.

5.1 Library Notification Services

As interactive information seeking may be achieved by
more than one method, e.g. searching and browsing, alerting
users of changes in content can be achieved in many ways.

Patrons could support alerting in a library by providing
default profiles for particular interests in the library (UCY).
They could also provide commentaries on new books (not so
dissimilar to our Professor in UC! - such recommendations
could themselves be passed as events through the alerting
service. Thus, an alerting service may be used by librarians
and patrons to notify readers of other changes in the library
not directly connected to index and content changes. Exam-
ples here could include advance notification before changes
actually occur (e.g. that a book will be deleted in a month)
or service notices (e.g. temporary closures).

Bringing new content to the attention of readers is a com-
mon task in a physical library. To match this need, the
accession shelf or acquisition section is used to highlight
new material that the library has obtained. An alerting
service could provide an analog of this - a part of the clas-
sification hierarchy that lists recently added documents. A
well personalized notification provides a similar service to
the personal recommendations given by a librarian.

5.2 User Model

We identified five different user groups and more than
thirty types of events. Table 1 gives an overview, numbers
in parenthesis in indicate richer substructures about which
we do not go into detail here. Interest in particular event
types are strongly related to the work of particular user
groups. There are also technical consequences from the in-
teraction between the event types listed above and the types
of libraries introduced in Sect. 4.1.

For instance, a new document version in an archival li-
brary will take on a separate identity whereas in a specialized
library, it might overwrite the old version. Consequently, the
user profiles will have to be defined following different pat-
terns. Classifications will typically change progressively and
slowly over time, but in small, specialised libraries run by
administrators with little technical librarianship skill they
might change more dramatically.

A rich conceptual design for an alerting service will permit
these different characteristics, but where an implementation

Details

librarians and patrons, local DL, dis-
tributed and federated DL, external
sources

Notifications | Personal notifications, announcements
within DL (accession shelf)

reader, librarian, patron, DL administra-
tor, DL software developer

documents: new, changed, deleted,
unchanged document for given time,
new metadata value, changed metadata,
deleted metadata value, new metadata
field, deleted metadata field, new col-
lection, deleted collection, collection re-
built, new classification, deleted classifi-
cation, category events (4), index events
(2), new library, closed library, library
installation events (6), library system
(software) change (4),

typical predefined profiles, patron-
supported profiles, integration with DL
retrieval services

Concept
Providers

User groups

Event types

Support

Table 1: Conceptual Design Desiderata

is created, emphasis may be given to particular forms of
event over others. Finally, for the users, clarity and support
is needed bout the supported patterns of alerting.

5.3 Provider Network

Providers of library-related event notification can be the
local DL where the alerting service resides, distributed DLs,
external publishers, and other services (such as Hermes).
Supporting different types of providers requires active and
passive observation of events, i.e., direct observation of the
DL content versus filtering of external event messages.

The distributed alerting network consists of a number of
nodes. Each node can be any of the following: libraries
originating event messages, hubs that pass communication
between nodes, services that digest multiple event streams
into one, and notification services that finally transmit infor-
mation to users. Any single node in the distributed network
may perform one, many or all of these functions. Origina-
tors of event messages, such as digital libraries and other
alerting services are referred to a providers.

The issue of mediating alert systems such as Hermes have
already been addressed in other papers. In our design, we
focus on the origination of messages, and their distribution
within one conceptual library (distributed or federated).

One complication that arises in the context of distribu-
tion is that the messages that thus pass from one library to
another should avoid duplication. In the context of event
research, the accepted approach is to build a acyclic overlay
network of alerting nodes, so that no messaging loops occur,
and that duplicates are avoided.

If all messages are held until a server becomes available
again, then substantial storage may have to be retained (de-
pending on the number of alerts passing across the network).

Since alert messages can be received by the system from
more than one library server, the question as to the loca-
tion and distribution of profiles and event messages arrives.
This interacts with the question of network reliability. In

[Tt AT T TSl

=
Browse Search Profil Profile
Service Engine rofiles
—
Classmer Search o
Query melle Classifier
Identifiers
Query Browse
Filter Filter

)

Phase 1 Phase 2 Phase 3 Phase 4

Figure 3: Hybrid Alerting Architecture. DL ar-
chitecture (white) with hybrid alerting architecture

(gray)

the context of digital libraries, networks are often segmented
and dynamic. This raises the problem of dangling profiles
and false positives. Dangling profiles are profiles that were
distributed to other servers and that are now left behind
in a network sector that is disconnected. When the pro-
file is cancelled, the user would still receive notifications
for events they are no longer interested in (false positives).
Users should also not be required to subscribe identical filter
profiles individually to a number of separate servers: errors
may arise and the user faced with an undue degree of repet-
itive labor.

6. DESIGN AND ARCHITECTURE

We present our final design and architecture in two parts.
First, we focus upon the alerting service structure on a lo-
cal digital library. Second, we address the design of the
distributed and federated part of the system. Finally, a
summary of the design and its features will be given.

6.1 Local Alerting

We propose a general alerting architecture at the local
library level, presented in Fig. 3. The existing components
of a typical digital library are with a white background:
components for building a library, the library repository for
the collection data, indexes for classification and search, and
the search and browse serves that can be accessed via a GUIL.

As explained earlier, alerts regarding events in a local li-
brary, e.g., changes to documents, start with the (re-)build
of the library collection (Phase 1). The following three
phases (under the dashed line) are added components of
the alerting service. This four-phase process matches the ac-
cepted template for event notification work-flow presented in
[13]: Generation (in our case, rebuilding the library index),
Observation, Filtering and Notification. All components of
the alerting service are shown in gray. Above the dashed
line, we show the auxiliary components and tasks that sup-
port the alerting process. Users can create profiles, which
are indexed and stored in the profile repository. The filtering
uses the profile indexes and the search functions provided
by the digital library. In our design, we use components
of the digital library’s existing services to complement and
support specialised alerting components. The filters permit
features such as search of the full text of a document or
search in a piece of music to be used without reimprisoning

complex code. Given the relative similarity of DL protocols
for services such as searching [1] and their small number,
this approach can readily be applied to a number of popular
DL systems.

We now study the key components of the local alerting
process in detail: Profile creation, Observation, Filtering
and Notification.

Profile Creation.The architecture which we present in
this paper does not determine how accurate profiles are cre-
ated that well match the interests and preferences of the
user. Profiles for a user may be created directly by the user;
through automatic generation based on user interaction his-
tories; adoption of pre-defined profiles created by librarians
or patrons, etc. One approach to ease the creation of user
profiles by users themselves is to minimize the number of
new concepts which a user has to learn: the transformation
of successful search queries into profiles would support this
goal. By maintaining the underlying principles of searching
and browsing, as in the case of routing [2] profile creation
could be simplified.

The structure of the auxiliary alerting components is es-
sentially the same as that for the elements of a digital li-
brary. Browsing and searching both find analogs in the pro-
filing subsystem, though storage and indexing are done in
different ways. Just as a user can browse through a digi-
tal library, eventually arriving at a particular document or
classification, a profile represents the same task continuing
over a temporal stream of information. Thus, for example,
browsing a single document becomes, as a profile, a mon-
itor for any changes in that document. Similarly, a query
becomes a monitor for any new matching documents.

However, a query profile needs to be handled differently to
a monitor on a document or classification. As classifications
and documents are explicit objects in a library, monitors on
them are relatively easy to implement. However, as queries
do not exist as separate objects, changes are more difficult
to capture, and commonly matching document identifiers for
the search against known changed or new documents is the
easiest way of implementing the search. A profile provided
by a user could be divided into several separate, simple, pro-
files in the alerting service, only being recombined through
the central filtering task.

The profiles stored in the alerting service are inserted into
the profiles database through a profile creation process. In
our example, new profiles are supplied through the DL in-
terface.

Observation of EventsThe observer process is the gate-
way to receiving event messages for filtering and, eventually,
delivery through the alerting service. Conceptually, event
messages can be received from the DL’s Build process or
from other (external) sources. Where event messages arrive
in different formats, the Observer phase will forward them
to the Filtering process in an understood format for match-
ing, translating if required. The observer could also monitor
the content of the DL and create the event message.

An effective observer can receive event messages in differ-
ent formats from different sources. For example, a remote
DL host with Z39.50 could send messages to the observer
from a saved search. However, the Observer must be pro-
grammed to receive each event message format.

The problem of versioning has been described before: Such

problems vary between libraries, but they are endemic where
there is weak support for higher level concepts than the doc-
ument itself.

Filtering of Events.The operation of the filtering process
is the keystone of the alerting service. It consults three
sources in the course of evaluating a change event. First, it
determines whether the event matches a specific object in
the library browsing hierarchy - i.e. if the changed item
matches is a document or classification. If so, then the
Browse Filter will be used in handling the event. Secondly,
it consults the Query Filter to see if the change is relevant to
any query-style profiles. A single change may be relevant to
one or both of these filters. These two filters then respond
to the Filtering process with the identifiers of any profiles
that matched the change event.

The filtering process then obtains further details on the
matching profiles direct from the profiles database, and per-
forms further analysis of the event. This may result in some
individual profile matches being discarded. This apparently
complex process is necessary due to the potential richness
of an individual profile. For instance, a profile may ask for
a notification if any new documents are added by a certain
author in a set of subject classifications. The most efficient
way of finding this profile will probably vary from library
to library, depending on the distribution of metadata and
which search indices are available.

Reporting NotificationsThe notifier accepts event mes-
sages that were matched during filtering. Given the user
preferences recorded with the matched profile, it selects the
appropriate medium for delivery of the notification, and
compiles together different notifications to be delivered to
the same user if desired. Notifications can be delivered or
presented to users in a number of ways. The stereotype of
notification delivery may be unicast (e.g., email delivery) or
broadcast (e.g., RSS feeds). However, many other forms of
delivery can be equally or more effective and the system may
follow different strategies for different users.

Alternative forms of reporting include: an “accessions”
display within the digital library interface; an “accessions”
or “new” classification(s) in the topic hierarchy; or presen-
tation of special objects in a user’s DL workspace (e.g. Gar-
net [5]). In this case, the DL software will have to support
the delivery of the notification in this manner, i.e., have a
specialised notification component to its interface.

6.2 Distributed Alerting

For distributed alerting, three aspects have to be consid-
ered: (1) the distribution of the alerting components shown
in Fig. 3; (2) the distribution of local alerting servers as bro-
kers within an alerting network; and (3) the distribution of
library content.

Distributed Componentdn Fig. 3, we do not present the
issue of how the alerting implementation is distributed. One
natural division would be to run the alerting processes and
storage (in gray) on a different machine to the main digital
library system (in white). Other divisions are also possible,
e.g., the notifier process could be running separately from
the Filtering process. Ideally, query profiles in the alerting
services can be matched with the assistance of the digital
library server’s search engine. If this is not possible, then

the query can be processed entirely on the alerting service
machine. Though performance could be lower in this case,
any efficiently implementing filtering engine will achieve a
more than adequate response time.

Distributed Brokers.For discussion the distributed archi-
tecture, it is important to introduce a key distinction in
alerting service architecture: Two approaches can be used
to bring event messages to the profiles which they need to
be matched against. First, one can keep profiles on their
originating machines, and forward events across the net-
work (event forwarding). Conversely, profiles can instead
be forwarded across the network and event messages remain
at their point of origin (profile forwarding). Each approach
has different merits, depending on the relative rate of change
in profiles vs event frequency, network topography and other
factors (for details see [3]).

The choice between these two approaches is influenced by
the key problem of storing profiles in the context of dis-
tributed alerting in Digital Libraries. Unlike event-based
systems on the middleware layer, users of digital libraries
want to able to access their profiles across a number of dif-
ferent access points (separate DLs). As observed in Sec-
tion 4.3, it is preferable to allow users to edit their profiles
as if all profiles were held in one place. The easiest way to
do this is to maintain all the profiles in one actual location.
This suggests the approach of event forwarding described
above. Event forwarding is also preferable where network
connections are not guaranteed, and for other technical con-
siderations. We therefore determined to base the distributed
architecture on an event-forwarding principle.

The consequence of this choice is that given a network of
servers, a communication network is now required to dis-
tribute the events from one server to another. Links to the
network are shown in Fig. 3 as incoming event messages to
the observer from external sources, and as outgoing noti-
fications from the notifier to external sources. Our design
proposed here is agnostic to the chosen implementation of
the network. However, it is important to note that research
in alerting systems has converged on a tree structure of com-
munication nodes to avoid the traps of loops and duplica-
tion referred to earlier. We believe that, unfortunately, an
inter-connected network of DL servers cannot always be as-
sumed. Our implementation of a solution to this problem
will be discussed in detail later.

Distributed DL Content.Alerting strategies that deal with
the distribution of DL content, i.e, the content of the col-
lection data repository (see Fig. 3), depend heavily in the
implementation of the data repository. It can therefore not
be addressed in detail here. Our implementation describes
one possible solution; this can be transferred to other DL
implementations following the same internal structures.

6.3 Technical considerations

We earlier identified in Section 4.2 the difficulties caused
by the deletion or replacement of documents in the library.
If content that is being replaced or removed is immediately
erased from the DL indexes, then no information on it can be
retrieved. Where the information required for a particular
filter to identify a document is required is erased before the
filter is applied, then clearly the change cannot be success-
fully identified. Consequently, deletions must be identified

by processing before the actual deletion is executed. This
task is further complicated by batch build processes used
in D-Space and Greenstone for full-text searching. In such
build processes, it is common to provide either a roll-back,
if the build is cancelled before completing, or a two-phase
build in which the new indexes are completed, and then
the old indexes explicitly replaced when the build’s success
is verified by the librarian. In either case, the notification
should not be sent before the new index is completed and
made ’live’. The consequence of these different constraints
is that the material and indexation of deleted documents
must be retained until the event filtering is done, and whilst
the new indexes are also available.

7. PROOF OF CONCEPT

In this section, we briefly describe the implemented proof-
of-concept system we have completed. Our reference imple-
mentation has been created on top of the latest generation
of the Greenstone open-source digital library system [19].
Greenstone is particularly interesting as an implementation
base, as collections on different hosts can be combined to
create distributed and/or federated collections.

7.1 Greenstone 3

The Greenstone digital library software is a popular open
source DL system that empowers users to build their own
digital libraries. We chose Greenstone (GS) as a testbed
system because its high configurability and broad range of
features support a large number of potential digital library
architectures. A single GS server can host a number of sep-
arate collections. Collections can be federated, i.e., they
reside on different hosts but have a single, uniform access
point. Collections can also be distributed, i.e., a single col-
lection can consist of data sets (sub-collections) on differ-
ent hosts. Users are not aware of the internal (networked)
structure of the collections. They perceive the collections
as homogenous structures with a single entry point to all
data sets identified by the main collection name. The dis-
tribution of sub-collections is also transparent to the users:
a sub-collection is presented as being part of a collection
regardless of the actual location of the data.

7.2 Alerting Components

The local alerting components were implemented in Java.
Users can define profiles by defining search queries as pro-
file queries; document browsing in GS is extended by a
“watch this”-button which triggers an identity-centered ob-
servation. Each profile is a Boolean combination of a number
of attribute-value pairs (on macro level). The term ‘values’
is used here in a broader sense: Values might be sub-queries
(micro-level) such as: (1) a list of IDs, e.g., for hosts and
documents; (2) wildcards; or (3) filter queries. The macro
profile is evaluated using a variant of the equality-preferred
algorithm [9]. On the micro level, we exploit Greenstone’s
openness by combining index-based filter strategies with the
system’s own retrieval functionalities. More details about
the profile language and the filter implementation can be
found in [18].

The interface of Greenstone 3 was adjusted to support
separate profile definition and the buttons to document and
classification viewing pages were added. The search re-
sult and browsing displays have “‘new” markers placed be-
side each document or classification that was added since

the last rebuilt. Similar visual cues were added for some
other changes (e.g. where a document’s content had been
changed). An additional accession shelf is offered in two
versions, integrated as GS page and as RSS feed. The de-
tailed implementation of the local library alerting process is
described in [18].

The deletion problem identified in Sections 4.2 and 6.3 is
resolved in our Greenstone 3 implementation by an adjust-
ment to the build process. In the adjusted build process,
document content that is being removed is kept available to
the alerting process before final deletion occurs - i.e. it is
tagged for deletion, before finally being removed. During
the alerting process, both old and new information can be
accessed separately to provide comprehensive input infor-
mation for the filtering process. In our implementation, the
observer component is overlapping with the built compo-
nent: the last phase of each collection building incorporates
the sending of event messages to announce the documents
in the collections.

7.3 Distributed Alerting

In our reference implementation, the filtering is distributed
across a network of hosts, with individual event messages be-
ing forwarded through the network before being processed
on connected machines that host Filtering processes. This
network structure also allows the efficient handling of change
events when individual collections or libraries are themselves
distributed or federated.

Networks for Alerting.As described in Sect. 6.2, each im-
plementation requires a network of alerting brokers. The
network service used for this forwarding is called the Green-
stone Directory Service (GDS); it is an independent network
of Directory nodes (see Fig. 4). In the figure. circles rep-
resent DL servers, boxes refer to nodes in the GDS. Here,
we will only briefly present the GDS architecture; further
information on it can be read in [6]. In the Greenstone
Directory Service, Digital Library servers register with one
GDS node. A GDS node receives messages from the server
when its collections are rebuilt, and forward messages to it
when collections on other machines change. A tree of GDS
nodes forms a GDS community, which can send messages to
and from any Greenstone server registered with a GDS node
in the tree. GDS messages are sent and received in an XML
format using SOAP.

Greenstone servers that host cub-collections are connected
to the hosts providing the super-collections via the GS net-
work (see connection in Fig. 4). Both networks are used
for the distributed alerting. In addition, information from
external services can be incorporated into our system either
via the GS network, the GDS network or via Z39.50.

Federated CollectionSFor federated collections, we chose
to follow the concept of event flooding as proposed in our
design. Users submit their profiles to a certain Greenstone
server. The profiles reside at the server to which the user
submitted the profile. After a collection is rebuilt, event
messages are emitted by its Greenstone server, which have to
be filtered according to the user profiles. After filtering the
local profiles, the events are flooded across the GDS network
to all other Greenstone servers. This technique is inspired
by the event flooding as proposed by Carzaniaga [7]. Our
implementation significantly differs from their design as here

Greenstone
Directory

Service event flooding

Digital

Library

Servers

Greenstone profile forwarding
Network

Figure 4: Distributed alerting implementation

we use the Greenstone Directory Service as a communication
network and not a network formed by Greenstone servers.

Let’s assume a new collection is formed at the Library
server DL1 in Fig. 4. Subsequently, an event message is
created by DL1 server announcing the documents in the
new collection. The message is forwarded upwards in the
GDS tree (via nodes 1, 2, and 4) and downwards towards
all the leaves using the GDS protocol. We consider a client
connected to the server DL7: Their profile is stored at DLT.
As soon as the event message arrives at server DL7, it is
filtered and a notification is send to the client.

Distributed Collectionsif a sub-collection that resides
on a different server than the collection is rebuilt, the server
where the main collection resides will not be aware of the re-
built sub-collection. The main collection must therefore be a
subscriber to the events that originate on the sub-collection
server. In order to optimize the performance of the alert-
ing network, we use the concept of Profile forwarding via
the Greenstone network. Here, the main collection’s profile
is stored on the sub-collections server, and in consequence
messages are forwarded to the main collection(s) directly.
Consider the example in Fig. 4: DL3 has sub-collections on
DL2 and DL4. Auxiliary profiles for the distributed collec-
tion are forwarded to its sub-collections (on DL2 and DL4).
If a sub-collection changes, a message will be send only to
the super-collection. The super-collection then announces
the event to the rest of the network via the GDSy,

8. RELATED WORK

This section presents the results of our analysis of related
approaches pertinent in the context of the proposed appli-
cation for digital libraries.

8.1 Alerting in Proprietary DL

Individual alerting services are offered by publishing houses
(such as Springer Link Alert, Elsevier Contents Direct, or
ACM Table-of-Contents Alerts and secondary publishers (e.g.
SwetsScan® and citation services (e.g, IST services®). These
are solitary (centralised) services that neither cooperate with
other services nor do they openly support independent dig-
ital libraries. Thus, in terms of providing a generic support
for alerting that can also be integrated into the digital li-
brary - our objective - these primary systems do not pro-
vide the answer to our technical goals. Furthermore, when

4available via http://www.swetsblackwell.com/
Savailable via http://isiknowledge.com/wos

I

comparing the services mentioned here with the use-case sce-
narios outlined in 3, a significant gap is identified between
the richness of the potential messages of interest, and the
provided functionality. These services primarily notify sub-
scribers about new content (i.e. documents) that is avail-
able - other change notifications seem to be absent. The
services mostly support subject-based subscriptions table-
of-contents services but only rarely content-based filtering.

8.2 Protocols usable for Alerting

Only a subset of digital library protocols support features
that could be used as the foundation for alerting. Two com-
mon protocols stand out: the comprehensive and extensive
739.50, and the simple and commonplace OAI-PMH. We
will briefly introduce both, then discuss them together.

The DL protocol Z39.50° possesses an extension for saved
searches. Such searches are executed periodically, and the
results are then posted through Z39.50 to the reader. The
options provided by the saved search feature are dependent
on the implementation (i.e. the DL server software). How-
ever, a periodic saved search suffers the immediate problem
of all sampling approaches to event detection - over-sampling
to prevent missed events, or under-sampling leading to false
positives and negatives (for more detail see [14]). Similarly,
searches can only be defined for metadata fields defined at
the time that the search was created. Deletions seem to
be undetectable. Finally, the degree of adoption of this ad-
vanced feature seems to be low.

The Open Archives Initiative Protocol for Metadata Har-
vesting (OAI-PMH)" is a popular and established pull pro-
tocol that enables clients to harvest the metadata of the
content of an online digital archive. OAI is simple to imple-
ment, and has been adopted by a large number of institu-
tions. OAI-PMH does not define a notification service for
new documents, but there is optional support in the proto-
col for searches to return only the metadata of items that
changed after a given date. Unfortunately, this feature has
been developed only conceptually - the actual meaning of
the date is not defined. The recently introduced caching
option for this information could serve as an equivalent of
the accession shelf of a physical library. However, OAI’s
focus on metadata is inconsistent with the desired content-
based filtering. Furthermore, the harvesting protocol does
not supports search, which limits the alerting functionality.

Both systems readily identify new documents, and some
other changes could be recognized by a sophisticated Z39-50
implementation, but both would require regular sampling,
at the expense of either efficiency or timeliness. Neither
protocol is complete or sufficient in itself for alerting.

8.3 DL Systems and Alerting

A number of research-level DL systems support some form
of alerting services. Two popular and modern systems that
support these features are D-Space, and EPrints.

D-Space is a reference model for document management
systems, and supports the storage and retrieval of electronic
documents. D-Space supports full-text search. A reader
using a D-Space server can place a subscription to a given
collection that notifies then about all new documents. No
additional constraints can be added to a subscription - the

Shttp://www.niso.org/z39.50,/23950.html
"http://www.openarchives.org

subscriber is simply emailed a notification each day listing
any new documents added to the collection.

EPrints is a simple open source system for providing an
internet accessible document repository. EPrint servers are
stand-alone computers that provide document retrieval and
storage. EPrints supports simple subscriptions that alert a
reader when a new document is inserted into the repository.

The focus for alerting in EPrints and D-Space is on new
documents only. Compared to the proprietary systems, D-
Space offers a particularly basic subscription service, report-
ing all new documents, without any selection. This sim-
ple approach is inadequate for the envisioned application
(cf. UCL). Even EPrints more complex options fail to mon-
itor issues such as changes to classifications (UC4). There-
fore, these DL systems cannot serve as an exemplar for a so-
lution to the requirements we identified earlier. Many other
well-accepted DL systems, such as Fedora and Greenstone
2, do not at present support any sort of alerting service.

8.4 Mediating alerting services for DL

A few document-centered systems have been proposed
which could be used in this context: One of the earliest sys-
tems developed was SIFT [20], a centralised tool for wide-
area information dissemination, that is now commercially
operated as InReference. Support for open heterogeneous
document collections is found in Hermes [10], CQ [16] and
Dias [15]. Hermes [10] is a mediating alerting system that
covers heterogeneous services and provides a single point of
access for the users. The options for profile definition focus
on typical queries regarding scientific publications, such as
authors, title, or keywords. New sources can be integrated;
the service operates independent of the library implementa-
tion using (active) email or (passive) web pages for informa-
tion access. Typically, Hermes would be operated by a sci-
entific library (secondary provider) as a service for its users,
notifying about documents provided by primary providers.
Unlike our alerting system, Hermes only aggregates and in-
tegrates alerting from different sources, and is limited by
the underlying types of alerts that it receives. Hermes is a
centralised system that cannot support distributed user ac-
cess or distributed collections. It was this restriction that
motivated the further work presented in this paper.

CQ supports keyword based queries and focusses on query
routing an acyclic distributed environment. The keyword
approach is classic but too limiting in our context.

DIAS [15] adopts the basic ideas of Hermes. In contrast
to Hermes, it doesn’t rely on existing middleware but builds
a distributed service based on the design of Siena [7]. DIAS
extends Siena’s architecture into a peer-to-peer system. The
data model of Dias is based on free text and the profile
definition language supports a boolean model with proxim-
ity operators. Thus, Dias supports a predefined document
structure focussing of textual documents. We see this ap-
proach as too limiting for a open digital library support-
ing collections of arbitrary document types (e.g., music, pic-
tures, text documents). Given the presence of non-text me-
dia in our use cases (e.g. UC3), such a restriction would not
answer the problem we sought to address.

Tools such as Hermes and Dias suffer significantly from
not being integrated with the digital library. For example,
the problems identified in Section 4.2 are particularly acute
when one has no explicit knowledge of the underlying struc-
ture of the collections to which notifications, including the

set of valid document identifiers. Similarly, change detection
that relies on underlying impoverish alerting systems that
support limited event types (i.e. “new documents” only)
cannot hope to provide notification of changed documents
or adjustments to the classification hierarchy.

9. LESSONS LEARNED

In this section, we discuss the lessons learned for the de-
sign of a generic alerting service for open DL software. In
particular, we present five key lessons learned that have con-
siderable impact on the concepts of DL design:

Rich Event Types A few basic underlying concepts have
been shared by previous alerting services - e.g. the
idea of a ‘new document’ notification. However, our
user scenarios demonstrate that the limited concept of
'new document’ alerts fails to capture the full range of
possible user demands. We have shown in our design
and the prototype implementation that a richer event
space can be supported.

Deletion and Replacement Alerts about deleted and re-
placed items in the library require particular support
from the digital library itself. For example, if a deleted
document is immediately removed, we cannot process
its content or metadata to identify profile matches.
This means that the handling of deletions and replace-
ments in a digital library has to be changed: more
information is to be preserved or the whole process
has to be changed. Note that the implications are dif-
ferent for items kept within the library (e.g., indexes
and classifications) and items where part or all of their
content resides outside the DL (DL collection data and
multimedia files).

Work Concept Concepts such as a Work should be used
within digital libraries to ease the identification of suc-
cession (i.e., a new edition of a work) or the release
of the same work in a different (file or media) for-
mat or in another language. Here, lessons from library
science can be drawn on to great effect in the con-
text of alerts. For example, a particular work (e.g.
Hitchcock’s “North by North West”) can be known by
an entirely different name in another language (e.g.,
“Der Dritte Mann” in German). Thus, storing a multi-
language collection becomes a potential source for mul-
tiple titles and a confusion over the actual language of
a document. To uphold the concept of a particular
work becomes an even more demanding task when us-
ing distributed and federated DLs.)

Distribution and Federation Distribution and federation
represent a significant challenge. Where a collection is
spread over different servers, or different collections
are brought together as a virtual entity, we not only
have to inform users when the content on one machine
changes, but also the other machines as well. This is
made particularly difficult as often DL do not cooper-
ate and the connecting networks are therefore unstable
and fragmented.

User Issues In a DL environment it is critical for the users
to have a single homogenous access point to all their
profiles and alert data. Mediating services answer this

challenge by providing separate access points that ho-
mogenize incoming event information. Integrated ser-
vices matching the design of a common service pro-
posed here, have to inherently arrive use a different
solution: Our design incorporates the functionalities
of mediating services by accepting them as providers.
Our design has the additional advantage of being closer
to the data, avoiding problems in access rights and
observation of document changes. Another important
design feature is the reuse of the information seeking
functionality offered by the library in order to provide
fluid user interaction with familiar library services.

10. CONCLUSIONS

Alerting services have become an increasingly common
feature of digital libraries. In this paper, we have built
upon our experiences with previous systems such as Her-
mes [10]. Running a basic alerting service on a proprietary
stand-alone digital library such as the ACM DL is relatively
straightforward, and can draw with confidence on the exist-
ing work.

We commenced our research by identifying realistic use
cases for a DL alerting service, considering readers, librari-
ans, and technical staff. From this analysis, we extracted a
range of design desiderata. When current alerting services
for DLs were compared against these use cases and require-
ments, they prove to support only a limited range of the
desired features. Consequently, we presented a general de-
sign and architecture for alerting at the local and distributed
level of digital libraries.

Through a reference implementation of this design, we
overcame problems in the observation of certain events, and
prove a hybrid architecture that is open and adaptable to
different environments of use. Our distributed system can
also be used to ingest alerts from other services - i.e. to
provide mediating services as well. The system is also open
to support currently unknown document types in the DL by
reusing the core-DL retrieval functions that are provided by
the DL designer.

We arrived at five key lessons learned that have consid-
erable impact on the concepts of DL design: (1) simple
events of 'new’ documents are not sufficient in a rich DL
environment; (2) current deletion and replacement methods
in DL create problems for alerting and require fundamen-
tal rethinking; (3) traditional concepts from library science
should be adopted to better support quality services; (4)
distribution and federation of library software and data re-
quire particular attention; and (5) for effective user interac-
tion, generic alerting services cannot be use in a DL without
careful tailoring to the DL context.

In future, we intend to expand our current implementation
to support further event types, such as carrying notifications
regarding reviews of documents. The integration performed
so far yields acceptable performance, but with a proof of
concept established, more detailed performance tuning will
now be undertaken.

11. REFERENCES

[1] D. Bainbridge, G. Buchanan, J.McPherson, S. Jones,
A. Mahoui, and I. Witten. Greenstone: A platform for
distributed digital library applications. In Proceedings
of ECDL, 2001.

[2] N. Belkin and W. Croft. Information retrieval and
filtering: Two sides of the same coin. Communications
of the ACM, 35:29-38, 1992.

[3] S. Bittner and A. Hinze. Classification and analysis of
distributed event filtering algorithms. In Proceedings
of the OTM: CooplS, DOA, and ODBASE, 2004.

[4] A. Blandford, S. Keith, I. Connell, and H. Edwards.
Analytical usability evaluation for digital libraries: a
case study. In Proceedings of the JCDL, 2004.

[5] G. Buchanan, A. Blandford, H. Thimbleby, and
M. Jones. Integrating information seeking and
structuring: exploring the role of spatial hypertext in
a digital library. In Proceedings of HYPERTEXT’04,
2004.

[6] G. Buchanan and A. Hinze. A Distributed Directory
Service for Greenstone. Technical Report 01/2005, CS
Department, University of Waikato, New Zealand,
January 2005.

[7] A. Carzaniga. Architectures for an Event Notification
Service Scalable to Wide-area Networks. PhD thesis,
Politecnico di Milano, Milano, Italy, December 1998.

[8] A. Crespo and H. Garcia-Molina. Awareness services
for digital libraries. In Proceedings of the ECDL, 1997.

[9] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha.
Efficient matching for content-based publish/subscribe
systems. Technical report, INRIA, 2000.
http://wwwcaravel.inria.fr /pereira/matching.ps.

[10] D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and
A. Steidinger. Hermes — a notification service for
digital libraries. In Proceedings of the JCDL, 2001.

[11] D. Goh and J. Leggett. Patron-augmented digital
libraries. In Proceedings of the ACM DL conference,
2000.

[12] A. Hinze. A-MEDIAS: Concept and Design of an
Adaptive Integrating Fvent Notification Service. PhD
thesis, Freie Universitat Berlin, July 2003.

[13] A. Hinze and D. Faensen. A Unified Model of Internet
Scale Alerting Services. In Proceedings of the ICSC
(Internet Applications.), 1999.

[14] Annika Hinze. How does the observation strategy
influence the correctness of alerting services? In
Proceedings of the BTW (German national DB
conference), 2001.

[15] M. Koubarakis, T. Koutris, C. Tryfonopoulos, and
P. Raftopoulou. Information alert in distributed
digital libraries: The models, languages, and
architecture of dias. In Proceedings of the ECDL, 2002.

[16] L. Liu. Query routing in large-scale digital library
systems. In Proceedings of the ICDE, March 1999.

[17] G. Salton. Automatic Information Organization and
Retrieval. McGraw-Hill, New York, 1968.

[18] A. Schweer. Alerting in Grenstone 3. Master’s thesis,
University of Dortmund, Germany, 2005.

[19] Ian H. Witten and David Bainbridge. How to Build a
Digital Library. Elsevier Science Inc., 2002.

[20] T. W. Yan and H. Garcfa-Molina. SIFT - a tool for
wide-area information dissemination. In Proceedings of
the Useniz, 1995.

