
A Distributed Alerting Service for Open Digital Library Software

Annika Hinze
Department of Computer Science

University of Waikato
New Zealand

a.hinze@cs.waikato.ac.nz

George Buchanan
UCL Interaction Centre

University College London
United Kingdom

g.buchanan@cs.ucl.ac.uk

Abstract

Alerting for Digital Libraries (DL) is an important and
useful feature for the library users. To date, two indepen-
dent services and a few publisher-hosted proprietary ser-
vices have been developed. Here, we address the prob-
lem of integrating alerting as functionality into open source
software for distributed digital libraries. DL software is
one application out of many that constitute so-called meta-
software: software where its installation determines the
properties of the actual running system (here: the Digital
Library system). For this type of application, existing alert-
ing solutions are insufficient; new ways have to be found
for supporting a fragmented network of distributed digital
library servers. We propose the design and usage of a dis-
tributed Directory Service. This paper also introduces our
hybrid approach using two networks and a combination of
different distributed routing strategies for event filtering.

1. Introduction

Users of modern digital libraries (DL), such as Green-
stone [21], can keep themselves up-to-date by searching
and browsing their favourite collections, or more conve-
niently by resorting to an alerting service. It has been shown
in the context of the projects Hermes [10] and Dias [13]
that an alerting service which integrates information from
a wide variety of providers relieves users from the tedious
and cumbersome task of searching and browsing. For open
DL software, it is a promising approach to directly integrate
the alerting functionality into the Digital Library software.
The most successful open source software for creating dig-
ital library systems is Greenstone.1 Greenstone is a meta-
software to build digital libraries (and their collections).

Here, we address the problem of integrating alerting as

1Evidence can be found in the support of Greenstone by UNESCO and
the international DL community [8].

functionality into open source software for distributed dig-
ital libraries. The implementation of an alerting service
that supports notifications about Greenstone collections and
documents proved a challenging task.

The Greenstone network of DL servers is only loosely
coupled and subject to changes. The network may con-
tain cycles and/or consist of islands of arbitrarily con-
nected/disconnected servers and collections. Users want
homogenous access to their profiles and collections at vary-
ing network nodes. This situation created new challenges
and opportunities that are neither addressed by existing dig-
ital libraries (and their alerting services), independent DL
alerting services such as Hermes and Dias, nor existing
event notification systems (as we will show in Section 2). In
particular, we addressed the following research problems:

1. Fragmented and dynamic network: The Greenstone
network is highly fragmented; most servers are soli-
tary installations with only a few references to other
servers. References to other servers can be lost once a
collection is restructured, i.e., the Greenstone network
structure is not stable.

2. Cyclic network: The service faces the problem of pos-
sible infinite loops and duplicates of event messages.

3. Unified single access point: Users interacting with
Greenstone servers want to be notified about changes
in collections residing at different hosts but they need
a single unified interface for defining profiles. That is,
users should not be forced to redefine their profile at
several servers in order to avoid false negatives.

4. Dangling profiles: After a profile has been deleted,
users no longer want to be notified about the respec-
tive events. Therefore, no profile information should
be stored in a server that could be unreachable, lead-
ing to false positives.

5. Alerting as a fluent extension of searching and brows-
ing: The collections built using the Greenstone soft-
ware may support a variety of retrieval functionalities.

1

In order to allow for homogenous access, the alerting
service should not create new retrieval paradigms but
extend the existing ones of a collection.

6. Heterogenous content: Digital library collections con-
tain differing metadata formats, variable content types
(e.g. audio, visual, text) and organization (classifica-
tion schemas). Thus, each individual installation of a
meta-software such as Greenstone is likely to have lit-
tle in common with any other given installation. This
makes the prediction of the required filter algorithms a
difficult task.

This paper describes the design and implementation of a
distributed alerting service for digital libraries, supporting
distributed and federated collections managed by a dis-
tributed DL software, namely the Greenstone software. We
introduce our design of a network structure and communi-
cation protocol for distributed alerting as well as a method-
ology for profiles as continuous queries using the built-in
collection-based retrieval functionalities. The remainder of
the paper has the following structure: Section 2 shows that
it is not possible to simply copy related approaches for the
scenario encountered here. Section 3 describes implemen-
tation details of the distributed Greenstone software that are
important for the design of the alerting service. Section 4
introduces our design for the distributed alerting service for
accessing federated and distributed collections. Section 5
describes the profile language and local filter methods. Sec-
tion 6 briefly gives implementation details for the Green-
stone Alerting Service. To conclude, we summarize the
lessons learned in the design and implementation as well
as the contributions of this paper.

2. Related Work

This section presents the results of our analysis of related
approaches pertinent in the context of the proposed applica-
tion for digital libraries.

2.1. Alerting and Digital Libraries

Individual alerting services are offered by publishing
houses (such as Springer Link Alert2, Elsevier Contents Di-
rect3, or ACM Table-of-Contents Alerts4) and secondary
publishers (e.g., SwetsScan5) and citation services (e.g, ISI
services6). These are solitary (centralised) services that nei-
ther cooperate with other services nor do they openly sup-
port independent digital libraries.

2available via http://springerlink.metapress.com/
3http://www.contentsdirect.elsevier.com/
4available via http://portal.acm.org
5available via http://www.swetsblackwell.com/
6available via http://isiknowledge.com/wos

A few document-centered systems have been proposed
which could be used in this context: One of the earliest sys-
tems developed was SIFT [22], a centralised tool for wide-
area information dissemination, that is now commercially
operated as InReference. Support for open heterogeneous
document collections is found in Hermes [10], CQ [15] and
Dias [13]. Hermes is a centralised system that cannot sup-
port distributed user access or collections. CQ supports
keyword based queries and focusses on query routing in an
acyclic distributed environment. The keyword approach is
too limiting in our context; the technical limitations of the
routing in tree-based networks are discussed in Section 2.2.
Dias is a distributed system that extends the architecture
of Siena [5] into a P2P system. The data model of Dias
is based on free text and the profile language supports a
boolean model with proximity operators. Thus, Dias sup-
ports a predefined document structure focussing on textual
documents. We see this approach as too limiting for an open
digital library supporting collections of arbitrary document
types (e.g., music, pictures, text documents). We discuss the
technical aspects of Dias’ implementation in Section 2.2.

2.2. Distributed ENS

Current distributed Event Notification Services are
mostly designed on a fixed acyclic overlay network topol-
ogy [2, 5]. Profile flooding or event flooding are used to dis-
tribute information in the network (e.g., in Rudbes [23] and
JEDI [7]). Computation of coverings and mergings between
profiles are used to reduce the traffic load and the memory
usage (e.g., in Rebecca [16] and A-mediAS [12]). In gen-
eral, network reconfigurations are not allowed and link fail-
ures or congestions in the inner nodes are neglected. For our
scenarios, a fixed acyclic overlay network topology cannot
be used since the Greenstone (GS) network is neither fixed
nor acyclic. Profile flooding could lead to orphan profiles
residing on disconnected GS servers sending spurious noti-
fications regarding long-cancelled profiles. Scribe [18] and
Hermes [17] use rendezvous nodes, which act as meeting
points for subscriptions and events. A rendezvous node may
become a bottleneck in the network [2]. Similarly, node or
link failures may lead to erroneous system behaviour cre-
ating both false positives and negatives. Spurious notifica-
tions may be created by disconnected servers for cancelled
profiles; occurring events might not be filtered due to the
unreachability of their designated rendezvous nodes.

Few approaches work towards more general network
topologies of arbitrary graphs [6, 11]. Carzaniga [6] pro-
poses a combined broadcast and content-based (CBCB)
routing scheme: a content-based layer superimposed over
a traditional broadcast layer. Each node maintains its own
broadcast tree which is required to be symmetric in the
sense that each pair of nodes does have an intersection in

2

their corresponding trees. This approach allows more gen-
eral networks but restricts itself to only use acyclic struc-
tures, resulting in the problems discussed above. A two-
level approach [4] partitions the problem space (i.e., which
servers are responsible for filtering which events) into zones
and creates a routing tree for each zone (global level). In
addition, servers are organized into server cliques based on
their network proximity; each server is responsible for cer-
tain zones (local level). Again, this acyclic structure is sus-
ceptible to failures and congestion. Moreover, the topology
is created statically by a central instance and does not adapt
to network changes or link failures. Halletal [11] elim-
inates cycles using sequence numbers; the routing adapts
distance vectors known from traditional routing protocols.
Each node stores and, possibly, filters all profiles. This only
scales to a small number of profiles and leads to the men-
tioned problems of orphan profiles.

Recent work uses flexible peer-to-peer network struc-
tures. Koubarakis [14] see the nodes of the distributed ENS
as super-peers and the subscribed clients as peers. A span-
ning tree is constructed for the current physical network
structure of super-peers. The network is semi-dynamic: If
the physical network structure changes, the spanning tree
is simply recalculated. This approach uses P2P protocols,
but the underlying network structure is similar to a tree
of nodes; peers are assumed not to be orphaned. Many
other approaches use Distributed Hash Tables (DHTs) im-
plemented over structured P2P networks. In [20], several
dissemination trees are constructed (one per peer), forming
an overall graph. Profiles are stored locally and the whole
Peer-to-Peer network is flooded with the events. For per-
formance reasons, notification delivery is best-effort: when
peers fail, there is no guarantee that notifications are deliv-
ered. A P2P network is not sufficient for our scenario, since
peers are required to maintain the network. DHT topologies
require the cooperation of the involved peers, which cannot
be postulated in the open DL context. Merging of indepen-
dent networks is not arranged for and not possible without
considerable reconstruction.

So far, distributed architectures are either based on fixed
acyclic networks which use flooding or rendezvous nodes;
or they depend on groups of dissemination trees, which are
difficult to adapt to the expected network changes. For our
given application field of DLs, we conclude the following
design considerations: Fixed architectures of nodes lack the
necessary flexibility; profile flooding and rendezvous nodes
are not sufficient for filtering because both false positives
and negatives can occur.

3. Greenstone

The Greenstone digital library software provides an open
source software that empowers users to build their own dig-

ital libraries. Thus, Greenstone is a meta-software to build
digital libraries (and their collections), but is not a digital
library itself.

A typical Greenstone digital library installation may be
structured as shown in Figure 1. A Greenstone software in-
stallation is referred to as Greenstone server; the computer
on which the server runs is the Greenstone host. Each host
can manage several collections. A collection consists of a
configuration file and a number of documents (e.g., articles,
music files) which form a data set (shown as squares in Fig-
ure 1). A user can gain access to the collections offered
by a host via a receptionist (hatched circles in Figure 1).
A receptionist can give access to several Greenstone hosts
(Receptionist I has access to Hamilton and London, II
only to London). The receptionist in cooperation with the
hosts present the user with a single access point to the col-
lections offered by several hosts where the underlying stor-
age and distribution structure is transparent to the user.

Collections are federated, i.e., they may reside on differ-
ent hosts but have single uniform access points. They can
also be distributed, i.e., a single collection can consist of
data sets on different hosts. Collections can contain sub-
collections: a complex collection is identified by its entry
collection. For example, collection Hamilton.D consists
of the data set d and the sub-collection London.E with its
data set e. London.E is also regarded as an independent
collection by host London (indicated by the line from the
server to the collection). Collection London.G is only ac-
cessible as sub-collection of London.F and not as indepen-
dent collection; i.e., London.G is a private collection. Col-
lections with empty data sets but sub-collections with data
sets are called virtual collections (such as Hamilton.C).

In all cases, the users are not aware of the internal struc-
ture of the collections. They perceive a collection as a ho-
mogenous structure with a single entry point to all data sets
identified by the entry collection name. The distribution
of sub-collections is also transparent to the users: a sub-
collection is presented as being part of a collection regard-
less of the actual location of the data.

In order to understand the design of the alerting service,
it is necessary to know details about the implementation of
the data access to distributed collections. Users access col-
lection data via a receptionist’s interface. The receptionist
talks to the respective servers via the SOAP-based Green-
stone protocol (indicated by the dashed line in Figure 1).
The receptionist issues a request for collection data to the
Greenstone server which hosts the collection that the user
wants to access. For example, to allow a user access to
collection Hamilton.D, the receptionist issues a request
towards the server on host Hamilton. The server installa-
tion on Hamilton then accesses the configuration file for
collection D and follows the link provided there for the lo-
cation of the data set d. The Hamilton server accesses the

3

E

���
���
���

���
���
���

b

d g

a f

e

 C B A D F G

����
����
����

����
����
����

config config configconfig

Host Hamilton Host London

GS protocol

receptionists

collections

servers

configconfigconfig

III

Figure 1. Distributed Greenstone collections

data set d. The server also learns about the existence of
sub-collection E on host London. Hamilton sends a re-
quest to London asking for the data in collection E. For the
communication between servers, the Greenstone protocol is
used. London accesses London.E’s configuration file and
subsequently the data set e. London responds with the data
of e back to Hamilton. The Hamilton server has now
access to the data sets d and e; it sends a response contain-
ing d and e back to the receptionist, which in turn displays
the data to the user. Further details about distributed Green-
stone can be found in [1, 3].

4. Overall Design of GS A lerting

As argued in Section 2, it is not possible to use the GS
network for distributed alerting since it is too fragmented.
P2P techniques are also not suitable since that would require
active interest and support of the servers (and the server ad-
ministrators) for sustaining the P2P network; this cannot be
expected for social and political reasons.

Instead of an overlay network based on the DL server
nodes as brokers, we propose to use a mechanism adopted
from distributed directory services (e.g., DNS): Auxiliary
network nodes that form a maintenance network in addi-
tion to the existing scattered physical networks of DL bro-
ker nodes. Section 4.1 describes the design and usage of
the Greenstone Directory Service (GDS). For alerting about
distributed collections, both the directory service and the
Greenstone network have to be used. The distributed alert-
ing is described in Section 4.2.

4.1. Greenstone Directory Service

The conceptual organization of the Greenstone Directory
Service (GDS) is depicted in Figure 2. The original network
of DL hosts (black circles) is shown in dashed lines; client
are shown as white circles. Collections are represented by

stratum 1

stratum 2

stratum 2

stratum 3

stratum 3

stratum 3

stratum 2

1

2

3

4

5

6

7

Hamilton

GDS protocol

GDS protocol

London

Figure 2. Alerting using the GDS

their hosts. Events occurring within a collection on a par-
ticular Greenstone server need to be forwarded to the other
servers where user subscriptions may be stored. Currently,
only one Greenstone server runs on each Greenstone host.
The figure shows a realistic scenario of Greenstone servers
running on disconnected hosts. Most Greenstone servers
are solitary installations. If a server holds distributed sub-
collections, it holds a direct reference to one or more other
Greenstone servers (see description of communication us-
ing the Greenstone protocol in Section 3).

These sub-collection references are depicted in Figure 2
with dashed lines. We see, for example, the connection be-
tween the Hamilton server and the London server that
has been introduced in Section 3. Each server is regis-
tered at exactly one service installation in the distributed
Greenstone Directory Service (GDS). Each service instal-
lation is depicted as a shaded square with an identifying
number. Each GDS installation resides on a certain stra-
tum. A GDS primary server on stratum 1, is a computer
equipped with GDS software. A GDS primary server has
access to all Greenstone servers within the network follow-
ing the tree towards the leaves. Other computers on stra-
tum 2 or higher, equipped with GDS software, have similar
access to all Greenstone servers in their sub-trees. They
have to query their parent servers to obtain access to other
branches of the tree. The GDS offers a domain name service
where Greenstone servers can be accessed by their network-
internal name without the requesting service having to know
the actual address or location of the service.

In order to distribute messages to all Greenstone servers,
a DL server forwards the message to its GDS server. The
message is distributed upwards within the tree and down-
wards to all tree leaves.

4

stratum 1

stratum 2

stratum 3

stratum 3

stratum 3

stratum 2

stratum 2

1

2

3

4

5

6

7

Hamilton
London

GDS protocol

GDS protocol

conceptual sub−collection link

Hamilton London

D E

GS protocol
event(E)

profile(subsection E)

Figure 3. Alerting using GS Network

4.2. Hybrid Alerting in Greenstone

We follow a hybrid approach for distributed alerting in
Greenstone: (1) for notifications about federated collections
we use event flooding over the Greenstone Directory Ser-
vice (broadcast), and (2) for notifications about distributed
collections, we use profile forwarding using the Greenstone
network (unicast or multicast).

Federated Collections: Users submit their profiles to a
certain Greenstone server. The profiles reside at the server
to which the user submitted the profile. When a collection
is rebuilt, event messages are created by the collection’s
server. The event messages are flooded to all servers via
the GDS network. Each server filters the incoming events
according to the local profiles and notifies its clients accord-
ingly. This technique is inspired by event flooding as pro-
posed by Carzaniga [5]. Its implementation significantly
differs from their design as here we use the Greenstone Di-
rectory Service as the communication network and not the
network formed by Greenstone servers. The reasons for this
design have been discussed in Section 1 (e.g., potentially
disconnected network fragments and dangling profiles).

Figure 2 shows a communication example (following the
dotted lines): Clients connect to Greenstone servers and
define their profiles for the alerting service. The clients
and their profiles are depicted as small circles connected
to the servers. We assume a new collection is built at the
Hamilton server. Subsequently, an event message is cre-
ated by Hamilton announcing the documents in the new
collection. The message is broadcast to all DL servers: for-
warded upwards in the GDS tree and downwards towards
the leaves using the GDS protocol (indicated in dotted ar-
rows). Consider the clients connected to the London server:
Their profile is stored locally at the server. As soon as the
event message arrives at the server, it is filtered and notifi-
cations are sent to interested clients.

In the case of solitary collections, i.e., without dis-
tributed sub-collections, the server on which the collection
resides issues the event message. The task is more challeng-
ing once a collection also supports sub-collections on other
servers, which we will discuss next.

Distributed Collections: If a sub-collection is rebuilt
that resides on a different server than its super-collection,
the server where the super-collection resides is not aware of
the rebuilt sub-collection. Returning to the network shown
in Figure 2, server Hamilton includes a collection on the
London server.

In Figure 3 we see a close-up of this connection;
Hamilton holds a collection D that includes a sub-
collection E hosted on the London server. The connec-
tion between these two collections is shown as a solid ar-
row from left to right in the enlarged area at the center of
the figure.

Server Hamilton is not immediately aware of the re-
built London.E sub-collection and cannot, therefore, is-
sue the event message. On the other hand, the server
where the sub-collection resides on (London) is not aware
of the collection London.E being part of another collec-
tion. It can therefore only issue event messages regarding
the (sub)collection as an independent public collection or
as part of a local collection – i.e. changes in London.E
will not be visible as changes in Hamilton.D. Virtual col-
lections, which hold no content of their own, but simply
aggregate a number of sub-collections that actually contain
content pose further problems with ensuring that event mes-
sages are actually sent when an event occurs. For example,
when a sub-collection is a private sub-collection (not visi-
ble in its own right) to a virtual collection. Without appro-
priate strategies to forward event messages from the sub-
collection to its virtual parent, no event message would by
issued be either server.

Even if a message is forwarded from London through
the GDS network identified above, using an event message
from London as a notification for the server Hamilton (in
order to trigger a message by Hamilton) is not possible:
Server Hamilton might not recognize the newly built sub-
collection because London could (as in this case) identify it
by a different name.

To address this problem, an auxiliary profile is forwarded
from Hamilton to London, identifying London.E as a
sub-collection of Hamilton.D. When an event occurs
within London.E, the forwarded auxiliary profile matches
the event locally on London, and an event is forwarded over
the Greenstone network to Hamilton.D. The Hamilton
server then broadcasts the event using the mechanisms de-
scribed in the ‘Federated collections’ section above. For the
broadcasting of the event, the originating collection is trans-
formed from London.E to Hamilton.D, so subsequent
event forwarding will be consistent with the event having

5

originated in the super-collection on Hamilton.

5. Profiles and Filtering Details

Greenstone is an open software also in the sense that the
designer of each collection determines the collection’s re-
trieval functionality (typically searching and browsing on
various attributes and formats). For ease of use, the Green-
stone alerting service mirrors this functionality. Each pro-
file is a Boolean combination of a number of attribute-value
pairs (on macro level). The term ‘values’ is used here in
a broader sense: Values might be sub-queries (micro-level)
such as: (1) a list of IDs, e.g., for hosts and documents;
(2) wildcards; or (3) filter queries. The macro profile is eval-
uated using a variant of the equality-preferred algorithm [9].

On the micro level, it is impossible to anticipate all for-
mats and configurations that Greenstone may support. We
exploit Greenstone’s openness by combining index-based
filter strategies with the system’s own retrieval functional-
ities. For alerting, search queries can be used as profile
queries and document browsing is extended by a “watch
this”-button which triggers an identity-centered observa-
tion. More details about the profile language and the filter
implementation can be found in [19].

6. Routing Details

The alerting service for Greenstone 3 has been imple-
mented in Java. The Greenstone Directory Service uses
XML messaging over SOAP to provide a tree of intercon-
nected auxiliary GDS servers. Messages are delivered using
“best effort”. The GDS servers implement an asynchronous
and anonymous communication network that forwards mes-
sages from Greenstone servers to other Greenstone servers
without the servers having to be aware of the identity of the
recipient. The GDS supports broadcasting and multicast-
ing as well as a Naming Service similar to DNS in order
to allow for point-to-point communication. Further details
about the implementation can be found in [3].

7. Discussion

Effectiveness of our approach: It has been argued that
using profile forwarding for auxiliary profiles might lead to
dangling profiles in case of network separation. In the case
of the fragmented nature of the Greenstone network, we re-
duced the scope for dangling profiles through our general
adoption of event forwarding. The case of auxiliary pro-
files is different and needs consideration of the nature of
the (fragmented) Greenstone network. One has to note that
the forwarded auxiliary profile is for a client that is a Green-
stone server holding a super-collection, not a user. Each for-
warded collection profile is itself unique; it exists on only

one server (that hosting the sub-collection), and refers only
to one other host (of the super-collection). Due to this sim-
ple constraint, when a subscription is cancelled (by a sub-
collection being removed from the super-collection), ensur-
ing deletion is straightforward.

Dangling auxiliary profiles would mean that a sub-
collection is still sending alerts to the user even though
the auxiliary profile has been cancelled (but not removed
due to network separation). We argue that this case can-
not happen or would not cause harm. A dangling auxil-
iary profile could have one of three reasons: (1) removed
or relocated super-collection, (2) removed or relocated sub-
collection, and (3) severed network connection between the
two hosts. A removed or relocated super-collection (with-
out removal of the sub-collection reference and the auxil-
iary profile) would be in conflict with the Greenstone col-
lection management. Similarly, a removed sub-collection
without the super-collection being informed would lead to
GS conflicts. This leaves only the third case to be consid-
ered: If the network connection between super-collection
and sub-collection is lost, the auxiliary profile would trig-
ger notifications towards the super-collection only (which
cannot be reached). As soon as the network connection is
re-established, any deletion or update of the auxiliary profile
triggered by the super-collection can be performed without
users being aware of the problem. Similarly, notifications
about the update of the sub-collection would be delayed un-
til the network connection is reestablished. Then, the in-
formation can be sent to the super-collection and then dis-
tributed to the users.

Generalization of our approach: DL software systems
such as Greenstone are meta-software where the installation
determines many features of the actual run-time system. For
DL meta-software, a number of general properties exist that
allow one to reason about generalization of our approach
to other DL meta-softwares. DL systems use protocols that
provide a common set of functions (e.g. search, browse,
document retrieval). Existing research in the DL commu-
nity thus provides reasoning over DL systems as a whole.
DL systems have also been viewed as particular forms of
hypertext, database and information repositories.

At a higher level of abstraction, beyond digital libraries
themselves, we may consider the problems of alerting in the
case of meta-software in general. In our case, we present a
model for meta-software that will also hold for other meta-
software that shares the properties listed in the Introduction.
Examples are meta-software for creating tailored content
management systems and software for creating online learn-
ing systems. However, an open point for future research is
the development of the currently immature understanding of
which types or forms of meta-software may be identified.

6

8. Conclusions

This paper proposed and described the design and imple-
mentation of a distributed alerting service for a distributed
open source digital library software. We have shown that
existing techniques cannot be simply applied to this new
scenario. We proposed the use of a Greenstone Directory
Service in addition to the dynamic and fragmented Green-
stone Network. The alerting service combines the use of
both communication networks. We support the coexistence
of both paradigms of querying (implemented as search or
browse) and filtering. The contributions of this paper are:

1. Design and implementation of a Greenstone Direc-
tory service for the support of distributed alerting over
loosely coupled digital library servers

2. Hybrid alerting communication (routing) and filtering
supporting distributed and federated collections, i.e.,
collections in which the documents are distributed over
several hosts, federated by different DL servers.

In addition, we support alerting as continuous browsing
and searching in digital collections. We evaluated the per-
formance of the alerting service: the filtering acts as an ad-
ditional step in the build process of a collection extending
the overall process insignificantly. As future work, we will
thoroughly evaluate the scalability of the alerting using both
the GDS and the GS network; so far, initial tests have been
promising. We also plan to integrate a smooth transfor-
mation of Greenstone search queries into profiles and vice
versa in order to bring the user experience of the alerting
service even closer to typical Greenstone interactions.

Acknowledgements We thank Sven Bittner for his valu-
able help in analyzing distributed Event Notification Ser-
vices. We thank Andrea Schweer for her efforts in imple-
menting the Alerting Service for Greenstone.

References

[1] D. Bainbridge, G. Buchanan, J. McPherson, S. Jones,
A. Mahoui, and I. Witten. Greenstone: a platform for dis-
tributed DL applications. In Proc. of the ECDL, 2001.

[2] S. Bittner and A. Hinze. Classification and analysis of dis-
tributed event filtering algorithms. In Proceedings of the
OTM: CoopIS, DOA, and ODBASE, 2004.

[3] G. Buchanan and A. Hinze. A Distributed Directory Service
for Greenstone. Technical Report 01/2005, CS Department,
University of Waikato, New Zealand, Jan. 2005.

[4] F. Cao and J. P. Singh. Efficient event routing in content-
based publish/subscribe service network. In Proceedings of
INFOCOM, 2004.

[5] A. Carzaniga. Architectures for an Event Notification Ser-
vice Scalable to Wide-area Networks. PhD thesis, Politec-
nico di Milano, Milano, Italy, Dec. 1998.

[6] A. Carzaniga, M. Rutherford, and A. Wolf. A routing
scheme for content-based networking. Technical report, De-
partment of CS, University of Colorado, June 2003.

[7] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI Event-
Based Infrastructure and Its Application to the Development
of the OPSS WFMS. IEEE Trans. Softw. Eng., 27(9):827–
850, 2001.

[8] Energy and Resources Institute, New Deli. Re-
port on ICDL 2004, Feb. 2004. available online at
http://www.teriin.org/events/icdl/icdl2004report.pdf.

[9] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Effi-
cient matching for content-based publish/subscribe systems.
Technical report, INRIA, 2000.

[10] D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and
A. Steidinger. Hermes – a notification service for digital
libraries. In Proc. of the JCSL, Roanoke, USA, June 2001.

[11] C. P. Hall, A. Carzaniga, J. Rose, and A. L. Wolf. A content-
based networking protocol for sensor networks. Techni-
cal Report CU-CS-979-04, Department of CS, University of
Colorado, August 2004.

[12] A. Hinze. A-MEDIAS: Concept and Design of an Adap-
tive Integrating Event Notification Service. PhD thesis, Freie
Universität Berlin, July 2003.

[13] M. Koubarakis, T. Koutris, C. Tryfonopoulos, and
P. Raftopoulou. Information alert in distributed digital li-
braries: The models, languages, and architecture of dias. In
Proceedings of the ECDL. Springer-Verlag, 2002.

[14] M. Koubarakis, C. Tryfonopoulos, S. Idreos, and
Y. Drougas. Selective information dissemination in
P2P networks: problems and solutions. SIGMOD Rec.,
32(3):71–76, 2003.

[15] L. Liu. Query routing in large-scale digital library systems.
In Proceedings of the ICDE, March 1999.

[16] G. Mühl. Large-Scale Content-Based Publish/Subscribe
Systems. PhD thesis, Technische Universität Darmstadt,
Sept. 2002.

[17] P. Pietzuch and J. Bacon. Hermes: A Distributed Event-
Based Middleware Architecture. In Proc. of the 22nd IEEE
International Conference on Distributed Computing Sys-
tems Workshops (ICDCSW ’02), Vienna, Austria, July 2002.

[18] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-
uschel. SCRIBE: The Design of a Large-Scale Event No-
tification Infrastructure. In Proc. of the Workshop on Net-
worked Group Communications, London, UK, Nov. 2001.

[19] A. Schweer. Alerting in Greenstone 3. Master’s thesis, Uni-
versity of Dortmund, Germany, 2005.

[20] W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. Buch-
mann. A peer-to-peer approach to content-based pub-
lish/subscribe. In Proc. of the 2nd Workshop on Distributed
event-based systems (DEBS ’03), 2003.

[21] I. H. Witten, C. Nevill-Manning, R. McNab, and S. J. Cun-
ningham. A public library based on full-text retrieval. Com-
mun. ACM, 41(4):71–75, 1998.

[22] T. W. Yan and H. Garcı́a-Molina. SIFT - a tool for wide-area
information dissemination. In Proc. of the Usenix’95, Jan.
1995.

[23] A. Yazici and C. Sener. RUBDES: A Rule Based Distributed
Event System. In Proc. of the ISCIS - Computer and Infor-
mation Sciences, Antalya, Turkey, Nov. 2003.

7

