
A Meta-Service for Event Notification

Doris Jung and Annika Hinze

University of Waikato, New Zealand
{d.jung,hinze }@cs.waikato.ac.nz

Abstract. The integration of event information from diverse event notification
sources is, as with meta-searching over heterogeneous search engines, a chal-
lenging task. Due to the complexity of event filter languages, known solutions for
heterogeneous searching cannot be applied for event notification
In this paper, we propose the concept and design of a Meta Service for Event No-
tification. We define transformation rules for exchanging event filter definitions
and event notifications between various event services and sources. We trans-
form each filter defined at a meta-service into a filter expressed in the language
of each event notification source. Due to unavoidable asymmetry in the seman-
tics of different langues, some superfluous information may be delivered to the
meta-service. These notifications are then post-processed to reduce the number
of spurious messages. We present a survey and classification of filter languages
for event notification, which serves as basis for the transformation rules. The pro-
posed rules are implemented in a prototype transformation module for a Meta
Service for Event Notification.

1 Introduction

Alerting Services or Event Notification Services (ENS) inform their users about changes
that have occurred at information objects. These changes are called events. Information
objects can be, e.g., documents in a digital library or temperature sensors in a facility
management system; events can be caused, e.g., by new, changed or deleted objects.
The service actively or passively observes the information objects at the providers sites
(e.g., documents in digital libraries or sensors in buildings). Users describe their interest
in form of personal profiles that define filter conditions for the information delivery. In a
widely distributed application context, each of the considered applications may employ
their own alerting services (e.g., as done for digital libraries provided by different pub-
lishing houses or as currently available for tourist information). Users on the other hand,
are interested in combined information from diverse and heterogeneous sources. Simi-
lar to the problem of information querying over widely distributed information sources,
here we encounter the problem of distributed filtering over heterogeneous event sources.

Unfortunately, the results known from research in meta-searching [12] and query
rewriting for search over heterogeneous sources [3, 21] cannot simply be applied to
the new context of event notification. Advanced filter conditions are more complex
than search queries; in fact, they can be seen as extensions of search queries: A simple
filter expression can be seen as a standing search query. Additionally, filter expressions
can contain sophisticated event pattern descriptions referring to temporal succession of
events, such as sequences and disjunction of events [11, 19, 20].



Postprocessing

....

.......

Clients: Providers

Clients: Subscribers

ENS 1 ENS 2 ENS n

(a) independent ENS

Transformation of Result Sets

....

Clients: Providers

Clients: Subscribers

ENS 1 ENS 2 ENS n

Meta-ENS
Transformation of Profiles

(b) Meta-ENS

Fig. 1. Communication of clients with several independent ENS vs with a Meta-ENS

1.1 Problem Statement and Contribution of the Paper

The existence of several independent event notification services causes a number of
problems, see Figure 1(a) for illustration:

1. Subscribers are forced to subscribe the same profile to a number of services; these
use different filter languages (i.e., the profiles have to be expressed differently)
with differing expressiveness. In Figure 1(a), the large number of dashed arrows
from each subscriber indicates the repeated subscriptions.

2. Composite events combining events from different providers that are handled by
different services cannot be directly subscribed to. In consequence, the client has
to subscribe to (several) separate services and implement post-filtering locally. In
Figure 1(a), the arrows from each ENS indicate the notifications that have to be
post-filtered at the subscribers’ sides.

3. If providers serve several services, the duplicates have to be removed in a post-filter
process at the client side. In Figure 1(a), the postfiltering is depicted as boxes at the
subscribers’ sides.

An umbrella service could combine all providers but would force a flat homogenization
of the providers, while ignoring the existing heterogeneity of the providers and services.
Moreover, there are the issues of trust, downwards compatibility, company strategy, and
required integration of legacy systems.

As a solution to the three problems we propose the equivalent of a Meta-Search En-
gine: aMeta Event Notification Service(Meta-ENS), see Figure 1(b). Our solution al-
lows for and supports the heterogeneity of services and providers. It integrates services
while accepting their differences and diversity. The advantages are evident: Subscribers
can have a uniform access for profile definition, having access to several event sources.
Users are not repeatedly notified about the same event, i.e., duplicate recognition can
be implemented on the meta-service level. In addition, security and privacy issues are
easier to address. A number of research questions emerge as a result of the analysis
given above, which have to be answered for the design of the meta-service:



1. Which event patterns for composite events are typically supported in profile and
filter languages for event notification services? Are there categories of languages?

2. How to translate the event patterns in one language into the patterns of a target
language such that profile definitions can be converted between languages? How are
the result sets influenced by the transformation? What postprocessing is necessary
for re-transforming the result sets to match the initial profile query?

3. How to detect duplicates of event messages that refer to the same event? How to
detect messages referring to the same event?

1.2 Focus and Organization of the paper

In this paper, we will address the first two questions, which we believe to be essential
for the implementation of a Meta-ENS. For the elimination of duplicates, existing tech-
niques from information retrieval and information dissemination may be employed (see,
e.g., [23]). Note that we do not make assumptions abut the nature of the services, e.g.,
distributed or centralized services. We abstract from the problems of event detection
and ordering in a distributed environment.

In the remainder of the paper, we propose the detailed design of aMeta Service for
Event Notificationthat translates filter expressions for heterogeneous event notification
services. After a brief introduction of the concepts of filter languages (Section 2), we
first analyze the filter languages of existing alerting services in order to identify typi-
cal event patterns (Section 3). In Section 3.2, the services will be ordered into groups
based on the expressiveness of their filter languages. Based on this classification, we
propose a set of transformation rules for the translation of filter expressions between
these groups (Section 4). We conclude the paper by a summary and an outlook towards
further research and challenges to be addressed.

2 Concepts

In this section, we introduce the basic concepts of event notification services. A more
detailed discussion of models and terms can be found in [9]. Event notification services
inform its users about events that occurred on a given set of objects. Events are reported
to the service by means of event messages. Objects have certain states, defined by their
properties at a certain time, e.g., the state of a database, the content of a web-page.

Definition 1 (Event). An event is the occurrence of a state transition of an object of
interest at a certain point in time. Events are reported by means of event messages (or
notifications), which contain a timestamp referring to the event’s occurrence time.

Events have no duration. Events may be state changes in databases, signals in message
systems. We considerprimitive eventsandcomposite events, which are formed by com-
bining primitive and composite events. The set of composite eventsEC detectable by a
certain system is defined by its system event algebra, i.e, by its filter and profile seman-
tics. Composite events are created based on an event algebra. Event composition defines
new event instances. The new (composite) event instances inherit the characteristics of



all contributing events; the event occurrence time is defined by the composition opera-
tor. We denote the fact that a set of event instances contributes to a composite event by
theÂ operator:

Definition 2 (Composition Contribution Â). Let e1, ..., en ∈ E be event instances
that contribute to the composite evente ∈ EC . This relation is expressed as{e1, ..., en} Â
e. Thee1, ..., en can be primitive or composite event instances.

One of the central terms of an event notification service is the user profile:

Definition 3 (Profile). A profile is a queryqexp that is periodically evaluated by the
Event Notification Service against incoming events, i.e., a query that is evaluated against
the trace of events reported to the service.

We distinguishevent instancesfrom event classes. An event class is a set of events
specified by a profile while an event instance relates to the actual occurrence of an event.
In the following, we simply use the termeventwhenever the distinction is clear from the
context. Events (instances) are denoted by lower Latine with indices, i.e.,e1, e2, . . . ,
while event classes are denoted by upper LatinE with indices, i.e.,E1, E2, . . . . The
fact that an eventei is an instance of an event classEj is denotedmembership, i.e.,
ei ∈ Ej . This relationship is non-exclusive, i.e.,ei ∈ Ej andei ∈ Ek is possible even
with Ej 6= Ek. Event classes may also have subclasses, so thatei ∈ Ej ⊂ Ek. The
timestamp of an evente ∈ E1 is denotedt(e).

Definition 4 (Duplicate). Duplicates of events are event instances that belong to the
same event class.

Note that duplicate events refer to separate event instances – in contrast, the same event
instance might be reported twice to the service, leading to duplicate event messages.
Duplicate events could be subsequent changes of the same document in a digital library,
but also all events referring to a certain document collection. Note that duplicates need
not necessarily have identical event types or identical timestamps.

In a ENS, query profiles are evaluated against the history of all observed events.

Composite Event Pattern OperatorsThis section informally describes the concepts of
the most common operators for composite events. Event composition defines new event
instances that inherit the characteristics of all contributing events. The occurrence time
of the composite event is defined by the composition operator. The eventse1 ande2 used
in the definitions below can be any primitive or composite event;E1 andE2 refer to
event classes withE1 6= E2. t(.) refers to occurrence times defined based on a reference
time system,T denotes time spans in reference time units. We use the contribution
operatorÂ (cf. Definition 2) to identify the events that contribute to a composite event.
Note that temporal operators are defined on event instances as well as on event classes,
resulting in event instances and event classes, respectively.

Disjunction: Thedisjunction(E1|E2) of events occurs if eithere1 ∈ E1 or e2 ∈ E2

occurs. The occurrence time of the composite evente3 ∈ (E1|E2) is defined as
the time of the occurrence of eithere1 or e2 respectively:t(e3) := t(e1) with
{e1} Â e3 or t(e3) := t(e2) with {e2} Â e3.



Conjunction: Theconjunction(E1, E2)T occurs if bothe1 ∈ E1 ande2 ∈ E2 occur,
regardless of the order. The conjunction constructor has a temporal parameter that
describes the maximal length of the interval betweene1 ande2.1 The time of the
composite evente3 ∈ (E1, E2)T with {e1, e2} Â e3 is the time of the last event:
t(e3) := max{t(e1), t(e2)}.

Sequence:Thesequence(E1; E2)T occurs when firste1 ∈ E1 and afterwardse2 ∈ E2

occurs.T defines the maximal temporal distance of the events. The time of the event
e3 ∈ (E1; E2)T with {e1, e2} Â e3 is equal to the time ofe2: t(e3) := t(e2).

Negation: ThenegationET defines a ”passive” event; it means that noe ∈ E occurs
for an interval[tstart, tend] with tend = tstart + T of time. The occurrence time of
eT ∈ ET is the point of time at the end of the period,t(eT ) := tend When clear
from the context, we writeeT when referring to a passive event.

Simultaneity: The simultaneity(E1 : E2)T occurs when both eventse1 ∈ E1 and
afterwardse2 ∈ E2 happen it the same time:t(e1) = t(e2).

Selection: The selectionE[i] defines the occurrence of theith evente ∈ E of a se-
quence of events of classE, i ∈ N.

The model of composite events consists of (primitive or composite) events combined
through event constructors. Note that temporal operators are defined on event instances
as well as on event classes, resulting in instances and classes, respectively. This means
that operators on event classes form profiles, i.e. queries, whereas operators on event
instances describe certain composite event instances.

Composite Event Pattern ParametersIn addition to the event operators, we define the
two parameters of consumption mode and duplicate handling. Consumption mode is
a concept concerning the strategy of evaluation in respect to the event history. When
specifying a profile it is necessary to define whether event instances should be disposed
of after matching or whether they should be considered again for a new filtering pro-
cess. if disposed, there are two possibilities to do so: ’delete’ and ’delete and reapply’.
For ’delete’, all event instances which occurred before the matched event instance are
deleted. The other option is to delete only those event which have taken part in the
matched event instance. If no event instances are deleted this is called ’keep’.

Duplicate handling describes which event instances out of a list of identical dupli-
cates are regarded for the filtering process. The following possibilities are relevant for
our analysis: first, last, all,nth, andn to m. The values refer to the ordering number of
the duplicate events.

3 Survey of Profile Definition Languages in ENS

This section addresses the first problem that we identified in the introduction (Prob-
lem 1): Which event patterns for composite events are typically supported in profile
and filter languages for ENS and are there categories of languages? We have analyzed
filter languages of several event-based systems. This section presents the initial results
of our analysis, which has been carried out in three steps.

1 (E1, E2)∞ refers to an event composition without temporal restrictions.



1. The overview: For each system, we list the supported operators, support of time
frames, consumption mode, and duplicate handling. These analyses are based on
the available literature, i.e., we refer to the operators and their parameters the way
the initial publication does. Consequently, there are differences in the semantics
and symbols compared to the ones introduced in Section 2. This overview is given
subsequently in Section 3.1.

2. Comparative Study: For each filter language, the filter operators are translated into
the terminology used here. Based on this, we perform a uniform comparison of the
approaches. This comparative study is presented in Section 3.2.

3. Language Groups: Based on the comparative study, we identified five groups (types)
of filter languages for event-based services. Section 3.3 presents the definition of
the language groups. These language groups form the basis for the design of the
meta-service for event notification and event-based communication.

3.1 Overview of systems and supported event patterns

Our overview of filter languages is presented ordered by system type; we analyzed the
following types2: Event Notification Services (see Table 1), Event-based Infrastruc-
tures (see Table 2), Event-based Infrastructures (see Table 2) and Hybrid systems (see
Table 3). An extended analysis that also covers active database systems and event actin
systems can be found in [13]. For each of the systems, we analyzed the following char-
acteristics of the profile languages: operators for building event patterns, support of time
frames in the patterns, the consumption modes and the supported duplicate handling.

Event Notification ServicesWe analyzed a selection of eight typical event notifica-
tion services: A-MediAS [9], an adaptive and integrating event notification service; the
Corba Notification Service [8], Elvin [22]; Hermes [4], an event notification service for
digital libraries; Keryx [1], which is designed to distribute notifications in the internet;
READY [7], the sequel of the event-action system YEAST; and Siena [2]. The results
are shown in Table 1. Most ENS still only support primitive events, with research fo-
cussing on efficient filter algorithms.

Event-based InfrastructuresIn the category of event-based Infrastructures, we ana-
lyzed Cobea [16], which is used e.g. for the management of networks; Rebeca [5], an
event-based architecture for electronic commerce; Regis [17], a development environ-
ment for distributed systems that has been extended by the pattern language GEM [19];
and Salamander [18], a system for the distribution of web-applications. The results are
shown in Table 2.

Hybrid SystemsHybrid systems are able to handle a variety of event sources: web-
documents, databases and files. We examined the systems Conquer [15] and OpenCQ [14]
from the Continual Queries project, and Eve [6]. Eve combines characteristics of active
databases and event-based architectures to execute event driven workflows. The result
of the analysis is shown in Table 3. Hybrid systems combine events from different
sources, supporting a variety of event patterns.

As illustrated in this section, the analyzed systems support a variety of event pat-
terns, using various operators and auxiliary parameters. Note, that the list of analyzed

2 Note that the exact distinction between the types may be arguable.



System Operators Time Consumption Mode Duplicate
frame handling

A-mediAS

Conjunction:(E1&E2)

yes
keep, delete, delete
and reapply

first,
last, all,
nth, n
to m

Disjunction:(E1‖E2)
Sequence:(E1; E2)
Negation:(E1 − E2)
Selection:First(E1)

CORBA notification serviceonly primitive events – – –
Elvin only primitive events – – –
Hermes only primitive events – – –
Keryx only primitive events – – –

Ready

Conjunction:(E1&&E2) first,
last, all,
nth, n
to m

Disjunction:(E1‖E2)
Sequence:(E1; E2)
Negation:(not E1)

Siena Sequence:(E1.E2) – delete first

Table 1.Composite event operators in Event Notification Services

systems cannot be exhaustive, but considers a representative set of selected systems and
languages. In the next section, we introduce our classification of filter languages, which
allows to identify language groups that support typical subsets of event patterns.

3.2 Classification of Filter Languages - a Comparative Study

This section presents ourcomparative studyof filter languages: This is the second step
in our approach to answer the question for common patterns and groups of filter lan-
guages (Problem 1). We translate each system’s operators into the terminology used
here, in order to allow for a uniform comparison of the approaches. We first introduce
our classification methodology and then present the actual classification. This classifi-
cation shall be the basis for identifying typical language groups in the next section.

Extending the survey presented in the last section, we have classified the profile lan-
guages of selected event systems. We developed a set of classification criteria, which are
a combination of the semantic language characteristics defined by Hinze/Voisard [10]
and Zimmer/Unland [24]. Both works describe the semantics of filter languages. Both
use operators for event patterns and additional parameters.

Composite Event Pattern OperatorsAs shown in the previous section, the systems
use different operators for event patterns. Additionally, equally named operators do not
necessarily have the same semantics while similar semantics might be expressed using
different operators. Moreover, the exact semantic description of these operators is rarely
given in literature. Here, we will translate all systems’ operators into the following
schema: conjunction, disjunction, negation, selection, sequence and simultaneity (see
Table 4).



System Operators Time Consumption ModeDuplicate
frame handling

Cobea

Conjunction:(E1&E2)

Duration Keep events all
Disjunction:(E1|E2)
Sequence:(E1; E2)
Whenever:($E1)
Without: (E1 − E2)

Rebeca

Conjunction:

yes
Delete and reapply,
(recent, chronicle)

–
Disjunction:
Sequence:
Negation:

Regis

Conjunction:(E1&E2)

Duration-
window

Delete all events first
Disjunction:(E1‖E2)
Sequence:(E1; E2)
Negation:({E1; E2}!E3)
Time: (E1 + timeperiod)

Salamanderonly primitive events – – –

Table 2.Composite event operators in Event-based Infrastructures

Event Pattern ParametersConsidering the analyzed systems, it becomes clear that to
simply consider the operators is not sufficient in order to convey the full semantic mean-
ing. Each system offers parameters, which further define/change the operators seman-
tics. We shall briefly describe the different parameters proposed in the two schemas.

Hinze/Voisard define two parameters: event instance selection and event instance
consumption (see left column in Table 4). ’Event instance selection’ describes which
events qualify for a composite event and how duplicated events handled. Examples are
to select the first event in a list of duplicates, the last one or a particularnth one. ’Event
instance consumption’ defines which events are consumed by composite events, i.e.,
removed from the matching trace. Options are to keep the selected event instances, to
remove them, or to remove them and reapply the event pattern (similar to our definition
in Section 2). In [10], only two of the three options are formally defined. Both event
pattern parameters can be combined freely.

Unland/Zimmer defined separate parameters for concurrency, consumption, selec-
tion, traversion, and coupling (see middle column in Table 4). Concurrency can be
’overlapping’ or ’non-overlapping’, allowing for components of different event-instances
to overlap each other or not. Consumption may be ’shared’, ’exclusive parameter’, or
’exclusive’: Either no event-instance is deleted, or all event-instances which have taken
part in the matching of a composite event are deleted, or all event-instances before the
terminating event-instance of a composite event are deleted. These parameters are sim-
ilar to the Event instance consumption, but not identical. The selection parameter is
similar to and can be expressed via Hinze/Voisard’s Event Instance selection.

The parameters are partially interdependent: Shared consumption mode requires
overlapping concurrency and an exclusive consumption mode is only logical in com-
bination with a non-overlapping concurrency. The concurrency mode for the exclusive



System Operators Time Consumption Mode Duplicate
frame handling

CQ:
Conquer
and
OpenCQ

Conjunction

yes – –
Disjunction
Sequence:(E1; E2)
Negation:
Simultaneity:(E1‖E2)

Eve

Conjunction:(CON(E1, E2, sw))

yes
delete and reapply
(chronicle)

first,
nth

Disjunction:(DEX(E1, E2))
Sequence:(SEQ(E1, E2, sw))
Simultaneity:(CCR(E1, E2, sw))
Negation:(NEG(E1, (E2, E3, sw), sw))
Repetition:REP (E1, times, sw)

Table 3.Composite event operators in Hybrid Systems

consumption is undefined. This interdependence of parameters is our main reason for
primarily following Hinze/Voisard’s classification.

Not all parameters are applicable for the systems we are interested in, e.g., the con-
currency mode and the traversion mode. The traversion mode, which describes the di-
rection of traversing composite events is irrelevant here, since systems filter their events
in the timely order and not backwards. This parameter will not be included in our
classification. The coupling mode defines whether the components of different event-
instances may be interleaving. These modes are expressed by Hinze/Voisard using nega-
tion and wildcards. We therefore exclude this parameter from our classifications.

We followed a hybrid approach and use a combination of both schemas, which is
shown in the right column of Table 4. Ourcombined classification schemacombines
the operators proposed in the two schemas and also uses a combination of the proposed
event pattern parameters. We use the characteristics from Unland/Zimmer’s consump-
tion mode; the duplicate handling is based on Hinze/Voisard’s Event Instance Selection.

We now use the combined classification schema for our comparative study of filter
languages in event-based systems. The results of the study are presented as a language
classification in Table 5. This table serves three purposes: It gives an overview of event-
based filter languages, provides a uniform analysis of the languages (i.e., translated
into a common schema), and gives a first impression of the operators and parameters
typically supported in event-based systems.

Based on the language classification, we make the following observations in the
comparative study: If composite events are supported, all3 of these systems implement
conjunction and disjunction (i.e., operators without ordering). Some implement the se-
quence operators (requires ordering), fewer the negation (required observation). Se-
lection and simultaneity are rarely supported: Selection is a special case of duplicate
handling and simultaneity is difficult to determine for distributed systems - it can be
expressed by conjunction with a smallε–time frame. Time frames are not always sup-

3 With the exception of Siena that only supports a single operator for research purposes.



Hinze/Voisard Unland/Zimmer Combined Classification

Composite Event Pattern Operators
conjunction conjunction conjunction
disjunction disjunction disjunction
sequence sequence sequence
negation negation negation
selection - selection

- simultaneity simultaneity
Time frames

Event Instance Consumption Consumption Mode Consumption Mode
Event Instance Selection Parameter Selection Duplicate Handling

- Concurrency Mode -
(above parameter/operators combination)Coupling Mode -

(above parameter combination) Traversion Mode -

Table 4.Comparison of the two schemas for semantic classification and our combined schema.

ported, requiring a time handling strategy for distributed systems. Consumption mode
and duplicate handling are rarely made explicit. If they are explicit, several options are
supported, otherwise they are hard coded in the system and difficult to determine.

3.3 Language Groups

Based on the observations from our comparative study of languages in the previous
section, we identifylanguage groups(types) of filter languages for event-based systems.
This is the third and final step in answering the question for typical event patterns and
groups of filter languages for ENS (Problem 1).

These language groups form the basis for the design of the meta-service for event
notification and event-based communication. In the next section, we address the second
problem (as identified in the introduction) and define rules for profile transformations
between these language groups. Parameters for Consumption Mode and Duplicate Han-
dling (cf. Section 2) are very rarely explicitly described in the literature. For this reason,
we did not include the parameters in the definition of groups – they will be consider sep-
arately. Thus, the languages are classified into groups based on their support for time
frames and by their support for pattern operators.

We define five groups as shown in Table 6. There are two groups without time frame
support: CEs support conjunction, disjunction and negation; a group member is PLAN.
SCEs support conjunction, disjunction, negation, and sequences. Members are READY,
Rebeca, and Active House (CEA).

There are three groups with time frame support: TCE offer conjunction, disjunc-
tion and sequence. Members of this group are Yeast and Sentinel (language Snoop).
The OTCEs support conjunction, disjunction, sequence and negation; members of this
group are Samos, Cobea, and GEM. STCE offer conjunction, disjunction, sequence,
negation, and simultaneity. Members of this group are Eve, Conquer, and OpenCQ. The



S
ys

te
m

s
C

om
po

si
te

O
pe

ra
to

rs
T

im
e

fr
am

e
C

on
su

m
pt

io
n

M
od

e
D

up
lic

at
e

ha
nd

lin
g

E
ve

nt
s

C
on

ju
nc

tio
nD

is
ju

nc
tio

n
S

eq
ue

nc
eN

eg
at

io
nS

im
ul

ta
n.

S
el

ec
tio

n
ke

ep
de

le
te

de
le

te
&

fir
st

la
st

al
ld

et
ai

le
d

re
ap

pl
y

A
ct

iv
e

H
ou

se
×

×
×

×
×

×
A

-m
ed

iA
S

×
×

×
×

×
×

×
×

×
×

×
×

×
×

C
ob

ea
×

×
×

×
×

×
×

×
C

or
ba

N
S

–
E

lv
in

–
E

ve
×

×
×

×
×

×
×

×
×

×
G

E
M

(R
eg

is
,D

ar
w

in
)

×
×

×
×

×
×

×
×

H
er

m
es

–
K

er
yx

–
O

pe
nC

Q
×

×
×

×
×

×
×

P
LA

N
×

×
×

×
×

×
R

ea
dy

×
×

×
×

×
×

×
×

×
R

eb
ec

a
×

×
×

×
×

×
S

al
am

an
de

r
–

S
am

os
×

×
×

×
×

×
×

×
×

S
ie

na
×

×
×

×
S

no
op

(S
en

tin
el

)
×

×
×

×
×

×
×

×
×

Y
ea

st
×

×
×

×
×

×
×

Ta
bl

e
5.

C
om

pa
ris

on
of

P
ro

fil
e

D
efi

ni
tio

n
La

ng
ua

ge
s

=
F

ilt
er

La
ng

ua
ge

s,
al

ph
ab

et
ic

al
ly

or
de

re
d

by
sy

st
em

/la
ng

ua
ge

na
m

e.
C

ha
ra

ct
er

is
tic

s
ar

e
de

riv
ed

di
re

ct
ly

fr
om

th
e

lit
er

at
ur

e
(w

he
ne

ve
r

po
ss

ib
le

)
or

in
fe

rr
ed

fr
om

gi
ve

n
ex

am
pl

es



Time-frame-less Composite Events Time-framed Composite Events

CE: Simple Composite Events TCE: Simple Time-framed Composite Events
(conjunction, disjunction and negation) (conjunction, disjunction and sequence)

OTCE: Ordinary Time-framed Composite Events
(TCE and negation)

SCE: Sophisticated Composite Events STCE: Sophisticated Time-framed Composite Events
(CE and sequence) (OTCE and simultaneity)

Table 6.Groups of Filter Languages

disequilibrium of the group assignment of negation and sequence is due to the different
effect of time-frames on the operators.

3.4 Summary of findings regarding a classification of filter languages

The three steps of analyzing profile languages presented in this section are our answer
to the first research question stated in the introduction of this paper (identification of
typical event patterns and language groups). Firstly, we analyzed typical patterns for
composite events in filter languages. Secondly, we compared the filter languages based
on a classification schema. Thirdly, we used the classification to identify typical groups
of filter languages. The findings of this section shall serve as a foundation for answering
the second problem of finding transformation rules between languages from different
groups. The second problem is addressed in the next section.

4 Profile and Result Transformations

We now address the problem of translating filter expressions between languages that
use different operators and semantics (Problem 2). The answer to this problem shall
provide a set of transformation rules that form the core of the proposed Meta-ENS
for integrating heterogeneous event notification services. Here, we therefore especially
consider the challenge of translating a filter expression of the meta-service in to the
target language of other systems. The meta-service is assumed to support all of the
composite event/profile concepts (operators and parameters) introduced in Section 2.

4.1 Transformation Methodology

For each language group, we introduce transformation rules for translating filter expres-
sions defined at the Meta-ENS into equivalent filter expressions using a language of the
group. As can be derived from the group definitions, a simple translation of filter ex-
pressions between groups is not possible. Instead, for different semantic concepts in two
distinct groups, we have to find expressions that are semantically close. Additionally,
auxiliary profiles and post-filtering may be required.



Profile TransformationsIf a certain operator does not exist in one language a transcrip-
tion expression has to be used. These transcriptions may be more or less expressive
than the source expression. We define therefore four types of transformations: equiv-
alent, positive, negative, and transferring transformation. We denote these transforma-
tions with the arrow-notation that is shown in Table 7. It is an extension of the notation
used for Boolean transformations [3]. Equivalent transformations lead to expressions
that have identical result sets. Positive transformations result in expressions that are
less selective than the original - potentially creating larger result sets; negative transfor-
mations result in more selective expressions compared to the original filter expression
(creating smaller result sets). Larger result sets without subsequent postfiltering lead to
false positives in client notifications. Smaller result sets lead to missed event notifica-
tions. Transferring transformations (when omitting event patterns) use postfiltering and
auxiliary profiles.

Post-filtering and Auxiliary profilesFor the considered transformations between lan-
guage groups, not all of the original operations can be expressed in the languages of
less powerful groups. In order to use weaker systems in cooperation with stronger ones,
auxiliary profiles (i.e., additional filter expressions) have to be defined at the services.
The filter results are delivered to the stronger system which then needs to perform ad-
ditional simple filter operations (post-filtering).

Notification TransformationDiffering from query transformation, the result set ob-
tained in an event notification service is not simply a set of tuples or documents. For
ENS, the result reflects the filter expression, i.e., the temporal connection between the
events is reported. If for two communicating systems, the less expressive system re-
ceives a message from a more expressive one, the notification might not be compre-
hensible to the less expressive filter language. Lets consider the following example:
Consider two systems A and B, where the filter language of A supports only sequences
and disjunction, the filter language of B supports only conjunction. The systems cannot
cooperate directly, since their set of filter operators are disjunct. In order to cooperate,
system A defines a profilepA at the Meta-ENS (pA = ((E1;E2)|(E2;E1))). Meta-ENS
transforms this expression into a profilepB that is defined at system B:pB = (E1, E2)
with pA ←→ pB . When system B sends a notificationnB = (e1, e2) to the Meta-ENS,
the system A is notified by the transformed messagenA = ((e1; e2)|(e2; e1)). Thus,
not only the filter expressions have to be transformed for the cooperation but also the
notifications.

Transformation Notation

Equivalent Transformation ←→
Positive Transformation −→+
Negative Transformation −→−

Transferring Transformation←→#

Table 7.Types of Transformations



Target Group CE — Meta-ENS
Operators timeless timed

Conjunction (E1, E2) ←→ (E1, E2)∞ (E1, E2) ←−+ (E1, E2)T

Disjunction (E1|E2) ←→ (E1|E2) —
Sequence (E1, E2) ←→# (E1; E2)∞, t(N(E1)) < t(N(e2)) (E1, E2) ←−+ (E1; E2)T

Negation — (E1) ←−− (E1)T

Simultaneity(E1, E2) ←→# (E1 : E2), t(N(E1)) = t(N(E2)) —
Selection (E1) ←−+ (E1)

[1], (E1, E1) ←−+ (E1)
[2], . . . —

Table 8.Target system without time frames: CE - Meta-ENS:E refers to event classes,N(E) to
notifications regarding an event in classE , t(N(E)) to the time of the event notification

The contributions of this section are (1) a set of profile transformation rules for the
interaction of the meta-service with other ENS, (2) auxiliary profile definitions and rules
for post-filtering, and (3) notification transformation rules. In this section, firstly we
introduce the transformations for composite operators together with auxiliary profiles
and post-filtering. Secondly we define transformation rules for event pattern parameters
which form the basic building block for our Meta-ENS.

4.2 Profile Transformation of composite operators

This section defines the transformation rules for composite operators. The rules are
presented for the transformation of filter expressions defined at the Meta-ENS towards
expressions of a target system within a given group (as identified in Section 3.2). We
assume the Meta-ENS supports all concepts and event patters introduced in this paper.
We now iterate through the five target groups and show the necessary transformations.
Due to limitations of space not all refinements of every rule are given in this paper. For
further details please contact the authors.

Simple time-frame-less composite events (CE):We give the transformation between the
event operators expressed for the Meta-ENS into the target group CE (see Table8). In
the Meta-ENS, the operators can be timed (subscriptT ) or time-frame-less (subscript
∞). If necessary,we also define auxiliary profiles and post-filtering of notifications. The
filter expressions of the Meta-ENS are given on the right-hand side, the ones of the
source group on the left-hand side of the transformations.

Conjunction, Disjunction, and Negation are almost identical; the transformation is
based on the change of time frames. Towards the Meta-ENS, the missing time frame
has to be set to∞. Towards the target system the time frame of the Meta-ENS is lost,
which leads to less expressive filter expressions. Negation does not exist without a time
frame. Sequence and simultaneity do not exist in this group and have to be simulated.
For eachi ∈ N in selectionE[i]

1 , a separate transformation has to be defined. Alternative
transformations for negation and selection are given in Table 10. Note that disjunction,
simultaneity, and selection are undefined as timed operators and the negation is unde-
fined as a timeless operators (cf. Section 2).



Target Group SCE — Meta-ENS
Operators timeless timed

Conjunction
see CE in Table 8

Disjunction
Sequence (E1, E2) ←→ (E1; E2)∞ see CE in Table 8
Negation

Simultaneity see CE in Table 8
Selection

Table 9.Target system without time frames: SCE - Meta-ENS:E refers to event classes,N(E)
to notifications regarding an event in classE , t(N(E)) to the time of the event notification

Sophisticated time-frame-less composite events (SCE):Conjunction, Disjunction, and
Negation are similar to the simple time-frame-less version (see Table 9). The sequence
operator is now supported and is transformed analogous to the conjunction. For simul-
taneity, a combination of conjunction, sequence and negation can be used.

Simple time-framed composite events (TCE):Conjunction, Disjunction, and Sequence
are directly supported (see Table 10). The selection is realized using transferring trans-
formation. Negation can only be implemented in systems with a time concept; it then
uses a transferring transformation.

Ordinary time-framed composite events (OTCE):Conjunction, Disjunction, Sequence,
and Simultaneity are similar to TCE (see Table 11). Negation is directly supported.
Simultaneity has to be constructed; Selection requires additional filtering in the meta-
service.

Sophisticated time-framed composite events (STCE):Almost all operators are sup-
ported (see Table 12), only the selection requires a transformation for eachi ∈ N in
selectionE[i]

1 .

Target Group TCE — Meta-ENS
Operators timeless timed

Conjunction (E1, E2)∞ ←→ (E1, E2)∞ (E1, E2)T ←→ (E1, E2)T

Disjunction (E1|E2) ←→ (E1|E2) —
Sequence (E1; E2)∞ ←→ (E1; E2)∞ (E1; E2)T ←→ (E1; E2)T

Negation
—

(E1)T ←→# (E1)T

N = N(E1)T

Simultaneity(E1, E2) ←→# (E1 : E2), t(N(E1)) = t(N(E2)) —
Selection (E1) ←→# (E1)

[i], N = (N(E1))
[i] —

Table 10.Target system with time frame support: TCE - Meta-ENS:E refers to event classes,
N(E) to notifications regarding an event in classE , t(N(E)) to the time of the event notification



Target Group OTCE — Meta-ENS
Operators timeless timed

Conjunction
Disjunction see TCE in Table 10
Sequence
Negation — (E1)T ←→ (E1)T

Simultaneity see TCE in Table 10
Selection see TCE in Table 10

Table 11.Source system with time frame support: OTCE - Meta-ENS:E refers to event classes,
N(E) to notifications regarding an event in classE , t(N(E)) to the time of the event notification

Target Group STCE — Meta-ENS
Operators timeless timed

Conjunction
Disjunction see TCE in Table 10
Sequence
Negation see OTCE in Table 11

Simultaneity(E1 : E2) ←→ (E1 : E2) —
Selection see TCE in Table 10

Table 12.Source system with time frame support: STCE - Meta-ENS:E refers to event classes,
N(E) to notifications regarding an event in classE , t(N(E)) to the time of the event notification

4.3 Transformation of Operator Parameters

The group definitions given in Section 3.3 abstracted from the parameters of consump-
tion mode and duplicate handling strategy since these parameters are rarely explicitly
supported in the considered systems. In Table 13, we show the influence of considering
parameter transformations on operator transformations (as introduced in the previous
section). We show which transformation are possible when translating the parameter
set of one system (y-axis in Table 13) into the parameter set of another system (x-axis
in Table 13). That is, for all possible combinations of the duplicate and selection pa-
rameter we state whether the transformation is not possible (indicated by a dash) or
equivalent (indicated by←→) or only possible in one of the given directions while cre-
ating a larger result set (indicated by←−+ and−→+ , where the arrow orientation defines
the direction of the possible transformation).

This section presented our answer to the second problem stated in the introduction:
translating filter expressions between languages that use different operators and se-
mantics (Problem 2). We provided a set of transformation rules that form the core of
the proposed Meta-ENS for integrating heterogeneous event notification services. The
transformation rules presented here have also been implemented in a prototype trans-
formation component that can be used with any given ENS .



first
all ←→

unique ←−+ ←→
last

all - - ←→
unique - - ←−+ ←→

all
all −→+ −→+ −→+ −→+ ←→

unique - - - - ←−+ ←→
i-th

all −→+ −→+ - - ←−+ - ←→
unique - −→+ - - ←−+ ←−+ ←−+ ←→

Duplicate first last all i-th
ParameterSelection all unique all unique all unique all unique

Table 13.Parameter transformations: Duplicate handling and consumption mode parameter

5 Conclusion and Outlook

In this paper, we proposed the concept and design of a Meta Service for Event No-
tification. In detail, we presented the answers to the following two research problems:
Firstly, subscribers of heterogeneous event notifications services are forced to subscribe
the same profile to a number of services using different filter languages. Secondly, com-
posite events combining events from different providers that are handled by different
services have to be identified by a subscriber-based post-filtering.

As a solution to these two problems we proposed the detailed design of a Meta-
Event Notification Service based on transformation rules. In particular, this paper pre-
sented the following contributions: Firstly, we presented a survey of filter languages for
event notification. Secondly, we introduced a classification schema for profile defini-
tion languages. Thirdly, we identified five categories of profile languages. Fourthly, we
proposed detailed transformation rules for translating profiles defined at the Meta-ENS
into languages of system from the five categories (and vice versa for notifications). An
extended description of our findings can be found in [13].

As proof of concept, we have implemented a transformation component for the
proposed language transformations. The implementation was carried out using Prolog.
The transformation component currently supports the operator transformations. The
next version of the transformation component will incorporate the proposed parame-
ter transformation. Future research will see the close integration of the transformation
component into our prototypical event notification system A-mediAS [9]. The transfor-
mation can be used for the role of a Meta-ENS in the communication with other ENS
(as providers) and for the mediation between ENS (as providers and subscribers).

References

1. S. Brandt and A. Kristensen. Keryx: Internet notification service for dynamic web
applications. (slide presentation), presented to W3C, 1997.

2. A. Carzaniga, D. Rosenblum, and A. Wolf. Interfaces and algorithms for a wide-area event
notification service. Technical Report CU-CS-888-99, University of Colorado, Department
of Computer Science, 1999.



3. C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate rewriting for translating boolean
queries in a heterogeneous information system.ACM Transactions on Information Systems
(TOIS), 17(1):1–39, 1999.

4. D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and A. Steidinger. Hermes - A
notification service for digital libraries. InProc. of the ACM JCDL, Roanoke, VA, 2001.

5. L. Fiege, G. M̈uhl, and F. C. G̈artner. A modular approach to build structured event-based
systems. InProc. of the ACM SAC Symposium on Applied Computing, Madrid, Spain, 2002.

6. A. Geppert and D. Tombros. Event-based distributed workflow execution with EVE.
Technical Report ifi-96.05, University Zurich, Computer Science Department, 1996.

7. R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the READY event
notification service. InProc. of the IEEE ICDC Middleware Workshop, Austin, TX, 1999.

8. R. Gruber, B. Krishnamurthy, and E. Panagos. CORBA notification service: Design
challenges and scalable solutions. InProc. of the IEEE ICDE, Heidelberg, Germany, 2001.

9. A. Hinze. A-MEDIAS: Concept and Design of an Adaptive Integrating Event Notification
Service. PhD thesis, Freie Universitaet Berlin, Department of Computer Science, July 2003.

10. A. Hinze and A. Voisard. Composite events in notification services with application to
logistics support. Technical Report tr-B-02-10, Freie Universität Berlin, Department of
Computer Science, 2002.

11. A. Hinze and A. Voisard. A parameterized algebra for event notification services. InProc.
of Symposium on Temporal Representation and Reasoning, Manchester, UK, 2002.

12. Adele E. Howe and Daniel Dreilinger. SAVVYSEARCH: A metasearch engine that learns
which search engines to query.AI Magazine, 18(2):19–25, 1997.

13. D. Jung and A. Hinze. Analysis and transformation of profile definition languages for event
notification services. Technical Report 12/2004, Computer Science Department, University
of Waikato, New Zealand, August 2004.

14. L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven information
delivery. IEEE Transactions on Knowledge and Data Engineering, 11(4):610–628, 1999.

15. L. Liu, C. Pu, W. Tang, and W. Han. Conquer: A continual query system for update
monitoring in the WWW.International Journal of Computer Systems, Science and
Engineering, 14(2):99–112, 1999.

16. C. Ma and J. Bacon. COBEA: A CORBA-based event architecture. InProc. of the COOTS
Conference on Object-Oriented Technologies and Systems, Berkeley, CA, 1998.

17. Jeff Magee, Naranker Dulay, and Jeff Kramer. A Constructive Development Environment
for Parallel and Distributed Programs. InIn Proc. of the International Workshop on
Configurable Distributed Systems, Pittsburgh, March 1994.

18. G. R. Malan, F. Jahanian, and S. Subramanian. Salamander: A push-based distribution
substrate for internet applications. InProc. of the USENIX Symposium on Internet
Technologies and Systems, Monterey, California, 1997.

19. M. Mansouri Samani and M. Sloman. GEM: A generalised event monitoring language for
distributed systems.IEE/IOP/BSC Distributed Engineering Journal, 4(2):96–108, 1997.

20. D. Mishra. Snoop: Am Event Specification Llanguage for Active Database Systems.
Masters thesis, University of Florida, 1991.

21. Douglas W. Oard. A comparative study of query and document translation for
cross-language information retrieval. InAMTA, pages 472–483, 1998.

22. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification
service with quenching. InProc. of the AUUG Australian UNIX and Open Systems User
Group Conference, Queensland, Australia, 1997.

23. T. W. Yan and H. Garcia-Molina. Duplicate removal in information dissemination. InProc.
of the VLDB, Zurich, Switzerland, 1995.

24. D. Zimmer and R. Unland. On the semantics of complex events in active database
management systems. InProc. of the IEEE ICDE, Sydney, Australia, 1999.


