
Applying a Machine Learning Workbench:
Experience with Agricultural Databases

Stephen R. Garner, Sally Jo Cunningham, Geoffrey Holmes,
Craig G. Nevill-Manning and Ian H. Witten

Computer Science Department,
University of Waikato,

Hamilton, New Zealand.
{srg1,sallyjo,geoff,cgn,ihw}@cs.waikato.ac.nz

Abstract

This paper reviews our experience with the
application of machine learning techniques to
agricultural databases. We have designed and
implemented a machine learning workbench,
WEKA, which permits rapid experimentation
on a given dataset using a variety of machine
learning schemes, and has several facilities for
interactive investigation of the data:
preprocessing attributes, evaluating and
comparing the results of different schemes,
and designing comparative experiments to be
run off-line. We discuss the partnership
between agricultural scientist and machine
learning researcher that our experience has
shown to be vital to success. We review in
some detail a particular agricultural application
concerned with the culling of dairy herds.

1 INTRODUCTION
The Waikato Environment for Knowledge Analysis
(WEKA1) is a New Zealand government-sponsored
initiative to investigate the application of machine
learning to economically important problems in the
agricultural industries. The overall goals are to create a
workbench for machine learning, determine the factors
that contribute towards its successful application in the
agricultural industries, and develop new machine
learning methods and ways of assessing their
effectiveness.

This project began in 1993 and is currently working
towards the fulfilment of three objectives: to design and
implement the workbench, to provide case studies of
applications of machine learning techniques to
problems in agriculture, and to develop a methodology

1 Pronounced to rhyme with “Mecca”.

for evaluating generalisations in terms of their entropy.
These three objectives are by no means independent.
For example, the design of the WEKA workbench has
been inspired by the demands placed on it by the case
studies, and has also benefited from our work on
evaluating the outcomes of applying a technique to
data. Our experience throughout the development of
this project is that the successful application of machine
learning involves much more than merely executing a
learning algorithm on some data.

In this paper we present the process model that
underpins our work over the past two years for the
development of applications in agriculture, the software
we developed around our workbench of machine
learning schemes to support this model, and the
outcomes and problems we have encountered in
developing applications.

clean data

Research
goals

Useful
data

derived
attributes

raw data

Results

Analysis
of results

anomalies

clarification

pre-
processing

attribute
analysis

experiments
with machine

learning
schemes

data provider

derived
attributes

Figure 1: Process model for a machine learning
application

2 PROCESS MODEL
The process model we use for machine learning
applications is presented as a data flow diagram in
Figure 1. It is crucially dependent on two-way
interaction between the provider of the data and the
machine learning researcher, and enthusiasm on both
sides plays a major role in ensuring that the model
works. These two participants have quite different
motivations for seeing the application through, and it is
important that they are prepared to learn something
from each other. The machine learning researcher, for
example, must care more about finding something
interesting in the data than building a new tool to
analyse it. This requires discipline: tool-building is
something that computer scientists gladly take on,
whereas finding things in data involves liaison,
listening, questioning, and perhaps failure—activities
that they are not so comfortable with.

We receive the agricultural data that we analyse from
either agricultural research institutes or private
companies. In soliciting data, we find that we must first
“sell” the concept of machine learning to research
scientists, who tend to be wary of non-standard or non-
statistical approaches. One useful technique is to stress
the commonalities between statistics and machine
learning, presenting them as complementary rather than
promoting machine learning as a replacement for
statistical analysis (Cunningham 1995). A second is to
point out that machine learning is useful for generating
hypotheses, which can then be supported by further
statistical analysis or scientific testing.

In the initial visits to an agricultural institute, we
emphasise the need to establish a partnership in
analysing the data. We provide expertise in applying
machine learning algorithms, but the data providers
must supply domain information to effectively and
efficiently guide analysis. Machine learning is not a
“one-shot” operation, we generally must collaborate
closely with those who gathered the data.

2.1 PREPARATION OF THE DATABASE—
FROM RAW TO CLEAN DATA

Having obtained the raw data, it must be massaged into
a form suitable for processing by the automated tools.
In the case of the WEKA system, the data is extracted
and translated into a standard format we call ARFF, for
Attribute Relation File Format (Holmes et al 1994;
McQueen et al 1994). This generally involves taking
the physical extract of a database and processing it
through a series of steps to generate an ARFF dataset.
Anomalies arise in this process and must be resolved
via consultation with the data provider. This may result
in new data being generated, or in a better
understanding of the values and attributes stored in the
database.

The data must be transformed into the single flat table
required by the algorithms in WEKA. Data is commonly
obtained by retrieving it from a relational database
using some form of query language (e.g., SQL). This
often involves taking data from a variety of sources or
tables in the database and combining them into a single
relation. This process, called denormalization, is the
reverse of the process that was used to structure the
database in the first place to impose integrity
constraints, reduce update anomalies and eliminate data
redundancy. The problems arising from
denormalization are two-fold.

First, the dataset that is extracted can be very large, in
terms of both the number of columns or attributes and
the number of rows or examples. The machine learning
software and the computer system it is running on must
both have sufficient resources to cope with the data.
Second, denormalization may reintroduce functional
dependencies between attributes that were the very
reason for structuring the database in the first place. If
these relationships are identified as patterns by the
system, they will not be considered “interesting” by the
user. Most machine learning tools will introduce these
two problems because they only work with a single
relation, though some techniques, for exampleFOIL
(Quinlan and Cameron-Jones, 1993), use first-order
logic and work with multiple relations.

Once the database is in a single relation, each attribute
must be examined to determine its data type—for
example, whether it contains numeric or symbolic
information. Numeric values may include
measurements, such as the diameter of an apple, while
symbolic values could be the day of the week or
whether a cow has had a calf this year. This information
may be ascertained from the original database’s data
dictionary (if there is one), but there are a number of
pitfalls.

Databases that have been designed for custom software
may contain numeric values that are actually not to be
treated as numbers but rather as codes describing a
particular condition. For example, a field production
index may have the value –1 to indicate that no
measurement was recorded. In such cases, one may
replace the –1 with a “missing value” token, or if that is
not possible then simply remove those records. Another
example is a field in the database that is of type integer
but whose contents are not used arithmetically. This
may arise in the case of an identification number field,
for which certain operations—such as taking the
average of the field’s values—are meaningless.
Changing the field to one where the numbers are treated
as nominal values will eliminate the possibility of the
system creating inappropriate rules.

Conversely, symbolic values may have an associated
ordering—for example, the days of the week—in which
case it may be better to restructure the attribute into one
that allows rules to be produced that express situations
such as

working_day ≤ Tuesday rather than working_day is
Monday or working_day is Tuesday.

Mapping the symbolic values to integers will allow
such operations, though one must be careful not to
permit arithmetic or statistical operations to be applied
to the integers.

The user preparing the dataset needs to be aware of co-
dependent and implied attributes. The former occur
when one attribute contains a measurement and another
indicates how accurate that measurement is. The second
attribute might be a necessary qualification on the first
one—for example only use the measurement if its
accuracy exceeds 95%. The latter occur when the
absence of a value in one attribute implies its existence
in another attribute. For example, in the cow culling
dataset described in Section 3, the absence of a value in
the ttransfer in date 3 field means check the transfer in
date 2 field to determine when the cow was transferred
into the herd.

Missing values in the dataset can create a variety of
problems. Sometimes they merely indicate the absence
of information; other times they actually convey
information. In the first case all missing values should
be replaced by a token recognised by the WEKA system.
In ARFF, missing values are represented by “?”. The
presence of the missing value token means that the
system will avoid creating rules for which the absence
of a value determines the classification. On the other
hand, a missing value may convey information—for
example, in an attribute that contains disease
information the absence of a value could signal
No disease. Sometimes, both cases occur together in a
single attribute, and it may not be possible to
distinguish a missing value from a default one.

Real data is surprisingly dirty, and requires sustained
effort to check for consistency in measurements, locate
erroneous values, and determine sources of noise.
Again, this process goes more smoothly when working
closely with the data providers. As with any data
analysis technique, the higher the data quality, the better
the model will be. If many attribute values are missing
or corrupt, the schemes may not have enough data to
build a complete model. Two problems have been
encountered while working with agricultural datasets.

The first is that classes may overlap when different
classes have very similar attribute values. Figure 2
shows the results of evaluating a model describing
apple bruise size created using C4.5 on a dataset of
1440 instances. The model misclassified 404 apples in

the dataset, an error rate of 28.1%. The apples with tiny
bruises seem to form a well-defined class, but the
distinction between apples with medium bruises and
those with larger bruises is not clear from the attributes
in the dataset.

Classified as Actual
tiny small medium large Class

302
10

11
41
4

2
59

663
291

1
26
30

tiny
small
medium
large

Figure 2: Confusion matrix for apple bruising

A second problem occurs when one of several classes is
much larger than the others. Known as the “small
disjunct” problem, this may cause machine learning
schemes to describe the data as a single class and treat
the instances in the smaller classes as anomalies or
errors. For example, in one dataset describing cows in
heat, 98% of the examples are not in heat and the
remaining 2% are not clearly distinguishable using the
attributes in the dataset. Thus the schemes come up with
the general rule that a cow is not in heat, which is
correct 98% of the time! Work is continuing in this
area. One approach is to reduce the number of instances
of the larger class in the training set while maintaining
the numbers of instances in the smaller classes. Another
is to construct a hybrid scheme by augmenting C4.5
with an instance-based learner (Ting 1994).

2.2 ATTRIBUTE ANALYSIS—FROM CLEAN
TO USEFUL DATA

At this point, we have cleaned up rows (data instances)
and now need to determine the columns that are most
likely to provide information and the one to be used for
classification. The classification relates to the overall
research goals of the data provider. These goals may
have to be “extracted” from them from a knowledge of
what can be achieved by using the learning schemes.
This extraction process is less painful if the data
providers have been well briefed on the technology
when the partnership was created.

Finding useful attributes is a problem of tractability:
real datasets have thousands, perhaps millions, of
records, each of which may have hundreds of fields.
Some schemes cannot handle the huge numbers of
hypotheses that must be calculated in analysing such a
dataset; others cannot handle them in a timely fashion.
Pre-selection of potentially relevant attributes is critical,
as omitting a key feature or including irrelevant ones
can both lead to poor classification accuracy.

We run the data through one or more of the following
schemes to select the most relevant features:

• 1R, the single-attribute classifier developed by Holte
(Holte 1993). While Holte uses 1R as a stand-alone
learning scheme, we view it as a feature selector.
Applying 1R iteratively with each of the attributes in
the raw data allows us to rank attributes by their
classificatory power.

• C4.5, a learning scheme that has proven in practice
to be quite effective in winnowing out irrelevant
attributes (Quinlan 1992). We apply C4.5 directly to
the initial data table, and eliminate attributes that do
not play a significant role in the resulting decision
tree. As will be discussed in Section 4, we also gain
quick insight into possible problems with the format
of key attributes.

• FSS, the feature selection algorithm built into the
MLC++ system (Fu 1968; Kohavi et al 1994). FSS is
a forward sequential selection algorithm which
iteratively adds attributes and tests their
effectiveness/relevance with an induction algorithm.
It produces a list of what the induction algorithm
considers to be the most relevant attributes.

• Runic (Smith and Holmes 1995), an algorithm for
subset selection that examines rough numeric
dependencies in the data. An attribute is considered
potentially relevant if a particular subrange of its
values can be used to predict the value of another
feature more accurately than by pure chance. The
degree of predictivity can be used to rank attributes,
and the best predictors chosen are for analysis by
machine learning algorithms.

2.3 EXPERIMENTATION WITH MACHINE
LEARNING SCHEMES

The result of these processing steps is a table of
(probably) useful attributes and consistent instances.
This data is placed in an experimental loop across
several schemes. In the absence of a comprehensive set
of empirical tests to determine a single best learning
algorithm to apply to a given dataset, we find it most
effective to apply more than one scheme. Different
algorithms give different insights into the dataset, and
suggest further manipulations to perform on it.

We currently use the most common metric—
classification accuracy—to determine the overall
effectiveness of an experiment, and are developing
entropy-based complexity measures for rule sets. In
dealing with our data providers, we must also consider a
metric that is not easily quantified: the “interestingness”
of the derived rules. As we take our results back to the
domain experts, we are constantly reminded that it is
less than impressive to proudly present them with

common-sense facts from their field that we have
calculated at great effort! A raw decision tree or set of
rules needs to be processed by a human, to tease out the
useful or novel information from the already-known.

One outcome of presenting results is the establishment
of “derived attributes”—attributes that are used in
practice but are not directly represented in the data. For
example, year of birth may not be as useful as current
age, if the dataset includes several years of values; the
production index of a cow relative to the herd average
may well be more useful than the absolute production
index, and so on. This step usually involves creating
new columns from old ones. The most common
operations include quantising a numeric attribute into
intervals or classes; calculating a new attribute using a
formula; and creating a new class attribute based on a
series of logical conditions.

3 SOFTWARE TOOLS
In this section we describe the tools we developed to
support our process model. These tools have evolved
over time as we gained more experience with real
datasets.

3.1 THE WEKA WORKBENCH

The WEKA workbench2 has been designed to facilitate
the processing of data from ARFF format to its final
representation as a set of rules or decision tree. A
variety of state-of-the-art, robust, and efficient machine
learning schemes are provided for experimentation. The
workbench is not, however, a multi-paradigm learner;
that is, it does not combine machine learning techniques
to produce new hybrid schemes. Instead, it concentrates
on simplifying access to standard schemes so that their
performance can be evaluated and compared.

The design of the workbench is something of a
compromise between the needs of machine learning
researchers and domain experts with end-user
computing experience. We have tried to avoid
alienating one or another of these groups of users. This
usually means that we develop software that can be
used either at the command line level, which is the
preferred interface for expert researchers, or at the
graphical user interface level, which is the preferred
mode of access for domain experts and researchers new
to the technology.

Papers describing the workbench have already appeared
in the literature (Witten 1993). In this paper we
concentrate on the supporting software that has been
developed as a result of experience with real-world
data.

2 For more details see http://www.cs.waikato.ac.nz/~ml

3.2 SUPPORT FOR PRE-PROCESSING AND
ATTRIBUTE ANALYSIS

Existing data must be converted to our standard format,
ARFF, before it can be imported into W E K A. We
developed a collection of stand-alone programs that can
be used to process standard formats such as INGRES
files, but special-purpose code must be developed for
obscure (or unique!) formats. Once the data is loaded
into WEKA, it can be viewed with simple visualisation
tools such as histograms and box plots. We also provide
a spreadsheet for viewing data.

Data can be modified using the attribute editor, which
provides facilities for creating derived attributes and
generating new ARFF files (Figure 3). Formulae used to
define derived attributes can be arbitrarily complex, and
may apply logical and numeric operators to one or more
existing attributes. In generating new ARFF files, the
user can select subsets of both rows and columns from
the original table. The attribute editor also allows the
user to append comments recording the rationale behind
new attributes.

Of the techniques for feature selection discussed in
Section 2.2, only 1R and C4.5 are currently part of the
workbench proper; we run FSS and Runic as stand-
alone programs. We are currently considering how best
to add these latter two algorithms to the workbench.

Figure 3. Attribute editor for new attribute creation

3.3 SUPPORT FOR EXPERIMENTATION

The experiment editor (Figure 4) is a simple graphical
user interface tool for organising and running several
machine learning schemes over several sets of data. It is
a more general implementation of Holte’s experimental
paradigm (Holte 1993).

A user specifies the ratio of the size of test and training
sets and the number of runs required (for example,
Holte uses a 1/3:2/3 split of data and 25 runs). Datasets

are chosen by the user, who is asked to specify the
attribute to be used for classification. Schemes are
chosen from those provided by the workbench. Once
these items have been selected, the system randomly
generates the required number of test and training files,
and runs each of the selected schemes on this data.
Results are collated in a text file and processed to
provide summary statistics from the PREval evaluator
(see below).

Figure 4. WEKA experiment editor

All output from a machine learning scheme is passed
back to WEKA in the form of text, and can be displayed
in a scrollable viewer. Text can be copied to other
applications, printed, or saved to a file. A novel feature
of the workbench is that it supplies a facility for
“external” evaluation that can perform tests on the
output from any machine learning scheme in a uniform
way. If the user selects external evaluation, the output,
as well as being displayed as text, is converted into an
internal rule format and evaluated. The rule format is
PROLOG-based, and rules can be executed using an
evaluator called PREval. The precise details of output
translation varies for the individual schemes. For FOIL,
which produces its output as rules already, it is a simple
matter to convert the rule format to PREval. INDUCT
(Gaines 1991), which produces rules in a special
“ripple-down” structure, provides an option to produce
its output directly in the PREval format. For C4.5, both
decision trees and rules are converted automatically into
PREval rules.

PREval takes a set of rules and an ARFF file, and
evaluates how well the rules cover the classifications. It
provides figures for classification accuracy, including
the percentage correctly classified, incorrectly
classified, classified by multiple rules, and not
classified at all, as well as confusion matrices to show
the distribution of misclassifications, and statistics on

Sold

> 890613<= 890613

OCOAMTMFLPINGSCTBL1A

> 860811<= 860811

Transfer out date

> 900420<= 900420

Transfer out date

> 880217<= 880217

Animal Date of BirthUnknown

DiedTransfer out date

> 890613<= 890613

Cause of fate

UD

Mating date

Sold

Sold Died Sold Sold Sold Sold Sold Sold Sold

Animal Key

> 2811510<= 2811510

Died Sold

•••

•••

Figure 5. Decision tree induced from raw herd data

how well each rule does. PREval also incorporates an
entropy measure for calculating both the complexity of
rule sets, and the complexity of datasets with respect to
a rule set.

4 AN AGRICULTURAL APPLICATION
OF WEKA

In this section we examine a project in which WEKA
has been used to find rules describing culling decisions
in dairy herds. We relate our development of the
application to the process model and the tools we
described in sections 2 and 3.

The “cow culling” database was provided by the
Livestock Improvement Corporation in Hamilton, New
Zealand. This institution operates a relational database
system to track genetic history and production records
of twelve million dairy cows and sires, of which three
million are currently alive. Production data are recorded
for each cow from four to twelve times per year, and
additional information is recorded as events occur.
Farmers receive information from the Livestock
Improvement Corporation in the form of reports from
which comparisons within the herd can be made. Two
types of information that are produced are the
production and breeding indexes (PI and BI
respectively), which both indicate the merit of the
animal. The former reflects the milk it produces with
respect to measures such as fat, protein and volume,

indicating its worth as a production animal. The latter
reflects the likely merit of a cow’s progeny, indicating
its worth as a breeding animal. In a well-managed herd,
the average value of these indexes will increase every
year, as superior animals enter the herd and low-
performance ones are removed.

One major decision that farmers must make each year is
whether to retain a cow in the herd or remove it, usually
to an abattoir. About 20% of the cows in a typical New
Zealand dairy herd are culled each year, usually near
the end of the milking season as feed reserves run short.
The cows’ breeding and production indexes influence
this decision, particularly when compared with the other
animals in the herd. Other factors that may influence the
decision are:

• age: a cow is nearing the end of its productive life
at 8–10 years,

• health problems,
• history of difficult calving,
• undesirable temperament traits (kicking, jumping

fences),
• not being in calf for the following season.

The Livestock Improvement Corporation hoped that
machine learning tools would provide insight into the
rules that particular farmers actually use to make their
culling decisions, enabling better information to be

provided to farmers in the future. They provided data
from ten herds over six years, representing 19 000
records each containing 705 attributes.

The initial dataset we studied was extremely noisy, and
indicated the need to include simple data visualisation
techniques such as histograms in our workbench. A
number of attributes contained a predominance of
missing values; these could be quickly identified
through visualisation, and were eliminated. These
techniques are also helpful in determining viable
clusters when discretizing real values. When the data
was originally denormalized into a single table, the link
and join relations duplicated some attributes (under
different names). These were identified and deleted.

The principal tools used to select potentially relevant
attributes were C4.5 (Quinlan 1992) and FOIL. The
initial flat table was run through C 4.5 on the
workbench. Cows were classified on their fate code
attribute, which can take the values sold, dead, lost and
unknown. The resulting tree, shown in Figure 5, proved
disappointing.

At its root is the transfer out date attribute. This implies
that the culling decision for a particular cow is based
mainly on the date on which it is culled, rather than on
any attributes of the cow. Next, the date of birth is used,
but as the culling decisions take place in different years,
an absolute date is not meaningful. A cow’s age would
be useful, but is not explicitly present in the dataset.
The cause of fate attribute is strongly associated with
the fate code; it contains a coded explanation of the
reason for culling. This attribute is assigned a value
after the culling decision is made, so it is not available
to the farmer who makes the culling decision.
Furthermore, we would like to be able to predict this
attribute—in particular the low production (LP) value—
rather than include it in the tree as a decision indicator.
Its presence artificially elevated the classification
accuracy, predicting the culling decision correctly 95%
of the time on test data. Mating date is another absolute
date attribute, and animal key is simply a 7-digit
identifier.

In discussions with staff from the Livestock
Improvement Corporation, it was suggested that the
culling decision may not be based on a cow’s absolute
performance, but on its performance relative to the rest
of the herd. To test this, attributes representing the
difference in production from the average over the
cow’s herd were added to the database. In order not to
bias the learning process, the original attributes were
retained, and the new attributes were not distinguished
in any way—it was left to the machine learning
schemes to decide if they were more helpful for
classification than the original ones. This process
involved close cooperation with Livestock

Improvement Corporation. Discussions often ended up
proposing more derived attributes, and clarifying the
meaning of particular attributes. Staff were also able to
evaluate the plausibility of rules, which was helpful in
the early stages when the recreation of existing
knowledge was a useful indication of the correctness of
our approach.

It was necessary to create about forty new attributes,
including a status code showing whether a cow is
retained or culled and a variety of production and
breeding indices relative to the herd in a specific year.
This experience was one of the primary motivating
factors for the construction of the attribute editor
described in Section 3.

After adding derived attributes, C4.5 produced the tree
in Figure 6. The fate code, cause of fate and transfer out
date have been combined into a status code which takes
the values culled or retained. For each year, the records
for cows that have previously been culled or have not
yet been born are removed. Cows that were alive and
were not transferred in that year are marked as retained,
otherwise they are marked culled. If, however, a cow
died of disease or some other factor outside the farmer’s
control, the record is removed. After all, the aim of this
exercise is to discover the farmer’s culling rules rather
than the incidence of disease and injury.

The tree in Figure 6 is much more compact than the one
in Figure 5. It was produced with 30% of the instances,
and correctly classifies 95% of the remaining ones. The
unconditional retention of cows two years or younger is
due to the fact that they have not yet begun lactation,
and so there is no indication of their productive
potential. The next decision is based on the cow’s worth
as a breeding animal, which is calculated from the
earnings of its offspring. The volume of milk that the
cow produces is used for the final decision. This tree’s
decisions are plausible from a farming perspective, and
its compactness indicates that it is a good explanation of
the culling process. It is interesting to note that it
consists entirely of derived attributes, further
emphasising the importance of this step in the process.

<= -10.8

Age

<= 2 > 2

Retained Payment BI
relative to herd

> -10.8

RetainedMilk Volume PI
relative to herd

> -33.93

Retained

<= -33.93

Culled

Figure 6. Cow culling decision tree

5 SUMMARY
The discovery process is an iterative one. After taking a
dataset and analysing it, the results are used to augment
the dataset with new attributes or to adjust a scheme’s
parameters. Then the process is repeated. The WEKA
workbench supports this process by providing the user
with uniform facilities for manipulating datasets,
configuring learning schemes and handling output. But
while a good set of tools is important, forming a
partnership with data providers is crucial. Domain
knowledge is necessary to analyse data effectively, and
our discussions with agricultural experts direct data
processing, experimentation, and interpretation of
results.

Our experience with New Zealand agricultural datasets
has suggested several other improvements for the
workbench. We tend to run a large number of
experiments on a single dataset: creating new attributes,
selecting subsets of rows and columns for processing,
running the derived datasets across several machine
learning schemes, testing different parameters on a
single scheme, etc. Since it quickly becomes difficult to
remember which combination of attributes produced
what results on which algorithm, we are considering
incorporating a scheme for organizing experimental
results into the workbench. Similar facilities have
recently been designed for statistics packages (Harner
and Galfalvy 1995; Young and Lubinsky 1995), and it
appears that these representation techniques are also
applicable to machine learning analysis.

A longer-term goal would be to provide a method for
codifying a priori domain knowledge and incorporating
it into the machine learning model in a principled
fashion. As discussed in Section 2, we use prior
knowledge of the domain to create new (derived)
attributes, to eliminate attributes that are unlikely to be
useful, and to guide the experimentation process. Most
of this information is not recorded, or if recorded is not
easily associated with the relevant dataset. We have
implemented some simple solutions such as adding a
comment field to the attribute editor so that we can keep
track of what derived attributes represent. A much more
difficult problem is to provide suggestions for creating
derived attributes, or for effectively using domain
information to incorporate a bias into the learning
process.

References

Cunningham, S.J. (1995) “Machine learning and statistics: A
matter of perspective.”. Working Paper Series 95/11,
Department of Computer Science, University of Waikato
(Hamilton, New Zealand).

Fu, K.S. (1968) Sequential methods in pattern recognition
and machine learning New York: Academic Press.

Gaines, B.R. (1991) “The tradeoff between knowledgte and
data in knowledge acquisition.” In Knowledge discovery in
databases, edited by GT. Piatetsky-Shapiro and W.J. Frawley.
AAAI Press, Menlo Park, CA, pp. 491–505.

Harner, E.J., and Galfalvy, H.C. (1995) “Omega-Stat: an
environment for implementing intelligenct modeling
strategies.” Proceedings of the Fifth International Workshop
on Artificial Intelligence and Statistics, Ft. Lauderdale
(Florida, USA), pp. .252-258.

Holmes, G., Donkin, A., and Witten, I.H. (1994) “Weka: a
machine learning workbench.” Proceedings of the 1994
Second Australian and New Zealand Conference on
Intelligent Information Systems, Brisbane, Australia, pp. 357-
361.

Holmes, G., and Nevill-Manning, C.G. (1995) “Feature
selection via the discovery of simple classification rules.” To
appear in Proceedings of Symposium on Intelligent Data
Analysis (IDA–95), Baden-Baden, Germany, August, 1995.

Holte, R.C. (1993) “Very simple classification rules perform
well on most commonly-used datasets.” Machine Learning
11, pp. 63–91.

Kohavi, R., John, G., Long, R., Manley, D. and Pfleger, K.
(1994) “MLC++: A Machine Learning Library in C++,” Tech
Report, Computer Science Dept, Stanford University.

McQueen, R.J., Garner, S.R., Nevill-Manning, C.G., and
Witten, I.H. (1994) “Applying machine learning to
agricultural data.” In Press, Journal of Computing and
Electronics in Agriculture. Also available as Working Paper
Series 94/3 Department of Computer Science, University of
Waikato (Hamilton, New Zealand).

McQueen, R.J., Neal, D.L., DeWar, R.E., and Nevill-
Manning, C.G. (1994) “The WEKA machine learning
workbench: its application to a real world agricultural
database.” Proceedings of the Canadian Machine Learning
Workshop, Banff, Alberta, Canada.

Quinlan, J.R. (1992) C4.5: Programs for Machine Learning.
Morgan Kaufmann.

Quinlan, J.R. and Cameron-Jones, R.M. (1993) “FOIL: a
midterm report,” Proc European Conf on Machine Learning,
pp 3–20. Springer Verlag.

Smith, T.C., and Holmes, G. (1995) “Subset selection using
rough numeric dependency.” To appear in Proceedings of
Symposium on Intelligent Data Analysis (IDA–95), Baden-
Baden, Germany, August, 1995..

Ting, K.M. (1994) “The problem of small disjuncts: its
remedy in decision trees.” In: Elio, R. (Editor), Proc. Tenth
Canadian Conference on Artificial Intelligence; pp 91–97.
Canadian Society for Computational Studies of Intelligence.

Witten, I.H., Cunningham, S.J., Holmes, G., McQueen, R.,
and Smith, L. (1993) “Practical Machine Learning and its
Application to Problems in Agriculture.” Proceedings of the
New Zealand Computer Society Conference, Auckland, New
Zealand, pp. 308-325.

Young, F.W., and Lubinsky, D.J. (1995) “Learning from data
by guiding the analyst: on the representation, use, and creation
of visual statistical strategies.” Proceedings of the Fifth
International Workshop on Artificial Intelligence and
Statistics, Ft. Lauderdale (Florida, USA), pp. 531-539.

