
Weka: Practical Machine Learning Tools and Techniques
with Java Implementations

Ian H. Witten, Eibe Frank, Len Trigg, Mark Hall, Geoffrey Holmes, and Sally Jo Cunningham,
Department of Computer Science, University of Waikato, New Zealand.

Introduction

The Waikato Environment for Knowledge Analysis
(Weka) is a comprehensive suite of Java class
libraries that implement many state-of-the-art
machine learning and data mining algorithms.
Weka is freely available on the World-Wide Web
and accompanies a new text on data mining [1]
which documents and fully explains all the
algorithms it contains. Applications written using
the Weka class libraries can be run on any
computer with a Web browsing capability; this
allows users to apply machine learning techniques
to their own data regardless of computer platform.

Tools are provided for pre-processing data, feeding
it into a variety of learning schemes, and analyzing
the resulting classifiers and their performance. An
important resource for navigating through Weka is
its on-line documentation, which is automatically
generated from the source.

The primary learning methods in Weka are
“classifiers”, and they induce a rule set or decision
tree that models the data. Weka also includes
algorithms for learning association rules and
clustering data. All implementations have a
uniform command-line interface. A common
evaluation module measures the relative
performance of several learning algorithms over a
given data set.

Tools for pre-processing the data, or “filters,” are
another important resource. Like the learning
schemes, filters have a standardized command-line
interface with a set of common command-line
options.

The Weka software is written entirely in Java to
facilitate the availability of data mining tools
regardless of computer platform. The system is, in
sum, a suite of Java packages, each documented to
provide developers with state-of-the-art facilities.

Javadoc and the class library

One advantage of developing a system in Java is its
automatic support for documentation. Descriptions
of each of the class libraries are automatically
compiled into HTML, providing an invaluable
resource for programmers and application
developers alike.

The Java class libraries are organized into logical
packages—directories containing a collection of
related classes. The set of packages is illustrated in

Figure 1. They provide interfaces to pre-processing
routines including feature selection, classifiers for
both categorical and numeric learning tasks, meta-
classifiers for enhancing the performance of
classifiers (for example, boosting and bagging),
evaluation according to different criteria (for
example, accuracy, entropy, root-squared mean
error, cost-sensitive classification, etc.) and
experimental support for verifying the robustness
of models (cross-validation, bias-variance
decomposition, and calculation of the margin).

Weka’s core

The core package contains classes that are accessed
from almost every other class in Weka. The most
important classes in it are Attribute, Instance, and
Instances. An object of class Attribute represents
an attribute—it contains the attribute’s name, its
type, and, in case of a nominal attribute, its
possible values. An object of class Instance
contains the attribute values of a particular
instance; and an object of class Instances contains
an ordered set of instances—in other words, a
dataset.

Data Pre-Processing

Weka’s pre-processing capability is encapsulated in
an extensive set of routines, called filters, that
enable data to be processed at the instance and
attribute value levels. Table 1 lists the most
important filter algorithms that are included.

weka.filter.AddFilter
weka.filter.DeleteFilter
weka.filter.MakeIndicatorFilter
weka.filter.MergeAttrbuteValuesFilter
weka.filter.NominalToBinaryFilter
weka.filter.SelectFilter
weka.filter.ReplaceMissingValuesFilter
weka.filter.SwapAttributeValuesFilter
weka.filter.DiscretiseFilter
weka.filter.NumericTransformFilter

Table 1: The filter algorithms in Weka

General manipulation of attributes

Many of the filter algorithms provide facilities for
general manipulation of attributes. For example,
the first two items in Table 1, AddFilter and
DeleteFilter, insert and delete attributes.
MakeIndicatorFilter transforms a nominal attribute
into a binary indicator attribute. This is useful when

a multi-class attribute should be represented as a
two-class attribute.

In some cases it is desirable to merge two values of
a nominal attribute into a single value. This can be
done in a straightforward way using
MergeAttributeValuesFilter. The name of the new
value is a concatenation of the two original ones.

Some learning schemes—for example, support
vector machines—can only handle binary
attributes. The advantage of binary attributes is that
they can be treated as either being nominal or
numeric. NominalToBinaryFilter transforms multi-
valued nominal attributes into binary attributes.

SelectFilter is used to delete all instances from a
dataset that exhibit one of a particular set of
nominal attribute values, or a numeric value below
or above a certain threshold.

One possibility of dealing with missing values is to
globally replace them before the learning scheme is
applied. ReplaceMissingValuesFilter substitutes
the mean (for numeric attributes) or the mode (for
nominal attributes) for each missing value.

Transforming numeric attributes

Some filters pertain specifically to numeric
attributes. For example, an important filter for
practical applications is the DiscretiseFilter. It
implements an unsupervised and a supervised
discretization method. The unsupervised method
implements equal width binning. If the index of a
class attribute is set, the method will perform
supervised discretization using MDL [2].

In some applications, it is appropriate to transform
a numeric attribute before a learning scheme is
applied, for example, to replace each value by its
square root. NumericTransformFilter transforms all
numeric attributes among the selected attributes

using a user-specified transformation function.

Feature Selection

Another essential data engineering component of
any applied machine learning system is the ability
to select potentially relevant features for inclusion
in model induction. The Weka system provides
three feature selection systems: a locally produced
correlation based technique [3], the wrapper
method and Relief [4].

Learning schemes

Weka contains implementations of many
algorithms for classification and numeric
prediction, the most important of which are listed
in Table 2. Numeric prediction is interpreted as
prediction of a continuous class. The Classifier
class defines the general structure of any scheme
for classification or numeric prediction.

weka.classifiers.ZeroR
weka.classifiers.OneR
weka.classifiers.NaiveBayes
weka.classifiers.DecisionTable
weka.classifiers.Ibk
weka.classifiers.j48.J48
weka.classifiers.j48.PART
weka.classifiers.SMO
weka.classifiers.LinearRegression
weka.classifiers.m5.M5Prime
weka.classifiers.LWR
weka.classifiers.DecisionStump

Table 2: The basic learning schemes in Weka

The most primitive learning scheme in Weka,
ZeroR, predicts the majority class in the training
data for problems with a categorical class value,
and the average class value for numeric prediction
problems. It is useful for generating a baseline

Figure 1 Package Hierarchy in Weka

performance that other learning schemes are
compared to. In some cases, it is possible that other
learning schemes perform worse than ZeroR, an
indicator of substantial overfitting.

The next scheme, OneR, produces very simple
rules based on a single attribute [5]. NaiveBayes
implements the probabilistic Naïve Bayesian
classifier. DecisionTable employs the wrapper
method to find a good subset of attributes for
inclusion in the table. This is done using a best-first
search. IBk is an implementation of the k-nearest-
neighbours classifier [6]. The number of nearest
neighbours (k) can be set manually, or determined
automatically using cross-validation.

j48 is an implementation of C4.5 release 8 [7] that
produces decision trees. This is a standard
algorithm that is widely used for practical machine
learning. Part is a more recent scheme for
producing sets of rules called “decision lists”; it
works by forming partial decision trees and
immediately converting them into the
corresponding rule. SMO implements the
“sequential minimal optimization” algorithm for
support vector machines, which are an important
new paradigm in machine learning [8].

The next three learning schemes in Table 2
represent methods for numeric prediction. The
simplest is linear regression. M5Prime is a rational
reconstruction of Quinlan’s M5 model tree inducer
[9]. LWR is an implementation of a more
sophisticated learning scheme for numeric
prediction, using locally weighted regression [10].

DecisionStump builds simple binary decision
"stumps" (1-level decision trees) for both numeric
and nominal classification problems. It copes with
missing values by extending a third branch from
the stump—in other words, by treating “missing”
as a separate attribute value. DecisionStump is
mainly used in conjunction with the LogitBoost
boosting method, discussed in the next section.

Meta-Classifiers

Recent developments in computational learning
theory have led to methods that enhance the
performance or extend the capabilities of these
basic learning schemes. We call these performance
enhancers “meta-learning schemes” or “meta-
classifiers” because they operate on the output of
other learners. Table 3 summarizes the most
important meta-classifiers in Weka.

The first of these schemes is an implementation of
the bagging procedure [11]. This implementation
allows a user to set the number of bagging
iterations to be performed.

AdaBoost.M1 [12] similarly gives the user control
over the boosting iterations performed. Another
boosting procedure is implemented by LogitBoost
[13], which is suited to problems involving two-

class situations—for example, the SMO class from
above. In order to apply these schemes to multi-
class datasets it is necessary to transform the multi-
class problem into several two-class ones, and
combine the results. MultiClassClassifier does
exactly that.

weka.classifiers.Bagging
weka.classifiers.AdaBoostM1
weka.classifiers.LogitBoost
weka.classifiers.MultiClassClassifier
weka.classifiers.CVParameterSelection

Table 3: The meta-classifier schemes in Weka

Additional learning schemes

Weka is not limited to supporting classification
schemes; the class library includes representative
implementations from other learning paradigms.

Association rules

Weka contains an implementation of the Apriori
learner for generating association rules, a
commonly used technique in market basket
analysis [14]. This algorithm does not seek rules
that predict a particular class attribute, but rather
looks for any rules that capture strong associations
between different attributes.

Clustering

Methods of clustering also do not seek rules that
predict a particular class, but rather try to divide the
data into natural groups or “clusters.” Weka
includes an implementation of the EM algorithm,
which can be used for unsupervised learning. Like
Naïve Bayes, it makes the assumption that all
attributes are independent random variables.

Evaluation and Benchmarking

One of the key aspects of the Weka suite is the
ability it provides to evaluate learning schemes
consistently. Table 4 contains a condensed
summary of the current “league table” in terms of
applying the machine learning schemes to all of the
datasets we have collected (37 from the UCI
repository [14]). All schemes are tested by ten by
ten stratified cross-validation.

W-L Wins Loss Scheme

 208 254 46 LogitBoost -I 100 Decision Stump
 155 230 75 LogitBoost -I 10 Decision Stump
 132 214 82 AdaBoostM1 Decision Trees
 118 209 91 Naïve Bayes
 62 183 121 Decision Trees
 14 168 154 IBk Instance-based learner
 -65 120 185 AdaBoostM1 Decision Stump
-140 90 230 OneR—Simple Rule learner
-166 77 243 Decision Stump
-195 9 204 ZeroR

Table 4: Ranking schemes

Column 2, Wins, is the number of datasets for
which the scheme performed significantly better (at
the 95% confidence level) than another scheme.
Loss is the number of datasets for which a scheme
performed significantly worse than another
scheme. W-L is the difference between wins and
losses to give an overall score. It would appear, for
these 37 test sets, that Logit boosting simple
stumps for 10 or 100 iterations is the best overall
method among the schemes available in Weka.

Building Applications with Weka

In most data mining applications the machine
learning component is just a small part of a far
larger software system. To accommodate this, it is
possible to access the programs in Weka from
inside one’s own code. This allows the machine
learning subproblem to be solved with a minimum
of additional programming.

For example, Figure 2 shows a Weka applet written
to test the usability of machine learning techniques
in the objective measurement of mushroom quality.
Image processing a picture of a mushroom cap (at
left in Figure 2) provides data for the machine
learning scheme to differentiate between A, B and
C grade mushrooms [15].

Figure 2: Mushroom grading applet

Conclusions

As the technology of machine learning continues to
develop and mature, learning algorithms need to be
brought to the desktops of people who work with
data and understand the application domain from
which it arises. It is necessary to get the algorithms
out of the laboratory and into the work
environment of those who can use them. Weka is a
significant step in the transfer of machine learning
technology into the workplace.

References

 [1] Witten, I. H., and Frank E. (1999) Data
Mining: Practical Machine Learning Tools
and Techniques with Java Implementations,
Morgan Kaufmann, San Francisco.

[2] Fayyad, U.M. and Irani, K.B. (1993) “Multi-
interval discretization of continuous-valued
attributes for classification learning.” Proc
IJCAI, 1022–1027. Chambery, France.

[3] Hall, M.A. and Smith, L.A. (1998) “Practical
feature subset selection for machine learning.”
Proc Australian Computer Science
Conference, 181–191. Perth, Australia.

 [4] Kira, K. and Rendell, L.A. (1992) “A practical
approach to feature selection.” Proc 9th Int
Conf on Machine Learning, 249-256.

[5] Holte, R.C. (1993) “Very simple classification
rules perform well on most commonly used
datasets.” Machine Learning, Vol. 11, 63–91.

[6] Aha, D. (1992) “Tolerating noisy, irrelevant,
and novel attributes in instance-based learning
algorithms.” Int J Man-Machine Studies, Vol.
36, 267–287.

[7] Quinlan, J.R. (1993) C4.5: Programs for
machine learning. Morgan Kaufmann, San
Mateo, CA.

 [8] Burges, C.J.C. (1998) “A tutorial on support
vector machines for pattern recognition.” Data
Mining and Knowledge Discovery, Vol. 2(1),
121-167.

[9] Wang, Y. and Witten, I.H. (1997) “Induction
of model trees for predicting continuous
classes.” Proc Poster Papers of the European
Conference on Machine Learning, 128-137.
Prague.

[10] Atkeson, C.G., Schaal, S.A. and Moore, A.W.
(1997) “Locally weighted learning.” AI
Review, Vol. 11, 11–71.

[11] Breiman, L. (1992) “Bagging predictors.”
Machine Learning, Vol. 24, 123–140.

[12] Freund, Y. and Schapire, R.E. (1996)
“Experiments with a new boosting algorithm.”
Proc COLT, 209–217. ACM Press, New York.

[13] Friedman, J.H., Hastie, T. and Tibshirani, R.
(1998) “Additive logistic regression: a
statistical view of boosting.” Technical Report,
Department of Statistics, Stanford University.

[14] Agrawal, R., Imielinski, T. And Swami, A.N.
(1993) “Database mining: a performance
perspective.” IEEE Trans Knowledge and
Data Engineering, Vol. 5, 914–925.

 [15] Kusabs N., Bollen F., Trigg L., Holmes G.
and Inglis S. (1998) “Objective measurement
of mushroom quality.” Proc New Zealand
Institute of Agricultural Science and the New
Zealand Society for Horticultural Science
Annual Convention, Hawke’s Bay, New
Zealand, 51.

