An Empirical Comparison of Exact Nearest
Neighbour Algorithms

Ashraf M. Kibriya and Eibe Frank

Department of Computer Science
University of Waikato
Hamilton, New Zealand
{amk14, eibe}@cs.waikato.ac.nz

Abstract. Nearest neighbour search (NNS) is an old problem that is
of practical importance in a number of fields. It involves finding, for
a given point ¢, called the query, one or more points from a given set
of points that are nearest to the query ¢. Since the initial inception of
the problem a great number of algorithms and techniques have been
proposed for its solution. However, it remains the case that many of the
proposed algorithms have not been compared against each other on a
wide variety of datasets. This research attempts to fill this gap to some
extent by presenting a detailed empirical comparison of three prominent
data structures for exact NNS: KD-Trees, Metric Trees, and Cover Trees.
Our results suggest that there is generally little gain in using Metric Trees
or Cover Trees instead of KD-Trees for the standard NNS problem.

1 Introduction

The problem of nearest neighbour search (NNS) is old [1] and comes up in
many fields of practical interest. It has been extensively studied and a large
number of data structures, algorithms and techniques have been proposed for
its solution. Although nearest neighbour search is the most dominant term used,
it is also known as the best-match, closest-match, closest-point and the post
office problem. The term similarity search is also often used in the information
retrieval field and the database community. The problem can be stated as follows:

Given a set of n points S in some d-dimensional space X and a distance
(or dissimilarity) measure M, the task is to preprocess the points in S
in such a way that, given a query point ¢ € X, we can quickly find the
point in S that is nearest (or most similar) to g.

A natural and straightforward extension of this problem is k-nearest neigh-
bour search (k-NNS), in which we are interested in the k (< |S|) nearest points
to ¢ in the set S. NNS then just becomes a special case of k-NNS with k=1.

Any specialized algorithm for NNS; in order to be effective, must do better
than simple linear search (the brute force method). Simple linear search, for n d-
dimensional data points, gives O(dn) query time! and requires no preprocessing.

! Time required to return the nearest neighbour(s) of a given query.

Ideal solutions exist for NNS for d < 2, that give O(dlogn) query time, and take
O(dn) space and O(dnrlogn) preprocessing time. For d = 1 it is the binary search
on a sorted array, whereas for d = 2 it is the use of Voronoi diagrams and a fast
planar point location algorithm [2]. For d > 2, all the proposed algorithms for
NNS are less than ideal. Most of them work well only in the expected case and
only for moderate d’s (< 10). At higher d’s all of them suffer from the curse-
of-dimensionality [3], and their query time performance no longer improves on
simple linear search. Algorithms that give better query time performance at
higher d’s exist but only for relaxations of NNS, i.e. for approximate NNS [4, 5],
near neighbour search [6, 7], and approximate near neighbour search [7].

KD-Trees are among the most popular data structures used for NNS. Metric
Trees are newer and more broadly applicable structures, and also used for NNS.
Recently a new data structure, the Cover Tree, has been proposed [8], which has
been designed to work well even at higher dimensions provided the data has a low
intrinsic dimensionality. This paper presents an empirical comparison of these
three data structures, as a review of the literature shows that they have not yet
been compared against each other. The comparison is performed on synthetic
data from a number of different distributions to cover a broad range of possible
scenarios, and also on a set of real-world datasets from the UCI repository.

The rest of the paper is structured as follows. Section 2 contains a brief
overview of the three data structures that are compared. Section 3 presents the
experimental comparison. It outlines the evaluation procedure employed, and
also presents the empirical results. The paper concludes with some final remarks
in Section 4.

2 Brief overview of the NNS data structures

The following sub-sections give a brief overview of KD-Trees, Metric Trees and
Cover Trees. Particular emphasis has been given to Cover Trees, to provide an
intuitive description of the technique.

2.1 KD-Trees

KD-Trees, first proposed by Bentley [9], work by partitioning the point-space
into mutually exclusive hyper-rectangular regions. The partitioning is achieved
by first splitting the point-space into two sub-regions using an axis-parallel hy-
perplane, and then recursively applying the split process to each of the two
sub-regions. For a given query ¢, only those regions of the partitioned space are
then inspected that are likely to contain the k" nearest neighbour. Recursive
splitting of the sub-regions stops when the number of data points inside a sub-
region falls below a given threshold. To handle the degenerate case of too many
collinear data points, in some implementations the splitting also stops when the
maximum relative width of a rectangular sub-region (relative to the whole point-
space) falls below a given threshold. KD-Trees require points in vector form, and
use this representation very efficiently.

Each node of a KD-Tree is associated with a rectangular region of the point-
space that it represents. Internal nodes, in addition to their region, are also asso-
ciated with an axis-parallel hyperplane that splits their region. The hyperplane
is represented by a dimension and a value for that dimension, and it conceptu-
ally sits orthogonal to that selected dimension at the selected value, dividing the
internal node’s region.

A number of different strategies have been proposed in the literature for the
selection of the dimension and the value used to split a region in KD-Trees.
This paper uses the Sliding Midpoint of Widest Side splitting strategy, which
produces good quality trees—trees that adapt well to the distribution of the
data and give good query time performance. This strategy, given in [10], splits a
region along the midpoint of the dimension in which a region’s hyper-rectangle
is widest. If, after splitting, one sub-region ends up empty, the selected split
value is slid towards the non-empty sub-region until there is at least one point
in the empty sub-region. For a detailed description, and a comparison of Sliding
Midpoint of Widest Side to other splitting strategies, see [11].

The search for the nearest neighbours of a given query ¢ is carried out by
recursively going down the branch of the tree that contains the query. On reach-
ing a leaf node, all its data points are inspected and an initial set of k-nearest
neighbours is computed and stored in a priority queue. During backtracking only
those regions of the tree are then inspected that are closer than the k" nearest
neighbour in the queue. The queue is updated each time a closer neighbour is
found in some region that is inspected during backtracking. At the start, the
queue is initialized with £ null elements and their distance to ¢ set to infinity.

2.2 Metric Trees

Metric Trees, also known as Ball Trees, were proposed by Omohundro [12] and
Uhlmann [13]. The main difference to KD-Trees is that regions are represented
by hyper-spheres instead of hyper-rectangles. These regions are not mutually
exclusive and are allowed to overlap. However, the points inside the regions are
not allowed to overlap and can only belong to one sub-region after a split. A split
is performed by dividing the current set of points into two subsets and forming
two new hyper-spheres based on these subsets. As in KD-Trees, splitting stops
when for some sub-region the number of data points falls below a given threshold.
A query is also processed as in KD-Trees, and only those regions are inspected
that can potentially contain the k' nearest neighbour. Metric Trees are more
widely applicable than KD-Trees, as they only require a distance function to be
known, and do not put any restriction on the representation of the points (i.e.
they do not need to be in vector form, as in KD-Trees).

Each node of a Metric Tree is associated with a ball comprising the hyper-
spherical region that the node represents. The ball is represented by its centre,
which is simply the centroid of the points it contains, and its radius, which is
the distance of the point furthest from the centre.

A number of different construction methods for Metric Trees can be found
in the literature. This paper uses the Points Closest to Furthest Pair method

proposed by Moore [14]. This method first finds the point that is furthest from
the centre of a spherical region (centre of the whole point-space in the begin-
ning), and then finds another point that is furthest from this furthest point. The
method, thus, tries to find the two points in a region that are furthest from each
other. Then, points that are closest to one of these two points are assigned to
one child ball, and the points closest to the other one are assigned to the other
child ball. The method produces good quality Metric Trees that adapt well to
the distribution of the data. A detailed comparison of this method with other
construction methods for Metric Trees can be found in [11].

2.3 Cover Trees

Cover Trees [8] try to exploit the intrinsic dimensionality of a dataset. They
are based on the assumption that datasets exhibit certain restricted or bounded
growth, regardless of their actual number of dimensions.

Cover Trees are N-ary trees, where each internal node has an outdegree < N.
Each node of the tree contains a single point p, and a ball which is centred at p.
The points are arranged in levels, such that each lower level acts as a cover for
the previous level, and each lower level has balls half the radius than the ones
at the previous level. The top level consists of a single point with a ball centred
at it that has radius 2il, with an ' big enough to cover the entire set of data
points. The next level consists of points with balls of half the radius than the
top-most ball (2i/_1), which cover the points at a finer level. The bottom-most
level consists of points that have balls covering only those single points. A point
at any level ¢ in the tree is also explicitly present in all the lower levels.

The structure is built by arbitrarily selecting a point from the list of data
points and creating the top-level ball. This same point is then used to build
a smaller ball at the next lower level. This creation of smaller balls from the
same point is repeated until we reach a level where a ball covers only that single
point. Then the procedure backtracks to the last higher-level cover ball that
still has unprocessed points, arbitrarily picks the next available point, and then
recursively builds cover balls for this point at lower levels. The procedure is
illustrated graphically in Figure 1.

When searching for the nearest neighbours of a given query ¢, we go down
the levels of the tree, inspecting nodes at each level. At each level i we add only
those nodes for further inspection whose centre points are inside the query ball
(i.e. the ball centered at the query). The radius of the query ball is set to the
distance of the current best k*" nearest neighbour (found from among the centre
points of the nodes so far inspected) plus the radius of the balls at the current
level i (which is 2¢). This amounts to shrinking the query ball as we go down
the levels, and inspecting children of only those nodes whose ball centres are
within the query ball. The search stops when at some level the inspected nodes
are all leaf nodes with no children. At this stage the k-nearest neighbours in our
priority queue are the exact k-nearest neighbours of the query. The procedure is
illustrated graphically in Figure 2. Note that the figure shows the final shrunken
query ball at each level.

i

D
QT
I

(a) (b) ()

Fig. 1. Illustration of the construction method for Cover Trees. Tree at the end of (a)
the first branch of recursion, (b) the second branch of recursion, and (c) the third and
final branch of recursion.

Fig. 2. Illustration of Cover Tree query. The query ball shrinks as the search proceeds.

3 Empirical comparison of the data structures

The comparison of the data structures is performed on synthetic as well as real-
world data. Synthetic data was used to experiment in controlled conditions, to
assess how they behave for increasing n (no. of data points) and increasing d
(no. of dimensions), while keeping the underlying distribution constant.

On synthetic data, the evaluation of the data structures was carried out
for d = 2,4,8,16,32,80 and n = 1000, 2000, 4000, 8000, 16000, 100000. For each
combination of n and d, data points were generated from the following distri-
butions: uniform, Gaussian, Laplace, correlated Gaussian, correlated Laplace,

clustered Gaussian, clustered ellipsoids, straight line (not parallel to any axis),
and noisy straight line. Most of these distribution are provided in the ANN li-
brary [10], the rest were added for this research. The correlated Gaussian and
correlated Laplacian distributions are designed to model data from speech pro-
cessing, the line distributions were added to test extreme cases, and the remain-
ing distributions, especially the clustered ones, model data that occurs frequently
in real-world scenarios. More details on these distributions can be found in [11].

The data structures were built for each generated set of data points, and were
evaluated first on 1000 generated query points that had the same distribution as
the data, and then on another 1000 generated query points that did not follow
the distribution of the data, but had uniform distribution. In other words, results
were obtained for increasing d for a fixed n, and for increasing n for a fixed d,
when the query did and when it did not follow the distribution of the data.
Moreover, each of these evaluations were repeated 5 times with different random
number seeds and the results were averaged. Note that for each dataset the
dimensions were normalized to the [0, 1] range.

To obtain results for real-world data, we selected datasets from the UCI
repository that had at least 1000 examples. In each case, the class attribute was
ignored in the distance calculation. Nominal attributes were treated as integer-
valued attributes, and all attributes were normalized. Missing values were re-
placed by the mean for numeric attributes, and the mode for nominal ones. On
each dataset, the data structures were evaluated 5 times using a random 90/10
data/query set split, and the results reported are averages of those 5 runs. Also,
the evaluations for both the artificial and the real-world data were repeated for
k =1,5, and 10 neighbours.

All three data structures compared have a space requirement of O(n). For
Cover Trees though, the exact space is comparatively higher since it has max-
imum leaf size 1, but for KD-Trees and Metric Trees it is very similar as they
both have maximum leaf size 40. The construction time for Cover Trees is
O(c%nlogn) [8] (where c is the expansion constant of the dataset [8]), but for
KD-Trees and Metric Trees, with their chosen construction methods, it is not
guaranteed. However, in the expected case they do construct in O(nlogn) time.
The query time of Cover Trees is O(c'?logn) [8], whereas for KD-Trees and Met-
ric Trees it is O(logn) in the expected case for lower d’s. Note that the constant
¢ for Cover Trees is related to the assumption of restricted growth of a dataset,
and can sometimes vary largely even within a dataset [8]. Hence, for all the data
structures the space is guaranteed, but the construction and query times can
best be observed empirically.

For the comparison of query time, linear search is also included in the exper-
iments as a baseline. All compared techniques, including the linear search, were
augmented with Partial Distance Calculation [15,11], which skips the complete
distance calculation of a point if at some stage the distance becomes larger than
the distance of the best k" nearest neighbour found so far.

For all the experiments the leaf size of KD-Trees and Metric Trees was set
to 40. The threshold on a node’s maximum relative width in KD-Trees was

set to 0.01. All algorithms were implemented in Java and run under the same
experimental conditions.? The Cover Tree implementation we used is a faithful
port of the original C implementation provided by the authors. Note that the
base for the radii of the balls in the algorithm was set to 1.3 instead of 2 in the
C implementation, and thus also in ours.

3.1 Results

We present construction times and query times for the synthetic data. For the
real-world datasets, only the query times are given, to support the main conclu-
sions observed from the synthetic data.

Figure 3 shows the construction times of the structures on synthetic data
for increasing n, for d = 4, and also for increasing d, for n = 16000. Figures 4
and 5 show the query times, Figure 4 for increasing n for £k =5 and d = 8, and
Figure 5 for increasing d for k = 5 and n = 16000. All axes are on log scale.

It can be observed from Figure 3 that KD-Trees exhibit the best construction
time overall. On all but the line distribution, their construction time grows at
the same rate as for the other techniques, but is a constant times faster. The
construction time of Cover Trees is very similar to that of Metric Trees on
distributions other than the line, but for d > 16 it grows exponentially and
becomes worst overall.

Considering query time, Figures 4 and 5 show that all three tree methods
suffer from the curse-of-dimensionality, and generally become worse than linear
search for d > 16. At higher d’s they are only better than linear search if the
points are clustered or lie on a line. KD-Trees are the best method if the query
points have the same distribution as the data used to build the trees, otherwise
KD-Trees are best for low d’s, but for higher d’s Cover Trees are best. Metric
trees generally perform somewhat better than Cover Trees when the query points
have the same distribution as the original data, and somewhat worse otherwise.
However, their query times are generally quite close. When the query distribution
is not changed to be uniform, KD-Trees, in terms of both construction and query
time, are worse than the others only for points lying on a line, a case that is
uncommon in practice. Trends like the ones in Figures 3, 4 and 5 were also
observed for k =1 and k& = 10, and other values of d and n.

Table 1 shows the query time of the data structures on the UCI data. All
the techniques are compared against KD-Trees, and the symbols o and e denote
respectively, whether the query time is significantly worse or better compared
to KD-Trees, according to the corrected resampled paired #test [16]. It can be
observed that KD-Trees are significantly better than the rest on most datasets.
In some cases they are still better than linear search even at higher d’s (the
dimensions are given in brackets with the name of a dataset). It can also be
observed that, in most cases, and in contrast to the results on the artificial data,
Cover Trees outperform Metric Trees.

2 All implementations are included in version 3.5.6 of the Weka machine learning
workbench, available from http://www.cs.waikato.ac.nz/ml/weka.

Aslou-auy aul| spiosdi||a-snjo ssneb-snjo e]
08 € 9T 8 14 4 08 € 9T 8 v 4 08 € 9T 8 14 4 08 € 9T 8 14 4 m
T T T T 100 T T T T To T T T T 100
\@ -
- %5 <t
- i I
2 * 3
E L 4ot o
x E 4ot ES x
- % - 2a1L18n0D - % - 00ILIN0D - - % - 2a1L18n0D . - % - 221118100 o
F - - —% — @allomBN 4 00T — % — 930N -~ —> — 93I10WBN 4 00T E.- 7 —> — 930N 4 00T =
- —+— daua —+— sa1La —+— sauaM —+— sauaM -
L L L L 000T L L L L 00T L L L L 000T L L L L 000T IS
aoe|de|-09 ssneb-09 aoe|de| ssneb wJopun o0
08 € 9T 8 14 4 08 € 9T 8 v 4 08 € 9T 8 14 4 08 € 9T 8 14 4 08 € 9T 8 14 4 m
T T T T 100 T T T T 100 T T T T 100 T T T T 100 %
T0 [}
e b}
L K ED
e —=XTT . =]
- . -
E x 4ot E X 4ot =
. - - sauLIEN0D . - - BouLiEn00 e - sanen e - sowenen 7 e - sousanod S
3 —% — 9al0MBN g 00T = —% — 8all918N {4 00T F —x — 929N 4 00T F x —x — 929N 4 00T F x —x — 2a1lomBN 4 00T
—+— sa1aM —+— Pa1aM - —+— sauaM P —+— PauaM - —+— da1a ©n
L L L L 000T L L L L 000T L L L L 000T - L L L L 000T L L L L 000T m
=
iy
2
(0009T=U) wiq sA awi] ssadsoidaldNdDd &
w0
]
Aslou-auy aul| splosdijja-snjo ssneb-snjo b=
00000T 000970008 000¥ 000Z 000T 00000T 000970008 000¥ 000Z 000T 00000T 000970008 000¥ 000Z 000T 00000T 000970008 000¥ 000Z 000T e}
— 1T T00°0 — T00°0 1000 . — 1000
)
100 L 100 %100 100 uhb
Yy
0 L 0 410 o o
=
- % - 8allen0d § o - % - 93I149N0D T _ - % - 8auien0d § o - % - 8auien0d § o m)
o %~ sauomen %~ sauomen > % — soioman = % — soioman 28
¥ —— 921.a) —— 221.a) 3 —+— 921.a) —— 221.a) +~ Ne)
1 1 1 1 o1 1 1 1 1 o1 1 1 1 1 o1 1 1 1 1 ot n —
aoe|de|-09 ssneb-0d aoe|de| ssneb wuojiun =
00000T 000970008 000¥ 000Z 000T 00000T 000970008 000¥ 000Z 000T 00000T 000970008 000¥ 000Z 000T 00000T 000970008 000¥ 000Z 000T 00000T 000970008 000¥ 000Z 000T Mw
T T L T00°0 T T L T00°0 T T L 1000 T T L 1000 T T L 1000 = I
£ 35
L 100 100 100 100 L \x\yu 100 m
o [= IS
L T0 T0 T0 T0 2 410 m =
* 20
gl \\\X‘* - sauien0d § ¢ - % - 8allen0d § o . T - % - 8auien0d § o - % - 8auien0d § o U =]
. — % — a1 9uBN g — % — a1 ouBN 5> — % — 9a10UBN . — % — 9ai19uBN i — % — 9a1ouBN o, @B
Eo —— 221.a) 3 —— 921.a) - —— 921.a) 2 —— 9211a) —— 921.a) o
1 1 1 1 o1 1 1 1 1 o1 1 1 1 1 o1 1 1 1 1 o1 1 1 1 1 ot C [0
o« -
» S
o k=
A.vH_UV sldele|elo] SsA wE_._.wmwoo._Qan_Dn_U E m
o=

Asiou-aul aul| splosdijja-sn|o ssneb-sn|o

00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000% 000Z 000T
T T T 100 T T T 100 T T T 100 T T T 100
e e xR 3
o _x——XTTx- - T0 o -2 T0 10 - e ———¥ 10
P er L ! I

<. 931149A0D -. @~"13211 100D - 911 18A0D - BT 9211 19A0D
- % - 9aI10man 401 =% - @a110ma 401 ' - 9aI10maN 401 =% - 9aI10man 401
—X — 93110 —X — 93110 —X — 93110 —X — 93110
—+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur]
1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T
aoe|de|-00 ssneb-00 aoe|de| ssneb wJoyun
00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000¥ 000Z 000T 00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000% 000Z 000T
T T T T 100 T T T T 100 T T T T 100 T T T T 100 T T T T 100
- -
T L et 1 gz %o L - x—-xT T Ko 0
2 & ol 0k R

T 41 41 T
- <7 9311 19A0D) - BT 921119A0D - B"1321] 190D 7% 931149A0D +@--- 921149A0D
- - 9aI10maN 401 =% - 9aI10ma 401 - - 9aI10maN 401 - % - 9aI10maN 401 - % - 9aI10maN 401
—X — 93110 —X — 93110 —X — 93110 —X — 93110 —X — 93110
—+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur]
1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T
A1and wioyun
Asiou-aul aul| splosdijja-snjo ssneb-snjo
00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000¥ 000Z 000T 00000T 0009T 0008 000¥ 000Z 000T
T T T T 100 100 T T T T 100 T T T T 100
. . Nt ki .
T0 T0 e mm\ T0 T0
T T T T
T-- 931149A0D --- 931149A0D - 315211 JOA0D 7. 931149A0D
- % - 9aI10maN 401 - % - 9aI10maN 401 % - 9aI10maN 401 - % - 9aI10man 401
—X — 93110 —X — 93110 —X — 93110 —X — 93110
—+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur]
1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T
aoe|de|-00 ssneb-00 aoe|de| ssneb wJoyun
00000T 0009T 0008 000¥ 000Z 000T 00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000% 000Z 000T 00000T 0009T 0008 000¥ 000Z 000T 00000T 0009T 0008 000% 000Z 000T
T T T T 100 T T T T 100 T T T T 100 T T T T 100 T T T T 100
e — 4
X=X _ o —4
L - -&To T0 L o277 &1o

- 991119A0D - 931119A0D - 991149A0D - 991119A0D - 991119A0D

- % - 99110UBIN R - % - 99110UBIN kR - % - 99110UBIN E - % - 99110UBIN kR - % - 99110UBIN 401
—% — 83110 —% — 83110 —% — 83110 —% — 83110 —% — 83110
—+— yoreasseaur —+— yoreasseaur —+— yoreasseaur —+— yoreasseaur —+— yoreasseaur

1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T 1 1 1 1 00T

Aand wuoyun-uoN
(=p g=X) sidereqrelol sA swi1ABndNdD

ford=4

mcreasing n,

Fig. 4. CPU query time of the data structures for

>m_oc.mc_
08 e 91 8

08 € 9T 8 14 k4

T T T
--@--- 991LI9A0D
F - % - sailomen
—% — 93LAM
—+— yoreasieaur]

X @ saisen0:

—¥="92110)
——+— yoreasieaur]

000T L L L L 00T
aoe|de|-00 ssnef-09 aoe|de|

e 9T 8 v z 08 e 91 8 z 08 e 91 8 v z

T T T T 100 T T T 100 T T T T 100
--@--- 99IL1I8N0D e --@--- 98ILI8N0D -@--- 99IL1I8N0D
- - - 29110 oo q o - - % - @a1l0maN - - % - @a1l0maN
—x — B21La) e —x — B31La) —x — B21La) s
—+— Yoreaseaul, L N —+— yoIeasieaur] E —+— uoseasieaun 7~

\m\\ qrT

- % - o dor

08

08

ssneb-s|
e 91

nio
8

--@--- 991118000
- % - 93119
—x — 2311a)
—+— yoseagieaur

T T
--@--- 991LI9A0D

- % - 2aIlomBN
—% — 93LAM
—+— yoreasieaur

000T
ssneb wJoyun
08 e 91 8 14 Zz 08 e 91 8
T T T T 100 T T T
--@-- 99ILIBAOD A --@-- 99ILIBAOD
- - % - 931108 - - - % - 931108
—> — 931LaX —> — 931LaX
—— yoseasieaur

LZ

L

E —— :u_mmm_mm:_.v« 4

Aand wuoyun-uoN

(0009T=U G=)) wiq sA awiLA1BNdONdD

L L L L 000T 000T L L L L 000T 000T
A1and wioyun
Asiou-aul aul| splosdijja-snjo ssneb-snjo
08 e 91 8 z 08 e 9T 8 v z 08 ze 8 08 e 91 8
T T T 100 T T T T 100 T T T T T T
--@--- 98IL1I8N0D .- - --@--- 99I118N0D --@--- 9911I9A0D
L *- - 93110 *- -7 L - - 93110maN x L *- - 93110
—% — B3I —=F — — 991LaM P —> — B3ILaM
—+— yoseasieaur] qro — zu_mmm_mm:_._xx\ Pe] —+— yoseasieaur]
o e 41
o --- 981113A0D R
i - @aILomaN 4
ot o ot
yoleagedur
1 1 1 00T 1 1 1 1 0T 1 1 1 1 00T 1 1 1
aoe|de|-00 ssneb-00 aoe|de| ssneb wJoyun
e 9T 8 v z 08 e 9T 8 z 08 e 9T 8 v z 08 e 91 8 v z 08 e 91 8
T T T T 100 T T T 100 T T T T 100 T T T T 100 T T T
--@--- 98IL1I8N0D --@--- 98IL1I8N0D --@--- 98ILI8N0D --@--- 9911I9A0D --@--- 9911I9A0D
L - - 93110maN L - - 93110maN L - - 93110maN L - - 93110maN L - - 93110maN
—% — B3I —% — B3ILAN —% — B3I —% — B3I —% — B3I
—+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur] —+— yoseasieaur]
L < L L L
-3
e ’
o 4ot o 4ot o /£
L L L 00T 00T L L

000T

00T

100

Fig. 5. CPU query time of the data structures for increasing d, for n = 16000.

Table 1. Query time of the data structures on UCI data.

Dataset KD-Trees Linear Search Metric Trees Cover Trees
car(7) 0.03 0.07 o 0.08 o 0.07 o
mfeat(7) 0.02 0.11 o 0.03 0.04 o
cme(10) 0.02 0.05 o 0.07 o 0.04 o
german-credit(21) 0.06 0.06 0.09 o 0.09 o
segment(20) 0.03 0.13 o 0.08 o 0.08 o
page-blocks(11) 0.04 0.76 o 0.17 o 0.18 o
sick(30) 0.15 0.60 o 0.78 o 0.21 o
hypothyroid(30) 0.21 0.82 o 1.06 o 0.27 o
kr-vs-kp(37) 0.40 0.57 o 1.03 o 0.54 o
nursery(9) 0.76 2.91 o 7.31 o 4.54 o
mushroom (23) 0.34 2.44 o 4.05 o 1.04 o
pendigits(17) 0.44 3.01 o 1.22 o 1.07 o
splice(62) 2.10 1.93 e 2.53 o 2.29 o
waveform(41) 4.67 4.35 ® 6.05 o 6.00 o
letter(17) 4.00 11.42 o 8.20 o 6.16 o
optdigits(65) 4.50 4.79 o 5.52 o 4.13 o
ipums-la-97-small(61) 4.91 4.60 o 6.27 o 5.53 o
ipums-la-98-small(61) 4.48 4.00 o 5.77 o 5.25 o
ipums-la-99-small(61) 6.42 5.60 e 8.22 o 7.63 o
internet-usage(72) 26.90 23.90 o 35.73 o 32.45 o
auslan2(27) 23.71 660.73 o 100.33 o 101.62 o
auslan(14) 28.54 2162.14 o 297.02 o 123.70 o
ipums-1a-98(61) 474.78 364.63 e 602.31 o 580.48 o
census-income-test(42) 189.06 556.99 o 976.03 o 624.07 o
ipums-1a-99(61) 666.84 513.60 e 862.59 o 839.27 o
abalone(9) 0.06 0.27 o 0.20 o 0.12 o
ailerons(41) 4.35 8.57 o 11.20 o 10.47 o
bank32nh(33) 11.06 9.82 e 13.84 o 14.56 o
2dplanes(11) 12.81 42.56 o 39.08 o 23.05 o
bank8FM(9) 0.68 1.76 o 1.52 o 1.51 o
cal-housing(9) 1.33 7.60 o 2.60 o 2.70 o
cpu-act(22) 0.54 3.32 0 1.91 o 1.79 o
cpu-small(13) 0.23 2.52 o 1.02 o 0.92 o
delta-ailerons(6) 0.10 0.81 o 0.39 o 0.40 o
delta-elevators(7) 0.21 1.48 o 1.00 o 0.94 o
elevators(19) 3.28 7.69 o 8.55 o 7.71 o
fried(11) 16.08 45.07 o 61.27 o 47.43 o
house-16H(17) 3.53 25.79 o 12.93 o 10.06 o
house-8L(9) 1.30 16.79 o 4.57 o 3.91 o
CorelFeatures-ColorHist(33) 16.67 157.90 o 155.29 o 75.05 o
CorelFeatures-ColorMoments(10) 23.64 90.38 o 54.72 o 50.14 o
CorelFeatures-CoocTexture(17) 20.83 110.80 o 32.76 o 32.56 o
CorelFeatures-LayoutHist(33) 35.01 177.49 o 120.31 o 104.83 o
el-nino(12) 173.40 481.58 o 2056.06 o 1000.63 o
kin8nm(9) 0.89 1.93 o 2.20 o 1.85 o
mv(11) 8.56 36.28 o 21.60 o 12.11 o
pol(49) 1.20 14.98 o 9.61 o 6.02 o
puma32H(33) 9.86 8.42 e 12.21 o 12.96 o
puma8NH(9) 0.94 1.97 o 2.33 o 2.02 o
quake(4) 0.01 0.07 o 0.02 0.02 o

o/e statistically worse/better at 95% confidence level

4 Conclusions

Most of the data structures and techniques proposed since the initial inception of
the NNS problem have not been extensively compared with each other, making
it hard to gauge their relative performance.

KD-Trees are one of the most popular data structures used for NNS for
moderate d’s. Metric Trees are more widely applicable, and also designed for

moderate d’s. The more recently proposed Cover Trees have been designed to
exploit the low intrinsic dimensionality of points embedded in higher dimensions.
This paper has presented an extensive empirical comparison of these three tech-
niques on artificial and real-world data. It shows that Metric Trees and Cover
Trees do not perform better than KD-Trees in general on the standard NNS
problem. On our synthetic data, Cover Trees have similar query time to Metric
Trees, but they outperform Metric Trees on real-world data. However, Cover
Trees have a higher construction cost than the other two methods when the
number of dimensions grows.

References

1.
2.

3.

10.

11.

12.

13.

14.

15.

16.

Minsky, M., Papert, S. In: Perceptrons. MIT Press (1969) 222-225
Aurenhammer, F.: Voronoi diagrams—A survey of a fundamental geometric data
structure. ACM Computing Surveys 23(3) (1991) 345-405

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer (2001)

Liu, T., Moore, A.W., Gray, A.G.: Efficient exact k-NN and nonparametric clas-
sification in high dimensions. In: Proc of NIPS 2003, MIT Press (2004)

Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proc 13th Annual ACM symposium on Theory of
Computing, New York, NY, ACM Press (1998) 604613

Nene, S.A., Nayar, S.K.: A simple algorithm for nearest neighbor search in high
dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 19(9) (1997) 989-1003
Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proc 20th Annual Symposium on
Computational Geometry, New York, NY, ACM Press (2004) 253-262
Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proc 23rd International Conference on Machine learning, New York, NY, ACM
Press (2006) 97-104

Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9) (1975) 509-517

Mount, D.M., Arya, S.: ANN: A library for approximate nearest neighbor search-
ing. In CGC 2nd Annual Fall Workshop on Computational Geometry (1997) Avail-
able from http://www.cs.umd.edu/~mount/ANN.

Kibriya, A.M.: Fast algorithms for nearest neighbour search. Master’s thesis,
Department of Computer Science, University of Waikato, New Zealand (2007)
Omohundro, S.M.: Five balltree construction algorithms. Technical Report TR-
89-063, International Computer Science Institute (December 1989)

Uhlmann, J.K.: Satisfying general proximity / similarity queries with metric trees.
Information Processing Letters 40(4) (1991) 175-179

Moore, A.W.: The anchors hierarchy: Using the triangle inequality to survive high
dimensional data. In: Proc 16th Conference on Uncertainty in Artificial Intelli-
gence, San Francisco, CA, Morgan Kaufmann (2000) 397-405

Bei, C.D., Gray, R.M.: An improvement of the minimum distortion encoding
algorithm for vector quantization. IEEE Transactions on Communications 33(10)
(1985) 1132-1133

Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning
52(3) (2003) 239281

