Data Mining
Part 1

Tony C. Smith
WEKA – Machine Learning Group
Department of Computer Science
University of Waikato

Data Mining
Practical Machine Learning Tools and Techniques

by I. H. Witten, E. Frank & Mark Hall
What’s it all about?

Data vs information
Data mining and machine learning
Structural descriptions
 Rules: classification and association
 Decision trees
Datasets
 Weather, contact lens, CPU performance, labor negotiation data,
 soybean classification
Fielded applications
 Loan applications, screening images, load forecasting, machine
 fault diagnosis, market basket analysis
Generalization as search
Data mining and ethics

Data vs. information

Society produces huge amounts of data
 Sources: business, science, medicine, economics,
 geography, environment, sports, …
Potentially valuable resource
Raw data is useless: need techniques to
 automatically extract information from it
 Data: recorded facts
 Information: patterns underlying the data
Information is crucial

Example 1: *in vitro* fertilization
Given: embryos described by 60 features
Problem: selection of embryos that will survive
Data: historical records of embryos and outcome

Example 2: cow culling
Given: cows described by 700 features
Problem: selection of cows that should be culled
Data: historical records and farmers’ decisions

Data mining

Extracting
 implicit,
 previously unknown,
 potentially useful
information from data

Needed: programs that detect patterns and regularities in the data

Strong patterns \Rightarrow good predictions
 Problem 1: most patterns are not interesting
 Problem 2: patterns may be inexact (or spurious)
 Problem 3: data may be garbled or missing
Machine learning techniques

Algorithms for acquiring structural descriptions from examples

Structural descriptions represent patterns explicitly

- Can be used to predict outcome in new situation
- Can be used to understand and explain how prediction is derived *(may be even more important)*

Methods originate from artificial intelligence, statistics, and research on databases

Structural descriptions

Example: if-then rules

If tear production rate = reduced
then recommendation = none

Otherwise, if age = young and astigmatic = no
then recommendation = soft

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>No</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>No</td>
<td>Normal</td>
<td>Soft</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>No</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The weather problem

Conditions for playing a certain game

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = yes
If none of the above then play = yes

Ross Quinlan

Machine learning researcher from 1970’s
University of Sydney, Australia
1986 “Induction of decision trees” ML Journal
1993 C4.5: Programs for machine learning.
Morgan Kaufmann
199? Started
Classification rule:
predicts value of a given attribute (the classification of an example)

If outlook = sunny and humidity = high
then play = no

Association rule:
predicts value of arbitrary attribute (or combination)

If temperature = cool then humidity = normal
If humidity = normal and windy = false
then play = yes
If outlook = sunny and play = no
then humidity = high
If windy = false and play = no
then outlook = sunny and humidity = high

Weather data with mixed attributes

Some attributes have numeric values

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>85</td>
<td>85</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>80</td>
<td>90</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>83</td>
<td>86</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>75</td>
<td>80</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

If outlook = sunny and humidity > 83 then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity < 85 then play = yes
If none of the above then play = yes
The contact lenses data

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>No</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Myope</td>
<td>No</td>
<td>Normal</td>
<td>Soft</td>
</tr>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>No</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>No</td>
<td>Normal</td>
<td>Soft</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>No</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>No</td>
<td>Normal</td>
<td>Soft</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>No</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>No</td>
<td>Normal</td>
<td>Soft</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>No</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>No</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>No</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>No</td>
<td>Normal</td>
<td>Soft</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
</tbody>
</table>

A complete and correct rule set

- If tear production rate = reduced then recommendation = none
- If age = young and astigmatism = no
 and tear production rate = normal then recommendation = soft
- If age = pre-presbyopic and astigmatism = no
 and tear production rate = normal then recommendation = soft
- If age = presbyopic and spectacle prescription = myope
 and astigmatism = no then recommendation = none
- If spectacle prescription = hypermetrope and astigmatism = no
 and tear production rate = normal then recommendation = soft
- If spectacle prescription = myope and astigmatism = yes
 and tear production rate = normal then recommendation = hard
- If age young and astigmatism = yes
 and tear production rate = normal then recommendation = hard
- If age = pre-presbyopic
 and spectacle prescription = hypermetrope
 and astigmatism = yes then recommendation = none
- If age = presbyopic and spectacle prescription = hypermetrope
 and astigmatism = yes then recommendation = none
A decision tree for this problem

Classifying iris flowers

<table>
<thead>
<tr>
<th></th>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris setosa</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iris versicolor</td>
</tr>
<tr>
<td>52</td>
<td>6.4</td>
<td>3.2</td>
<td>4.5</td>
<td>1.5</td>
<td>Iris versicolor</td>
</tr>
<tr>
<td>101</td>
<td>6.3</td>
<td>3.3</td>
<td>6.0</td>
<td>2.5</td>
<td>Iris virginica</td>
</tr>
<tr>
<td>102</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
<td>Iris virginica</td>
</tr>
</tbody>
</table>

If petal length < 2.45 then Iris setosa
If sepal width < 2.10 then Iris versicolor
Example: 209 different computer configurations

<table>
<thead>
<tr>
<th>Cycle time (ns)</th>
<th>Main memory (Kb)</th>
<th>Cache (Kb)</th>
<th>Channels</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYCT</td>
<td>MMIN</td>
<td>MMAX</td>
<td>CACH</td>
<td>CHMIN</td>
</tr>
<tr>
<td>1</td>
<td>125</td>
<td>256</td>
<td>6000</td>
<td>256</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>8000</td>
<td>32000</td>
<td>32</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>480</td>
<td>512</td>
<td>8000</td>
<td>32</td>
</tr>
<tr>
<td>209</td>
<td>480</td>
<td>1000</td>
<td>4000</td>
<td>0</td>
</tr>
</tbody>
</table>

Linear regression function

\[
PRP = -55.9 + 0.0489 \text{ MYCT } + 0.0153 \text{ MMIN } + 0.0056 \text{ MMAX } \\
+ 0.6410 \text{ CACH } - 0.2700 \text{ CHMIN } + 1.480 \text{ CHMAX}
\]

Data from labor negotiations

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>(Number of years)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Wage increase first year</td>
<td>Percentage</td>
<td>2%</td>
<td>4%</td>
<td>4.3%</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Wage increase second year</td>
<td>Percentage</td>
<td>?</td>
<td>5%</td>
<td>4.4%</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Wage increase third year</td>
<td>Percentage</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of living adjustment</td>
<td>{none, tcf, tc}</td>
<td>none</td>
<td>tcf</td>
<td>?</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Working hours per week</td>
<td>(Number of hours)</td>
<td>28</td>
<td>35</td>
<td>38</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Pension</td>
<td>{none, ret-allw, empl}</td>
<td>none</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby pay</td>
<td>Percentage</td>
<td>?</td>
<td>13%</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift-work supplement</td>
<td>Percentage</td>
<td>?</td>
<td>5%</td>
<td>4%</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Education allowance</td>
<td>{yes, no}</td>
<td>yes</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statutory holidays</td>
<td>(Number of days)</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Vacation</td>
<td>{below-avg, avg, gen}</td>
<td>avg</td>
<td>gen</td>
<td>gen</td>
<td>avg</td>
<td></td>
</tr>
<tr>
<td>Long-term disability</td>
<td>{yes, no}</td>
<td>no</td>
<td>?</td>
<td>?</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Dental plan contribution</td>
<td>{none, half, full}</td>
<td>none</td>
<td>?</td>
<td>full</td>
<td>full</td>
<td></td>
</tr>
<tr>
<td>Bereavement assistance</td>
<td>{yes, no}</td>
<td>no</td>
<td>?</td>
<td>?</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Health plan contribution</td>
<td>{none, half, full}</td>
<td>none</td>
<td>?</td>
<td>full</td>
<td>half</td>
<td></td>
</tr>
<tr>
<td>Acceptability of contract</td>
<td>{good, bad}</td>
<td>bad</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td></td>
</tr>
</tbody>
</table>
Decision trees for the labor data

```
  wage increase 1st year
  <= 2.5  > 2.5
  statutory holidays
  > 10  <= 10
  wage increase 1st year
  <= 4  > 4
  bad  good
```

Soybean classification

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Number of values</th>
<th>Sample value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time of occurrence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>3</td>
<td>July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Above normal</td>
</tr>
<tr>
<td>Seed</td>
<td>2</td>
<td>Normal</td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mold growth</td>
<td>2</td>
<td>Absent</td>
</tr>
<tr>
<td>Fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition of fruit pods</td>
<td>4</td>
<td>Normal</td>
</tr>
<tr>
<td>Fruit spots</td>
<td>5</td>
<td>?</td>
</tr>
<tr>
<td>Leaf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>2</td>
<td>Abnormal</td>
</tr>
<tr>
<td>Leaf spot size</td>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>Stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>2</td>
<td>Abnormal</td>
</tr>
<tr>
<td>Stem lodging</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Root Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>3</td>
<td>Normal</td>
</tr>
<tr>
<td>Diaporthe stem canker</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The role of domain knowledge

If leaf condition is normal
 and stem condition is abnormal
 and stem cankers is below soil line
 and canker lesion color is brown
then
diagnosis is rhizoctonia root rot

If leaf malformation is absent
 and stem condition is abnormal
 and stem cankers is below soil line
 and canker lesion color is brown
then
diagnosis is rhizoctonia root rot

But in this domain, “leaf condition is normal” implies
“leaf malformation is absent”!

Fielded applications

The result of learning—or the learning method itself
—is deployed in practical applications

- Processing loan applications
- Screening images for oil slicks
- Electricity supply forecasting
- Diagnosis of machine faults
- Marketing and sales
- Separating crude oil and natural gas
- Reducing banding in rotogravure printing
- Finding appropriate technicians for telephone faults
- Scientific applications: biology, astronomy, chemistry
- Automatic selection of TV programs
- Monitoring intensive care patients
Given: questionnaire with financial and personal information
Question: should money be lent?
Simple statistical method covers 90% of cases
Borderline cases referred to loan officers
But: 50% of accepted borderline cases defaulted!
Solution: reject all borderline cases?
 No! Borderline cases are most active customers

Enter machine learning

1000 training examples of borderline cases
20 attributes:
 age
 years with current employer
 years at current address
 years with the bank
 other credit cards possessed,…
Learned rules: correct on 70% of cases
 human experts only 50%
Rules could be used to explain decisions to customers
Screening images

Given: radar satellite images of coastal waters
Problem: detect oil slicks in those images
Oil slicks appear as dark regions with changing size and shape
Not easy: lookalike dark regions can be caused by weather conditions (e.g. high wind)
Expensive process requiring highly trained personnel

Enter machine learning

Extract dark regions from normalized image
Attributes:
 size of region
 shape, area
 intensity
 sharpness and jaggedness of boundaries
 proximity of other regions
 info about background

Constraints:
 Few training examples—oil slicks are rare!
 Unbalanced data: most dark regions aren’t slicks
 Regions from same image form a batch
 Requirement: adjustable false-alarm rate
Load forecasting

Electricity supply companies need forecast of future demand for power.
Forecasts of min/max load for each hour ⇒ significant savings.
Given: manually constructed load model that assumes “normal” climatic conditions.
Problem: adjust for weather conditions.

Static model consist of:
- base load for the year
- load periodicity over the year
- effect of holidays

Enter machine learning

Prediction corrected using “most similar” days.
Attributes:
- temperature
- humidity
- wind speed
- cloud cover readings
- plus difference between actual load and predicted load

Average difference among three “most similar” days added to static model.
Linear regression coefficients form attribute weights in similarity function.
Diagnosis of machine faults

Diagnosis: classical domain of expert systems
Given: Fourier analysis of vibrations measured at various points of a device’s mounting
Question: which fault is present?
Preventative maintenance of electromechanical motors and generators
Information very noisy
So far: diagnosis by expert/hand-crafted rules

Enter machine learning

Available: 600 faults with expert’s diagnosis
~300 unsatisfactory, rest used for training
Attributes augmented by intermediate concepts that embodied causal domain knowledge
Expert not satisfied with initial rules because they did not relate to his domain knowledge
Further background knowledge resulted in more complex rules that were satisfactory
Learned rules outperformed hand-crafted ones
Companies precisely record massive amounts of marketing and sales data

Applications:

Customer loyalty:
identifying customers that are likely to defect by detecting changes in their behavior
(e.g. banks/phone companies)

Special offers:
identifying profitable customers
(e.g. reliable owners of credit cards that need extra money during the holiday season)

Market basket analysis
Association techniques find groups of items that tend to occur together in a transaction (used to analyze checkout data)

Historical analysis of purchasing patterns

Identifying prospective customers
Focusing promotional mailouts (targeted campaigns are cheaper than mass-marketed ones)
Machine learning and statistics

Historical difference (grossly oversimplified):
 Statistics: testing hypotheses
 Machine learning: finding the right hypothesis

But: huge overlap
 Decision trees (C4.5 and CART)
 Nearest-neighbor methods

Today: perspectives have converged
 Most ML algorithms employ statistical techniques

Statisticians

Sir Ronald Aylmer Fisher
Born: 17 Feb 1890 London, England
Died: 29 July 1962 Adelaide, Australia
Numerous distinguished contributions to developing
the theory and application of statistics for making
quantitative a vast field of biology

Leo Breiman
Developed decision trees
1984 Classification and Regression
Trees. Wadsworth.
Generalization as search

Inductive learning: find a concept description that fits the data
Example: rule sets as description language
 Enormous, but finite, search space
Simple solution:
 enumerate the concept space
 eliminate descriptions that do not fit examples
 surviving descriptions contain target concept

Enumerating the concept space

Search space for weather problem
 4 x 4 x 3 x 3 x 2 = 288 possible combinations
 With 14 rules ⇒ 2.7x10^{34} possible rule sets
Other practical problems:
 More than one description may survive
 No description may survive
 Language is unable to describe target concept
 or data contains noise
Another view of generalization as search:
 hill-climbing in description space according to pre-specified matching criterion
 Most practical algorithms use heuristic search that cannot guarantee to find the optimum solution
Bias

Important decisions in learning systems:
 - Concept description language
 - Order in which the space is searched
 - Way that overfitting to the particular training data is avoided

These form the “bias” of the search:
 - Language bias
 - Search bias
 - Overfitting-avoidance bias

Language bias

Important question:
 - is language universal
 - or does it restrict what can be learned?

Universal language can express arbitrary subsets of examples
If language includes logical or (“disjunction”), it is universal
Example: rule sets
Domain knowledge can be used to exclude some concept descriptions a priori from the search
Search bias

Search heuristic
 “Greedy” search: performing the best single step
 “Beam search”: keeping several alternatives
 ...

Direction of search
 General-to-specific
 E.g. specializing a rule by adding conditions
 Specific-to-general
 E.g. generalizing an individual instance into a rule

Overfitting-avoidance bias

Can be seen as a form of search bias

Modified evaluation criterion
 E.g. balancing simplicity and number of errors

Modified search strategy
 E.g. pruning (simplifying a description)
 Pre-pruning: stops at a simple description before search
 proceeds to an overly complex one
 Post-pruning: generates a complex description first and
 simplifies it afterwards
Data mining and ethics I

Ethical issues arise in practical applications

Data mining often used to discriminate
 E.g. loan applications: using some information (e.g. sex, religion, race) is unethical

Ethical situation depends on application
 E.g. same information ok in medical application

Attributes may contain problematic information
 E.g. area code may correlate with race

Data mining and ethics II

Important questions:
 Who is permitted access to the data?
 For what purpose was the data collected?
 What kind of conclusions can be legitimately drawn from it?

Caveats must be attached to results

Purely statistical arguments are never sufficient!

Are resources put to good use?