Data Mining
Part 3

Tony C Smith
WEKA Machine Learning Group
Department of Computer Science
University of Waikato

Output: Knowledge representation

- Decision tables
- Decision trees
- Decision rules
- Association rules
- Rules with exceptions
- Rules involving relations
- Linear regression
- Trees for numeric prediction
- Instance-based representation
- Clusters
Output: representing structural patterns

Many different ways of representing patterns
 Decision trees, rules, instance-based, …
Also called “knowledge” representation
Representation determines inference method
Understanding the output is the key to understanding the underlying learning methods
Different types of output for different learning problems (e.g. classification, regression, …)

Decision tables

Simplest way of representing output:
 Use the same format as input!
Decision table for the weather problem:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Humidity</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Normal</td>
<td>No</td>
</tr>
</tbody>
</table>

Main problem: selecting the right attributes
Decision trees

“Divide-and-conquer” approach produces tree
Nodes involve testing a particular attribute
Usually, attribute value is compared to constant
Other possibilities:
 Comparing values of two attributes
 Using a function of one or more attributes
Leaves assign classification, set of classifications, or probability distribution to instances
Unknown instance is routed down the tree

Nominal and numeric attributes

Nominal:
 number of children usually equal to number values
 \(\Rightarrow \) attribute won’t get tested more than once
 Other possibility: division into two subsets

Numeric:
 test whether value is greater or less than constant
 \(\Rightarrow \) attribute may get tested several times
 Other possibility: three-way split (or multi-way split)
 Integer: less than, equal to, greater than
 Real: below, within, above
Missing values

Does absence of value have some significance?
Yes ⇒ “missing” is a separate value
No ⇒ “missing” must be treated in a special way
 Solution A: assign instance to most popular branch
 Solution B: split instance into pieces
 Pieces receive weight according to fraction of training instances
 that go down each branch
 Classifications from leave nodes are combined using the
 weights that have percolated to them

Classification rules

Popular alternative to decision trees
\textit{Antecedent} (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
Tests are usually logically ANDed together (but may also be general logical expressions)
\textit{Consequent} (conclusion): classes, set of classes, or probability distribution assigned by rule
Individual rules are often logically ORed together
 Conflicts arise if different conclusions apply
From trees to rules

Easy: converting a tree into a set of rules
One rule for each leaf:
- Antecedent contains a condition for every node on the path from the root to the leaf
- Consequent is class assigned by the leaf

Produces rules that are unambiguous
- Doesn’t matter in which order they are executed

But: resulting rules are unnecessarily complex
- Pruning to remove redundant tests/rules

From rules to trees

More difficult: transforming a rule set into a tree
- Tree cannot easily express disjunction between rules

Example: rules which test different attributes

\[
\text{If } a \text{ and } b \text{ then } x \\
\text{If } c \text{ and } d \text{ then } x
\]

Symmetry needs to be broken
- Corresponding tree contains identical subtrees
 \(\Rightarrow \) “replicated subtree problem”
A tree for a simple disjunction

The exclusive-or problem

- If $x = 1$ and $y = 0$
 - then class = a
- If $x = 0$ and $y = 1$
 - then class = a
- If $x = 0$ and $y = 0$
 - then class = b
- If $x = 1$ and $y = 1$
 - then class = b
If \(x = 1 \) and \(y = 1 \)
then class = a
If \(z = 1 \) and \(w = 1 \)
then class = a
Otherwise class = b

“Nuggets” of knowledge

Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)

Problem: ignores how rules are executed

Two ways of executing a rule set:

Ordered set of rules ("decision list")
Order is important for interpretation

Unordered set of rules
Rules may overlap and lead to different conclusions for the same instance
Interpreting rules

What if two or more rules conflict?
 Give no conclusion at all?
 Go with rule that is most popular on training data?
...

What if no rule applies to a test instance?
 Give no conclusion at all?
 Go with class that is most frequent in training data?
...

Special case: boolean class

Assumption: if instance does not belong to class “yes”, it belongs to class “no”

Trick: only learn rules for class “yes” and use default rule for “no”

If \(x = 1 \) and \(y = 1 \) then class = a
If \(z = 1 \) and \(w = 1 \) then class = a
Otherwise class = b

Order of rules is not important. No conflicts!
Rule can be written in disjunctive normal form
Association rules

... can predict any attribute and combinations of attributes
... are not intended to be used together as a set

Problem: immense number of possible associations

Output needs to be restricted to show only the most predictive associations ⇒ only those with high support and high confidence

Support and confidence of a rule

Support: number of instances predicted correctly
Confidence: number of correct predictions, as proportion of all instances that rule applies to

Example: 4 cool days with normal humidity

\[
\text{If temperature = cool then humidity = normal}
\]

Support = 4, confidence = 100%

Normally: minimum support and confidence pre-specified (e.g. 58 rules with support ≥ 2 and confidence ≥ 95% for weather data)
Interpreting association rules

Interpretation is not obvious:

If windy = false and play = no then outlook = sunny
and humidity = high

is *not* the same as

If windy = false and play = no then outlook = sunny
If windy = false and play = no then humidity = high

It means that the following also holds:

If humidity = high and windy = false and play = no
then outlook = sunny

Rules with exceptions

Idea: allow rules to have *exceptions*

Example: rule for iris data

If petal-length ≥ 2.45 and petal-length < 4.45 then Iris-versicolor

New instance:

<table>
<thead>
<tr>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>2.6</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
</tbody>
</table>

Modified rule:

If petal-length ≥ 2.45 and petal-length < 4.45 then Iris-versicolor
EXCEPT if petal-width < 1.0 then Iris-setosa
A more complex example

Exceptions to exceptions to exceptions …

default: Iris-setosa
except if petal-length ≥ 2.45 and petal-length < 5.355
 and petal-width < 1.75
 then Iris-versicolor
 except if petal-length ≥ 4.95 and petal-width < 1.55
 then Iris-virginica
 else if sepal-length < 4.95 and sepal-width ≥ 2.45
 then Iris-virginica
 else if petal-length ≥ 3.35
 then Iris-virginica
 except if petal-length < 4.85 and sepal-length < 5.95
 then Iris-versicolor

Advantages of using exceptions

Rules can be updated incrementally
 Easy to incorporate new data
 Easy to incorporate domain knowledge
People often think in terms of exceptions
Each conclusion can be considered just in the context of rules and exceptions that lead to it
 Locality property is important for understanding large rule sets
 “Normal” rule sets don’t offer this advantage
More on exceptions

Default...except if...then...
is logically equivalent to
if...then...else
(where the else specifies what the default did)
But: exceptions offer a psychological advantage
Assumption: defaults and tests early on apply more widely than exceptions further down
Exceptions reflect special cases

Rules involving relations

So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)
These rules are called “propositional” because they have the same expressive power as propositional logic
What if problem involves relationships between examples (e.g. family tree problem from above)?
Can’t be expressed with propositional rules
More expressive representation required
The shapes problem

Target concept: *standing up*

Shaded: *standing*
Unshaded: *lying*

A propositional solution

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Sides</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>Standing</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>Lying</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>Lying</td>
</tr>
</tbody>
</table>

If width ≥ 3.5 and height < 7.0
then lying

If height ≥ 3.5 then standing
A relational solution

Comparing attributes with each other

If width > height then lying
If height > width then standing

Generalizes better to new data
Standard relations: =, <, >
But: learning relational rules is costly
Simple solution: add extra attributes
(e.g. a binary attribute is width < height?)

Rules with variables

Using variables and multiple relations:

If height_and_width_of(x,h,w) and h > w
then standing(x)

The top of a tower of blocks is standing:

If height_and_width_of(x,h,w) and h > w
and is_top_of(y,x)
then standing(x)

The whole tower is standing:

If is_top_of(x,z) and
height_and_width_of(z,h,w) and h > w
and is_rest_of(x,y) and standing(y)
then standing(x)

If empty(x) then standing(x)

Recursive definition!
Inductive logic programming

Recursive definition can be seen as logic program
Techniques for learning logic programs stem from the area of “inductive logic programming” (ILP)
But: recursive definitions are hard to learn
 Also: few practical problems require recursion
 Thus: many ILP techniques are restricted to non-recursive definitions to make learning easier

Trees for numeric prediction

Regression: the process of computing an expression that predicts a numeric quantity

Regression tree: “decision tree” where each leaf predicts a numeric quantity
 Predicted value is average value of training instances that reach the leaf

Model tree: “regression tree” with linear regression models at the leaf nodes
 Linear patches approximate continuous function
Linear regression for the CPU data

\[
\text{PRP} = -56.1 + 0.049 \text{ MYCT} + 0.015 \text{ MMIN} + 0.006 \text{ MMAX} + 0.630 \text{ CACH} - 0.270 \text{ CHMIN} + 1.46 \text{ CHMAX}
\]

Regression tree for the CPU data
Simplest form of learning: *rote learning*

Training instances are searched for instance that most closely resembles new instance

The instances themselves represent the knowledge

Also called *instance-based* learning

Similarity function defines what’s “learned”

Instance-based learning is *lazy* learning

Methods: *nearest-neighbor, k-nearest-neighbor, ...*
The distance function

Simplest case: one numeric attribute
 Distance is the difference between the two attribute values involved (or a function thereof)

Several numeric attributes: normally, Euclidean distance is used and attributes are normalized

Nominal attributes: distance is set to 1 if values are different, 0 if they are equal

Are all attributes equally important?
 Weighting the attributes might be necessary

Learning prototypes

Only those instances involved in a decision need to be stored
Noisy instances should be filtered out
Idea: only use *prototypical* examples
Rectangular generalizations

Nearest-neighbor rule is used outside rectangles
Rectangles are rules! (But they can be more conservative than “normal” rules.)
Nested rectangles are rules with exceptions

Representing clusters I

Simple 2-D representation

Venn diagram

Overlapping clusters
Representing clusters II

Probabilistic assignment

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>e</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>g</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

...

Dendrogram

NB: dendron is the Greek word for tree