Data Mining
Part 4

Tony C Smith
WEKA Machine Learning Group
Department of Computer Science
University of Waikato
Inferring rudimentary rules
Statistical modeling
Constructing decision trees
Constructing rules
Association rule learning
Linear models
Instance-based learning
Clustering
Simplicity first

Simple algorithms often work very well!
There are many kinds of simple structure, eg:
- One attribute does all the work
- All attributes contribute equally & independently
- A weighted linear combination might do
- Instance-based: use a few prototypes
- Use simple logical rules

Success of method depends on the domain
Inferring rudimentary rules

1R: learns a 1-level decision tree
I.e., rules that all test one particular attribute

Basic version
One branch for each value
Each branch assigns most frequent class
Error rate: proportion of instances that don’t belong to the majority class of their corresponding branch
Choose attribute with lowest error rate

(assumes nominal attributes)
Pseudo-code for 1R

For each attribute,
 For each value of the attribute, make a rule as follows:
 count how often each class appears
 find the most frequent class
 make the rule assign that class to this attribute-value
 Calculate the error rate of the rules
Choose the rules with the smallest error rate

Note: “missing” is treated as a separate attribute value
Evaluating the weather attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny \rightarrow No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Overcast \rightarrow Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainy \rightarrow Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>Hot \rightarrow No*</td>
<td>2/4</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>Mild \rightarrow Yes</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>Cool \rightarrow Yes</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High \rightarrow No</td>
<td>3/7</td>
<td>4/14</td>
</tr>
<tr>
<td>Windy</td>
<td>Normal \rightarrow Yes</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>False \rightarrow Yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>True \rightarrow No*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>

* indicates a tie
Dealing with numeric attributes

Discretize numeric attributes
Divide each attribute’s range into intervals
Sort instances according to attribute’s values
Place breakpoints where class changes (majority class)
This minimizes the total error

Example: *temperature* from weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>85</td>
<td>85</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>80</td>
<td>90</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>83</td>
<td>86</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>75</td>
<td>80</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The problem of overfitting

This procedure is very sensitive to noise

One instance with an incorrect class label will probably produce a separate interval

Also: *time stamp* attribute will have zero errors

Simple solution:

enforce minimum number of instances in majority class per interval

Example (with min = 3):

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>65</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>72</td>
<td>75</td>
<td>75</td>
<td>80</td>
<td>81</td>
<td>83</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>72</td>
<td>75</td>
<td>75</td>
<td>80</td>
<td>81</td>
<td>83</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
With overfitting avoidance

Resulting rule set:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny \rightarrow No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Overcast \rightarrow Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainy \rightarrow Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>$\leq 77.5 \rightarrow$ Yes</td>
<td>3/10</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>$> 77.5 \rightarrow$ No*</td>
<td>2/4</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>$\leq 82.5 \rightarrow$ Yes</td>
<td>1/7</td>
<td>3/14</td>
</tr>
<tr>
<td></td>
<td>> 82.5 and $\leq 95.5 \rightarrow$ No</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td>Windy</td>
<td>$> 95.5 \rightarrow$ Yes</td>
<td>0/1</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>False \rightarrow Yes</td>
<td>2/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>True \rightarrow No*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>
Discussion of 1R

1R was described in a paper by Holte (1993)

- Contains an experimental evaluation on 16 datasets (using cross-validation so that results were representative of performance on future data)
- Minimum number of instances was set to 6 after some experimentation
- 1R’s simple rules performed not much worse than much more complex decision trees

Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets

Robert C. Holte, Computer Science Department, University of Ottawa
Another simple technique: build one rule for each class
Each rule is a conjunction of tests, one for each attribute
For numeric attributes: test checks whether instance's value is inside an interval
 Interval given by minimum and maximum observed in training data
For nominal attributes: test checks whether value is one of a subset of attribute values
 Subset given by all possible values observed in training data
Class with most matching tests is predicted
Statistical modeling

“Opposite” of 1R: use all the attributes

Two assumptions: Attributes are

- equally important
- statistically independent (given the class value)

I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)

Independence assumption is never correct!

But … this scheme works well in practice
Probabilities for weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Yes 2</td>
<td>No 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcast</td>
<td>Yes 4</td>
<td>No 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainy</td>
<td>Yes 3</td>
<td>No 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunny</td>
<td>Yes 2/9</td>
<td>No 3/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcast</td>
<td>Yes 4/9</td>
<td>No 0/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainy</td>
<td>Yes 3/9</td>
<td>No 2/5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>
Probabilities for weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot 2/9</td>
<td>High 3/9</td>
<td>False 6/9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Mild 4/9</td>
<td>Normal 6/9</td>
<td>True 3/9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cool 3/9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainy</td>
<td>Hot 2/9</td>
<td>High 3/9</td>
<td>False 6/9</td>
<td>9/14</td>
</tr>
<tr>
<td></td>
<td>Mild 4/9</td>
<td>Normal 6/9</td>
<td>True 3/9</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>Cool 3/9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A new day:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>High</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

Likelihood of the two classes

For “yes” = \(\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = 0.0053 \)

For “no” = \(\frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0206 \)

Conversion into a probability by normalization:

\[
\begin{align*}
P(“yes”) &= \frac{0.0053}{(0.0053 + 0.0206)} = 0.205 \\
P(“no”) &= \frac{0.0206}{(0.0053 + 0.0206)} = 0.795
\end{align*}
\]
Bayes’s rule

Probability of event H given evidence E:

$$Pr[H|E] = \frac{Pr[E|H]Pr[H]}{Pr[E]}$$

A priori probability of H: $Pr[H]$
Probability of event before evidence is seen

A posteriori probability of H: $Pr[H|E]$
Probability of event after evidence is seen

Thomas Bayes
Born: 1702 in London, England
Died: 1761 in Tunbridge Wells, Kent, England
Naïve Bayes for classification

Classification learning: what’s the probability of the class given an instance?

Evidence $E = \text{instance}$

Event $H = \text{class value for instance}$

Naïve assumption: evidence splits into parts (i.e. attributes) that are *independent*

$$Pr[H|E] = \frac{Pr[E_1|H]Pr[E_2|H]...Pr[E_n|H]Pr[H]}{Pr[E]}$$
Weather data example

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>High</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

\[Pr[yes|E] = Pr[Outlook=Sunny|yes] \times Pr[Temperature=Cool|yes] \times Pr[Humidity=High|yes] \times Pr[Windy=True|yes] \times \frac{Pr[yes]}{Pr[E]} \]

\[= \frac{2 \times 3 \times 3 \times 3 \times 9}{9 \times 9 \times 9 \times 9 \times 14} \]

Probability of class “yes”
What if an attribute value doesn’t occur with every class value?
(e.g. “Humidity = high” for class “yes”)

Probability will be zero! \(Pr[\text{Humidity} = \text{High} | \text{yes}] = 0 \)

\(A \text{ posteriori} \) probability will also be zero!
(No matter how likely the other values are!)

Remedy: add 1 to the count for every attribute value-class combination (\textit{Laplace estimator})

Result: probabilities will never be zero!
(also: stabilizes probability estimates)
Modified probability estimates

In some cases adding a constant different from 1 might be more appropriate
Example: attribute *outlook* for class *yes*

\[
\begin{align*}
\text{Sunny} & : \frac{2+\mu p_1}{9+\mu} \\
\text{Overcast} & : \frac{4+\mu p_2}{9+\mu} \\
\text{Rainy} & : \frac{3+\mu p_3}{9+\mu}
\end{align*}
\]

Weights don’t need to be equal (but they must sum to 1)
Missing values

Training: instance is not included in frequency count for attribute value-class combination

Classification: attribute will be omitted from calculation

Example:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Cool</td>
<td>High</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

Likelihood of “yes” = \(\frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = 0.0238 \)

Likelihood of “no” = \(\frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0343 \)

\[P(“yes”) = \frac{0.0238}{(0.0238 + 0.0343)} = 41\% \]

\[P(“no”) = \frac{0.0343}{(0.0238 + 0.0343)} = 59\% \]
Numeric attributes

Usual assumption: attributes have a normal or Gaussian probability distribution (given the class)

The probability density function for the normal distribution is defined by two parameters:

Sample mean μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standard deviation σ

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Then the density function $f(x)$ is

$$f(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
Statistics for weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>2</td>
<td>3</td>
<td>64, 68, 65, 71</td>
<td>65, 70, 70, 85</td>
</tr>
<tr>
<td>Overcast</td>
<td>4</td>
<td>0</td>
<td>69, 70, 72, 80</td>
<td>70, 75, 90, 91</td>
</tr>
<tr>
<td>Rainy</td>
<td>3</td>
<td>2</td>
<td>72, ... 85, ...</td>
<td>80, ... 95, ...</td>
</tr>
<tr>
<td>Sunny</td>
<td>2/9</td>
<td>3/5</td>
<td>μ = 73 μ = 75</td>
<td>μ = 79 μ = 86</td>
</tr>
<tr>
<td>Overcast</td>
<td>4/9</td>
<td>0/5</td>
<td>σ = 6.2 σ = 7.9</td>
<td>σ = 10.2 σ = 9.7</td>
</tr>
<tr>
<td>Rainy</td>
<td>3/9</td>
<td>2/5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example density value:

\[
f(temperature=66|yes) = \frac{1}{\sqrt{2\pi}6.2} e^{-\frac{(66-73)^2}{2\cdot6.2^2}} = 0.0340
\]
Classifying a new day

A new day:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>66</td>
<td>90</td>
<td>true</td>
<td>?</td>
</tr>
</tbody>
</table>

Likelihood of “yes” = \(\frac{2}{9} \times 0.0340 \times 0.0221 \times \frac{3}{9} \times \frac{9}{14} = 0.000036 \)

Likelihood of “no” = \(\frac{3}{5} \times 0.0221 \times 0.0381 \times \frac{3}{5} \times \frac{5}{14} = 0.000108 \)

\[P(“yes”) = \frac{0.000036}{0.000036 + 0.000108} = 25\% \]

\[P(“no”) = \frac{0.000108}{0.000036 + 0.000108} = 75\% \]

Missing values during training are not included in calculation of mean and standard deviation
Relationship between probability and density:

\[Pr\left[c - \frac{\epsilon}{2} < x < c + \frac{\epsilon}{2}\right] \approx \epsilon \times f(c) \]

But: this doesn’t change calculation of a posteriori probabilities because \(\epsilon \) cancels out

Exact relationship:

\[Pr[a \leq x \leq b] = \int_{a}^{b} f(t) \, dt \]
Multinomial naïve Bayes I

Version of naïve Bayes used for document classification using *bag of words* model

\(n_1, n_2, \ldots, n_k \): number of times word \(i \) occurs in document

\(P_1, P_2, \ldots, P_k \): probability of obtaining word \(i \) when sampling from documents in class \(H \)

Probability of observing document \(E \) given class \(H \) (based on *multinomial distribution*):

\[
Pr[E|H] \approx N! \times \prod_{i=1}^{k} \frac{P_i^{n_i}}{n_i!}
\]

Ignores probability of generating a document of the right length (prob. assumed constant for each class)
Suppose dictionary has two words, *yellow* and *blue*
Suppose $\Pr[yellow \mid H] = 75\%$ and $\Pr[blue \mid H] = 25\%$
Suppose E is the document “*blue* *yellow* *blue*”

Probability of observing document:

$$Pr[\{blue \ \text{yellow} \ \text{blue}\} \mid H] \approx 3! \times \frac{0.75^1}{1!} \times \frac{0.25^2}{2!} = \frac{9}{64} \approx 0.14$$

Suppose there is another class H' that has
$\Pr[yellow \mid H'] = 10\%$ and $\Pr[blue \mid H'] = 90\%$:

$$Pr[\{blue \ \text{yellow} \ \text{blue}\} \mid H'] \approx 3! \times \frac{0.1^1}{1!} \times \frac{0.9^2}{2!} = 0.24$$

Need to take prior probability of class into account to make final classification

Factorials don't actually need to be computed
Underflows can be prevented by using logarithms
Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)

Why? Because classification doesn’t require accurate probability estimates as long as maximum probability is assigned to correct class

However: adding too many redundant attributes will cause problems (e.g. identical attributes)

Note also: many numeric attributes are not normally distributed (→ kernel density estimators)
Constructing decision trees

Strategy: top down
Recursive *divide-and-conquer* fashion

First: select attribute for root node
Create branch for each possible attribute value

Then: split instances into subsets
One for each branch extending from the node

Finally: repeat recursively for each branch, using only instances that reach the branch

Stop if all instances have the same class
Which attribute to select?

- **outlook**: sunny -> yes, overcast -> yes, rainy -> yes
- **humidity**: high -> yes, normal -> yes
- **windy**: false -> yes, true -> yes
- **temperature**: hot -> yes, mild -> yes, cool -> yes
Which attribute to select?
Which is the best attribute?
Want to get the smallest tree
Heuristic: choose the attribute that produces the “purest” nodes
Popular *impurity criterion: information gain*
Information gain increases with the average purity of the subsets
Strategy: choose attribute that gives greatest information gain
Computing information

Measure information in \textit{bits}

Given a probability distribution, the info required to predict an event is the distribution’s \textit{entropy}

Entropy gives the information required in bits (can involve fractions of bits!)

Formula for computing the entropy:

\[
\text{entropy}(p_1, p_2, \ldots, p_n) = -p_1 \log p_1 - p_2 \log p_2 \ldots - p_n \log p_n
\]
Example: attribute Outlook

Outlook = Sunny:

$$\text{info}([2,3]) = \text{entropy}(2/5,3/5) = -2/5 \log_2(2/5) - 3/5 \log_2(3/5) = 0.971 \text{bits}$$

Outlook = Overcast:

$$\text{info}([4,0]) = \text{entropy}(1,0) = -1 \log_2(1) - 0 \log_2(0) = 0 \text{bits}$$

Outlook = Rainy:

$$\text{info}([2,3]) = \text{entropy}(3/5,2/5) = -3/5 \log_2(3/5) - 2/5 \log_2(2/5) = 0.971 \text{bits}$$

Expected information for attribute:

$$\text{info}([3,2],[4,0],[3,2]) = (5/14 \times 0.971) + (4/14 \times 0) + (5/14 \times 0.971) = 0.693 \text{bits}$$
Information gain: information before splitting – information after splitting

\[\text{gain}(Outlook) = \text{info}([9,5]) - \text{info}([2,3],[4,0],[3,2]) \]

\[= 0.940 - 0.693 \]

\[= 0.247 \text{ bits} \]

Information gain for attributes from weather data:

\[\text{gain}(Outlook) = 0.247 \text{ bits} \]
\[\text{gain}(Temperature) = 0.029 \text{ bits} \]
\[\text{gain}(Humidity) = 0.152 \text{ bits} \]
\[\text{gain}(Windy) = 0.048 \text{ bits} \]
Continuing to split

\[
\text{gain}(\text{Temperature}) = 0.571 \text{ bits}
\]
\[
\text{gain}(\text{Humidity}) = 0.971 \text{ bits}
\]
\[
\text{gain}(\text{Windy}) = 0.020 \text{ bits}
\]
Note: not all leaves need to be pure; sometimes identical instances have different classes

⇒ Splitting stops when data can’t be split any further
Wishlist for a purity measure

Properties we require from a purity measure:
- When node is pure, measure should be zero
- When impurity is maximal (i.e. all classes equally likely), measure should be maximal
- Measure should obey *multistage property* (i.e. decisions can be made in several stages):

\[
\text{measure}([2,3,4]) = \text{measure}([2,7]) + \frac{7}{9} \times \text{measure}([3,4])
\]

Entropy is the only function that satisfies all three properties!
Properties of the entropy

The multistage property:

\[
\text{entropy}(p, q, r) = \text{entropy}(p, q+r) + (q+r) \times \text{entropy}\left(\frac{q}{q+r}, \frac{r}{q+r}\right)
\]

Simplification of computation:

\[
\text{info}([2,3,4]) = -\frac{2}{9} \times \log\left(\frac{2}{9}\right) - \frac{3}{9} \times \log\left(\frac{3}{9}\right) - \frac{4}{9} \times \log\left(\frac{4}{9}\right)
\]

\[
= [-2 \times \log 2 - 3 \times \log 3 - 4 \times \log 4 + 9 \times \log 9] / 9
\]

Note: instead of maximizing info gain we could just minimize information
Highly-branching attributes

Problematic: attributes with a large number of values (extreme case: ID code)

Subsets are more likely to be pure if there is a large number of values

Information gain is biased towards choosing attributes with a large number of values

This may result in *overfitting* (selection of an attribute that is non-optimal for prediction)

Another problem: *fragmentation*
Weather data with *ID code*

<table>
<thead>
<tr>
<th>ID code</th>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidit</th>
<th>Wind</th>
<th>Pla</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>Overcas</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>D</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>E</td>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>G</td>
<td>Overcas</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>I</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>J</td>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>K</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>L</td>
<td>Overcas</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>M</td>
<td>Overcas</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>
Entropy of split:

\[\text{info}(\text{ID code}) = \text{info}([0,1]) + \text{info}([0,1]) + \ldots + \text{info}([0,1]) = 0 \text{ bits} \]

Information gain is maximal for ID code (namely 0.940 bits)
Gain ratio: a modification of the information gain that reduces its bias

Gain ratio takes number and size of branches into account when choosing an attribute

It corrects the information gain by taking the intrinsic information of a split into account

Intrinsic information: entropy of distribution of instances into branches (i.e. how much info do we need to tell which branch an instance belongs to)
Computing the gain ratio

Example: intrinsic information for ID code

\[\text{info}([1,1,\ldots,1]) = 14 \times (-1/14 \times \log(1/14)) = 3.807 \text{bits} \]

Value of attribute decreases as intrinsic information gets larger

Definition of gain ratio:

\[\text{gain}_\text{ratio}(\text{attribute}) = \frac{\text{gain}(\text{attribute})}{\text{intrinsic info}(\text{attribute})} \]

Example:

\[\text{gain}_\text{ratio}(\text{ID code}) = \frac{0.940 \text{bits}}{3.807 \text{bits}} = 0.246 \]
Gain ratios for weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Info:</td>
<td>Info:</td>
<td>0.693</td>
</tr>
<tr>
<td>Gain: 0.940-0.693</td>
<td>Gain: 0.940-0.911</td>
<td>0.247</td>
</tr>
<tr>
<td>Split info: info([5,4,5])</td>
<td>Split info: info([4,6,4])</td>
<td>1.577</td>
</tr>
<tr>
<td>Gain ratio: 0.247/1.577</td>
<td>Gain ratio: 0.029/1.557</td>
<td>0.157</td>
</tr>
<tr>
<td>Humidity</td>
<td>Windy</td>
<td></td>
</tr>
<tr>
<td>Info:</td>
<td>Info:</td>
<td>0.788</td>
</tr>
<tr>
<td>Gain: 0.940-0.788</td>
<td>Gain: 0.940-0.892</td>
<td>0.152</td>
</tr>
<tr>
<td>Split info: info([7,7])</td>
<td>Split info: info([8,6])</td>
<td>1.000</td>
</tr>
<tr>
<td>Gain ratio: 0.152/1</td>
<td>Gain ratio: 0.048/0.985</td>
<td>0.152</td>
</tr>
</tbody>
</table>
More on the gain ratio

“Outlook” still comes out top
However: “ID code” has greater gain ratio

Standard fix: *ad hoc* test to prevent splitting on that type of attribute

Problem with gain ratio: it may overcompensate

May choose an attribute just because its intrinsic information is very low

Standard fix: only consider attributes with greater than average information gain
Top-down induction of decision trees: ID3, algorithm developed by Ross Quinlan

Gain ratio just one modification of this basic algorithm

⇒ C4.5: deals with numeric attributes, missing values, noisy data

Similar approach: CART

There are many other attribute selection criteria!

(But little difference in accuracy of result)
Convert decision tree into a rule set
 Straightforward, but rule set overly complex
 More effective conversions are not trivial
Instead, can generate rule set directly
 for each class in turn find rule set that covers all instances in it
 (excluding instances not in the class)
Called a covering approach:
 at each stage a rule is identified that “covers” some of the instances
Example: generating a rule

Possible rule set for class “b”:

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b

Could add more rules, get “perfect” rule set
Rules vs. trees

Corresponding decision tree:
(produces exactly the same predictions)

But: rule sets *can* be more perspicuous when
decision trees suffer from replicated subtrees
Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas
decision tree learner takes all classes into account
Simple covering algorithm

Generates a rule by adding tests that maximize rule’s accuracy

Similar to situation in decision trees: problem of selecting an attribute to split on
 But: decision tree inducer maximizes overall purity

Each new test reduces rule’s coverage:
Selecting a test

Goal: maximize accuracy

- t: total number of instances covered by rule
- p: positive examples of the class covered by rule
- $t - p$: number of errors made by rule

Select test that maximizes the ratio p/t

We are finished when $p/t = 1$ or the set of instances can’t be split any further
Example: contact lens data

Rule we seek:

Then recommendation = hard

Possible tests:

- Age = Young: 2/8
- Age = Pre-presbyopic: 1/8
- Age = Presbyopic: 1/8
- Spectacle prescription = Myope: 3/12
- Spectacle prescription = Hypermetrope: 1/12
- Astigmatism = no: 0/12
- Astigmatism = yes: 4/12
- Tear production rate = Reduced: 0/12
- Tear production rate = Normal: 4/12
Modified rule and resulting data

Rule with best test added:

If astigmatism = yes
then recommendation = hard

Instances covered by modified rule:

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>hard</td>
</tr>
<tr>
<td>Pre-</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
</tbody>
</table>
Further refinement

Current state:

Possible tests:

If astigmatism = yes and ? then recommendation = hard

Age = Young 2/4
Age = Pre-presbyopic 1/4
Age = Presbyopic 1/4
Spectacle prescription = Myope 3/6
Spectacle prescription = Hypermetrope 1/6
Tear production rate = Reduced 0/6
Tear production rate = Normal 4/6
Modified rule and resulting data

Rule with best test added:

If astigmatism = yes and tear production rate = normal then recommendation = hard

Instances covered by modified rule:

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>hard</td>
</tr>
<tr>
<td>Pre-</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
</tbody>
</table>
Further refinement

Current state:

If astigmatism = yes
 and tear production rate = normal
 and ?
then recommendation = hard

Possible tests:

- Age = Young
 - Coverage: 2/2

- Age = Pre-presbyopic
 - Coverage: 1/2

- Age = Presbyopic
 - Coverage: 1/2

- Spectacle prescription = Myope
 - Coverage: 3/3

- Spectacle prescription = Hypermetrope
 - Coverage: 1/3

Tie between the first and the fourth test
We choose the one with greater coverage
The result

Final rule:

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

These two rules cover all “hard lenses”:
Process is repeated with other two classes
For each class C
 Initialize E to the instance set
 While E contains instances in class C
 Create a rule R with an empty left-hand side that predicts class C
 Until R is perfect (or there are no more attributes to use) do
 For each attribute A not mentioned in R, and each value v,
 Consider adding the condition A = v to the left-hand side of R
 Select A and v to maximize the accuracy p/t
 (break ties by choosing the condition with the largest p)
 Add A = v to R
 Remove the instances covered by R from E
Rules vs. decision lists

PRISM with outer loop removed generates a decision list for one class

Subsequent rules are designed for rules that are not covered by previous rules

But: order doesn’t matter because all rules predict the same class

Outer loop considers all classes separately

No order dependence implied

Problems: overlapping rules, default rule required
Separate and conquer

Methods like PRISM (for dealing with one class) are *separate-and-conquer* algorithms:

First, identify a useful rule
Then, separate out all the instances it covers
Finally, “conquer” the remaining instances

Difference to divide-and-conquer methods:

Subset covered by rule doesn’t need to be explored any further
Mining association rules

Naïve method for finding association rules:
 Use separate-and-conquer method
 Treat every possible combination of attribute values as a separate class

Two problems:
 Computational complexity
 Resulting number of rules (which would have to be pruned on the basis of support and confidence)

But: we can look for high support rules directly!
Item sets

Support: number of instances correctly covered by association rule
The same as the number of instances covered by all tests in the rule (LHS and RHS!)

Item: one test/attribute-value pair

Item set: all items occurring in a rule

Goal: only rules that exceed pre-defined support
⇒ Do it by finding all item sets with the given minimum support and generating rules from them!
Weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>
Item sets for weather data

<table>
<thead>
<tr>
<th>One-item sets</th>
<th>Two-item sets</th>
<th>Three-item sets</th>
<th>Four-item sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook = Sunny (5)</td>
<td>Outlook = Sunny Temperature = Hot (2)</td>
<td>Outlook = Sunny Temperature = Hot Humidity = High (2)</td>
<td>Outlook = Sunny Temperature = Hot Humidity = High Play = No (2)</td>
</tr>
<tr>
<td>Temperature = Cool (4)</td>
<td>Outlook = Sunny Humidity = High (3)</td>
<td>Outlook = Sunny Humidity = High Windy = False (2)</td>
<td>Outlook = Rainy Temperature = Mild Windy = False Play = Yes (2)</td>
</tr>
</tbody>
</table>

In total: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets (with minimum support of two)
Generating rules from an item set

Once all item sets with minimum support have been generated, we can turn them into rules.

Example:

Humidity = Normal, Windy = False, Play = Yes (4)

Seven \((2^N - 1)\) potential rules:

1. If Humidity = Normal and Windy = False then Play = Yes
2. If Humidity = Normal and Play = Yes then Windy = False
3. If Windy = False and Play = Yes then Humidity = Normal
4. If Humidity = Normal then Windy = False and Play = Yes
5. If Windy = False then Humidity = Normal and Play = Yes
6. If Play = Yes then Humidity = Normal and Windy = False
7. If True then Humidity = Normal and Windy = False and Play = Yes
Rules for weather data

Rules with support > 1 and confidence = 100%:

<table>
<thead>
<tr>
<th>Association rule</th>
<th>Sup.</th>
<th>Conf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Humidity=Normal Windy=False ⇒ Play=Yes</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>2 Temperature=Cool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Outlook=Overcast ⇒ Humidity=Normal</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>4 Temperature=Cold Play=Yes ⇒ Humidity=Normal</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 Outlook=Sunny Temperature=Hot ⇒ Humidity=High</td>
<td>2</td>
<td>100%</td>
</tr>
</tbody>
</table>

In total:
- 3 rules with support four
- 5 with support three
- 50 with support two
Example rules from the same set

Item set:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

Resulting rules (all with 100% confidence):

Temperature = Cool, Windy = False ⇒ Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal ⇒ Play = Yes
Temperature = Cool, Windy = False, Play = Yes ⇒ Humidity = Normal

due to the following “frequent” item sets:

Temperature = Cool, Windy = False (2)
Temperature = Cool, Humidity = Normal, Windy = False (2)
Temperature = Cool, Windy = False, Play = Yes (2)
Generating item sets efficiently

How can we efficiently find all frequent item sets?
Finding one-item sets easy

Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, …

If \(\{A, B\}\) is frequent item set, then \(\{A\}\) and \(\{B\}\) have to be frequent item sets as well!

In general: if \(X\) is frequent \(k\)-item set, then all \((k-1)\)-item subsets of \(X\) are also frequent

\[\Rightarrow\] Compute \(k\)-item set by merging \((k-1)\)-item sets
Example

Given: five three-item sets

(A B C), (A B D), (A C D), (A C E), (B C D)

Lexicographically ordered!

Candidate four-item sets:

(A B C D) OK because of (A C D) (B C D)
(A C D E) Not OK because of (C D E)

Final check by counting instances in dataset!

(k−1)-item sets are stored in hash table
We are looking for all high-confidence rules
Support of antecedent obtained from hash table
But: brute-force method is $2^N - 1$

Better way: building $(c + 1)$-consequent rules from c-consequent ones
Observation: $(c + 1)$-consequent rule can only hold if all corresponding c-consequent rules also hold

Resulting algorithm similar to procedure for large item sets
Example

1-consequent rules:

If Outlook = Sunny and Windy = False and Play = No then Humidity = High (2/2)

If Humidity = High and Windy = False and Play = No then Outlook = Sunny (2/2)

Corresponding 2-consequent rule:

If Windy = False and Play = No then Outlook = Sunny and Humidity = High (2/2)

Final check of antecedent against hash table!
Association rules: discussion

Above method makes one pass through the data for each different size item set

Other possibility: generate \((k+2)\)-item sets just after \((k+1)\)-item sets have been generated

Result: more \((k+2)\)-item sets than necessary will be considered but less passes through the data

Makes sense if data too large for main memory

Practical issue: generating a certain number of rules (e.g. by incrementally reducing min. support)
Other issues

Standard ARFF format very inefficient for typical *market basket data*

- Attributes represent items in a basket and most items are usually missing
- Data should be represented in sparse format

Instances are also called *transactions*

Confidence is not necessarily the best measure

- Example: milk occurs in almost every supermarket transaction
- Other measures have been devised (e.g. lift)
Linear models: linear regression

Work most naturally with numeric attributes
Standard technique for numeric prediction
Outcome is linear combination of attributes

\[x = w_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k \]

Weights are calculated from the training data
Predicted value for first training instance \(a^{(1)} \)

\[w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \ldots + w_k a_k^{(1)} = \sum_{j=0}^{k} w_j a_j^{(1)} \]

(assuming each instance is extended with a constant attribute with value 1)
Choose $k+1$ coefficients to minimize the squared error on the training data

Squared error:

$$\sum_{i=1}^{n} (x^{(i)} - \sum_{j=0}^{k} w_j a_j^{(i)})^2$$

Derive coefficients using standard matrix operations

Can be done if there are more instances than attributes (roughly speaking)

Minimizing the absolute error is more difficult
Any regression technique can be used for classification

Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don’t

Prediction: predict class corresponding to model with largest output value (membership value)

For linear regression this is known as multi-response linear regression

Problem: membership values are not in [0,1] range, so aren't proper probability estimates
Linear models: logistic regression

Builds a linear model for a transformed target variable

Assume we have two classes

Logistic regression replaces the target

\[
P[1|a_1, a_2,, a_k]
\]

by this target

\[
\log\left(\frac{P[1|a_1, a_2,, a_k]}{(1-P[1|a_1, a_2,, a_k])}\right)
\]

Logit transformation maps [0,1] to (-\infty, +\infty)
Logit transformation

Resulting model:

\[Pr[1|a_1, a_2, \ldots, a_k] = \frac{1}{1+e^{-w_0-w_1a_1-\ldots-w_ka_k}} \]
Example logistic regression model

Model with $w_0 = 0.5$ and $w_1 = 1$:

Parameters are found from training data using *maximum likelihood*
Maximum likelihood

Aim: maximize probability of training data wrt parameters

Can use logarithms of probabilities and maximize *log-likelihood* of model:

\[
\sum_{i=1}^{n} (1 - x^{(i)}) \log(1 - Pr[1|a_1^{(i)}, a_2^{(i)}, \ldots, a_k^{(i)}]) + x^{(i)} \log Pr[1|a_1^{(i)}, a_2^{(i)}, \ldots, a_k^{(i)}]
\]

where the \(x^{(i)}\) are either 0 or 1

Weights \(w_i\) need to be chosen to maximize log-likelihood (relatively simple method: *iteratively re-weighted least squares*)
Multiple classes

Can perform logistic regression independently for each class (like multi-response linear regression)

Problem: probability estimates for different classes won't sum to one

Better: train coupled models by maximizing likelihood over all classes

Alternative that often works well in practice: *pairwise classification*
Pairwise classification

Idea: build model for each pair of classes, using only training data from those classes

Problem? Have to solve $k(k-1)/2$ classification problems for k-class problem

Turns out not to be a problem in many cases because training sets become small:

Assume data evenly distributed, i.e. $2n/k$ per learning problem for n instances in total

Suppose learning algorithm is linear in n

Then runtime of pairwise classification is proportional to $(k(k-1)/2) \times (2n/k) = (k-1) n$
Decision boundary for two-class logistic regression is where probability equals 0.5:

$$Pr[1|a_1, a_2, ..., a_k] = 1 / (1 + \exp(-w_0 - w_1 a_1 - ... - w_k a_k)) = 0.5$$

which occurs when

$$-w_0 - w_1 a_1 - ... - w_k a_k = 0$$

Thus logistic regression can only separate data that can be separated by a hyperplane

Multi-response linear regression has the same problem. Class 1 is assigned if:

$$w_0^{(1)} + w_1^{(1)} a_1 + ... + w_k^{(1)} a_k > w_0^{(2)} + w_1^{(2)} a_1 + ... + w_k^{(2)} a_k$$

$$\iff (w_0^{(1)} - w_0^{(2)}) + (w_1^{(1)} - w_1^{(2)}) a_1 + ... + (w_k^{(1)} - w_k^{(2)}) a_k > 0$$
Don't actually need probability estimates if all we want to do is classification

Different approach: learn separating hyperplane

Assumption: data is *linearly separable*

Algorithm for learning separating hyperplane: *perceptron learning rule*

Hyperplane:

\[0 = w_0 a_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k \]

where we again assume that there is a constant attribute with value 1 (*bias*)

If sum is greater than zero we predict the first class, otherwise the second class
The algorithm

Set all weights to zero
Until all instances in the training data are classified correctly
 For each instance I in the training data
 If I is classified incorrectly by the perceptron
 If I belongs to the first class add it to the weight vector
 else subtract it from the weight vector

Why does this work?
Consider situation where instance \(a \) pertaining to the first class has been added:

\[
(w_0 + a_0)a_0 + (w_1 + a_1)a_1 + (w_2 + a_2)a_2 + \ldots + (w_k + a_k)a_k
\]

This means output for \(a \) has increased by:

\[
a_0a_0 + a_1a_1 + a_2a_2 + \ldots + a_ka_k
\]

This number is always positive, thus the hyperplane has moved into the correct direction (and we can show output decreases for instances of other class)
Perceptron as a neural network

Output layer

Input layer
Linear models: Winnow

Another *mistake-driven* algorithm for finding a separating hyperplane

- Assumes binary data (i.e. attribute values are either zero or one)

Difference: *multiplicative* updates instead of *additive* updates

- Weights are multiplied by a user-specified parameter $\alpha > 1$ (or its inverse)

Another difference: user-specified threshold parameter θ

Predict first class if

$$ w_0 a_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k > \theta $$
The algorithm

while some instances are misclassified
 for each instance a in the training data
 classify a using the current weights
 if the predicted class is incorrect
 if a belongs to the first class
 for each a_i that is 1, multiply w_i by alpha
 (if a_i is 0, leave w_i unchanged)
 otherwise
 for each a_i that is 1, divide w_i by alpha
 (if a_i is 0, leave w_i unchanged)

Winnow is very effective in homing in on relevant features (it is attribute efficient)

Can also be used in an on-line setting in which new instances arrive continuously (like the perceptron algorithm)
Balanced Winnow

Winnow doesn't allow negative weights and this can be a drawback in some applications

Balanced Winnow maintains two weight vectors, one for each class:

\[
\text{Instance is classified as belonging to the first class (of two classes) if:}
\]

\[
(w_0^+ - w_0^-)a_0 + (w_1^+ - w_2^-)a_1 + \ldots + (w_k^+ - w_k^-)a_k > \theta
\]
Instance-based learning

Distance function defines what’s learned

Most instance-based schemes use *Euclidean distance*:

\[
\sqrt{(a_1^{(1)} - a_1^{(2)})^2 + (a_2^{(1)} - a_2^{(2)})^2 + \ldots + (a_k^{(1)} - a_k^{(2)})^2}
\]

\(a^{(1)}\) and \(a^{(2)}\): two instances with \(k\) attributes

Taking the square root is not required when comparing distances

Other popular metric: *city-block metric*

Adds differences without squaring them
Normalization and other issues

Different attributes are measured on different scales
⇒ need to be \textit{normalized}:

\[a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i} \]

\(v_i \): the actual value of attribute \(i \)

Nominal attributes: distance either 0 or 1

Common policy for missing values: assumed to be maximally distant (given normalized attributes)
Finding nearest neighbors efficiently

Simplest way of finding nearest neighbour: linear scan of the data

Classification takes time proportional to the product of the number of instances in training and test sets

Nearest-neighbor search can be done more efficiently using appropriate data structures

We will discuss two methods that represent training data in a tree structure:

\textit{kD-trees} and \textit{ball trees}
kD-tree example

![KD-tree diagram](image)

The diagram illustrates a kD-tree with nodes labeled by their coordinates. The tree structure is shown with points (2,2), (3,8), (6,7), and (7,4) as examples.
Using kD-trees: example
More on \(kD \)-trees

Complexity depends on depth of tree, given by logarithm of number of nodes.

Amount of backtracking required depends on quality of tree ("square" vs. "skinny" nodes).

How to build a good tree? Need to find good split point and split direction.

- **Split direction:** direction with greatest variance
- **Split point:** median value along that direction

Using value closest to mean (rather than median) can be better if data is skewed.

Can apply this recursively.
Building trees incrementally

Big advantage of instance-based learning: classifier can be updated incrementally

Just add new training instance!

Can we do the same with kD-trees?

Heuristic strategy:

Find leaf node containing new instance

Place instance into leaf if leaf is empty

Otherwise, split leaf according to the longest dimension (to preserve squareness)

Tree should be re-built occasionally (i.e. if depth grows to twice the optimum depth)
Ball trees

Problem in kD-trees: corners

Observation: no need to make sure that regions don't overlap

Can use balls (hyperspheres) instead of hyperrectangles

A \textit{ball tree} organizes the data into a tree of k-dimensional hyperspheres

Normally allows for a better fit to the data and thus more efficient search
Ball tree example
Using ball trees

Nearest-neighbor search is done using the same backtracking strategy as in kD-trees

Ball can be ruled out from consideration if: distance from target to ball's center exceeds ball's radius plus current upper bound
Building ball trees

Ball trees are built top down (like kD-trees)
Don't have to continue until leaf balls contain just two points: can enforce minimum occupancy (same in kD-trees)

Basic problem: splitting a ball into two

Simple (linear-time) split selection strategy:
- Choose point farthest from ball's center
- Choose second point farthest from first one
- Assign each point to these two points
- Compute cluster centers and radii based on the two subsets to get two balls
Discussion of nearest-neighbor learning

Often very accurate
Assumes all attributes are equally important
 Remedy: attribute selection or weights
Possible remedies against noisy instances:
 Take a majority vote over the k nearest neighbors
 Removing noisy instances from dataset (difficult!)
Statisticians have used k-NN since early 1950s
 If $n \to \infty$ and $k/n \to 0$, error approaches minimum
kD-trees become inefficient when number of attributes is too large (approximately > 10)
Ball trees (which are instances of metric trees) work well in higher-dimensional spaces
More discussion

Instead of storing all training instances, compress them into regions

Example: hyperpipes (from discussion of 1R)

Another simple technique (Voting Feature Intervals):
 Construct intervals for each attribute
 Discretize numeric attributes
 Treat each value of a nominal attribute as an “interval”

Count number of times class occurs in interval

Prediction is generated by letting intervals vote (those that contain the test instance)
Clustering techniques apply when there is no class to be predicted
Aim: divide instances into “natural” groups
As we've seen clusters can be:
 disjoint vs. overlapping
deterministic vs. probabilistic
flat vs. hierarchical
We'll look at a classic clustering algorithm called \textit{k-means}
\textit{k-means} clusters are disjoint, deterministic, and flat
The k-means algorithm

To cluster data into k groups:
(k is predefined)
Choose k cluster centers
e.g. at random
Assign instances to clusters
based on distance to cluster centers
Compute *centroids* of clusters
Go to step 1
until convergence
Discussion

Algorithm minimizes squared distance to cluster centers.

Result can vary significantly based on initial choice of seeds.

Can get trapped in local minimum.

Example:

To increase chance of finding global optimum: restart with different random seeds.

Can we applied recursively with $k = 2$.
Can we use kD-trees or ball trees to speed up the process? Yes:

First, build tree, which remains static, for all the data points

At each node, store number of instances and sum of all instances

In each iteration, descend tree and find out which cluster each node belongs to

Can stop descending as soon as we find out that a node belongs entirely to a particular cluster

Use statistics stored at the nodes to compute new cluster centers
Example
Bayes’ rule stems from his “Essay towards solving a problem in the doctrine of chances” (1763)

Difficult bit in general: estimating prior probabilities (easy in the case of naïve Bayes)

Extension of naïve Bayes: Bayesian networks (which we'll discuss later)

Algorithm for association rules is called APRIORI

Minsky and Papert (1969) showed that linear classifiers have limitations, e.g. can’t learn XOR

But: combinations of them can (→ multi-layer neural nets, which we'll discuss later)