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Abstract

This paper describes how to generate a single image which, when viewed in the

appropriate way, appears to the brain as a 3D scene. The image is a stereogram composed

of seemingly random dots. A new, simple and symmetric algorithm for generating such

images from a solid model is given, along with the design parameters and their influence

on the display. The algorithm improves on previously-described ones in several ways: it

is symmetric and hence free from directional (right-to-left or left-to-right) bias, it corrects

a slight distortion in the rendering of depth, it removes hidden parts of surfaces, and it

also eliminates a type of artifact that we call an “echo”.

Random dot stereograms have one remaining problem: difficulty of initial viewing. If

a computer screen rather than paper is used for output, the problem can be ameliorated by

shimmering, or time-multiplexing of pixel values. We also describe a simple

computational technique for determining what is present in a stereogram so that, if

viewing is difficult, one can ascertain what to look for.
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Introduction

The perception of depth arises in various ways, including perspective, shadows, color

and intensity effects, hazing, and changes in size. These effects are well known by artists

and can be manipulated in pictures to give an impression of depth—indeed, pictures of

solid objects drawn without perspective look odd.

In three dimensions, additional methods are available for perceiving depth. Because

the eyes are separated (on each side of the nose) each one has a slightly different view of

a distant object, and the angular difference varies with distance. When both eyes look at

an object, they turn toward it (convergence) and the retinas receive slightly different

images (stereo disparity). Also the eyes focus differently for objects at different

distances.

The fusing of the two eyes’ images to produce the effect of depth is called

“stereopsis.” Stereopsis requires the cooperation of both eyes to construct a single mental

picture. This paper analyses how to use stereopsis to recreate the appearance of depth

from a purely flat picture. To understand how to do so, we need only consider the

geometry of stereo vision, not its physiological or psychological basis.

Stereopsis occurs naturally when viewing solid objects with both eyes. It is only

possible from 2D pictures when each eye receives a separate image, corresponding to the

view it would have had of the 3D object depicted. There are various ways to produce

stereo images, but special equipment is normally required, either for making the image or

for viewing it. In a stereoscope (Wheatstone, 1838, 1852), an optical instrument similar

to binoculars, each eye views a different picture, and can thereby be given the specific

image that would have arisen naturally. An early suggestion for a color stereo computer

display involved a rotating filter wheel held in front of the eyes (Land & Sutherland,

1969), and there have been many successors.

In contrast, the present paper describes a method that can be viewed on paper or on an

ordinary computer screen without any special equipment. Although it only displays

monochromatic objects,1 interesting effects can be achieved by animation of video

displays. The image can easily be constructed by computer from any 3D scene or solid

object description.

1 The image can be colored (e.g., for artistic reasons), but the method we describe does not allow colors
to be allocated in a way that corresponds to an arbitrary coloring of the solid object depicted.



BACKGROUND AND OVERVIEW

Julesz and Miller (1962) were the first to show clearly that a sense of depth could arise

purely from stereopsis, without relying on other cues such as perspective or contours.

They used random patterns of dots which, although meaningless to single eye viewing,

nevertheless created a depth impression when viewed in a stereoscope.

It might seem that stereopsis necessarily requires two separate pictures, or at least

some method of splitting a single picture into two to give each eye a separate view (using,

for instance, red/green filters, polarized light, or interference, as in holograms). Recently,

however, Tyler and Clarke (1990) realized that a pair of random dot stereograms can be

combined together, the result being called a “single image random dot stereogram”

(SIRDS) or, more generally, an autostereogram. Essentially, one overlays the two

separate random dot patterns, carefully placing the dots so that each one serves

simultaneously for two parts of the image. All that is necessary is to constrain the dot

pattern suitably. Ordinary stereograms, such as photographs or wire frame models,

cannot be combined into a single image, since one merely obtains a double picture.2

It turns out that very convincing images with vivid depth can be constructed in this

way, and the advantage of this ingenious approach is that no special viewing equipment

is required. It does take a little practice to see depth in the pictures, but the experience is

very satisfying when first achieved.

Tyler and Clarke (1990) described a simple but asymmetric algorithm, which meant,

for example, that some people can only see the intended effect when the picture is held

upside-down. This paper presents a new, simple, and symmetric algorithm for generating

single image stereograms from any solid model.

There is a vast literature on the psychology of stereopsis. For example, Marr and

Poggio (1976, 1979) discuss computational models of the visual processes that are

involved in interpreting random dot stereograms. Gulick and Lawson (1976) offer an

excellent general survey of the psychological processes and history of stereopsis.

Although these references provide useful general background, they do not bear directly

on the technique described in the present paper.

Stereo vision and autostereograms

Figure 1 shows an image plane placed between the eyes and a solid object. Imagine that it

is a sheet of glass. (In fact, it could be a computer screen, or a piece of paper.) Light rays

2 An effect called the “wallpaper illusion” occurs when lines of horizontally repeating patterns are
perceived to lie at different depths; however, since the patterns repeat monotonously in wallpaper, they
convey no useful information.



are shown coming from the object, passing through the image plane, and entering each

eye. So far as the eyes are concerned, two rays pass through each point in the image

plane, one for each eye. If both rays are the same color and intensity, they can be

conveniently reproduced by a single light source in the image plane. Hence, although the

object can be seen stereoscopically, there need only be one image in the image plane, not

two, and it can be shared by both eyes. This solves the problem of seeing a stereoscopic

picture without any special equipment.

The problem of generating the autostereogram amounts to illuminating the screen in

such a way that it simulates a pattern of light that could have come from a solid object

lying behind it. In general, each point of the object will map into two points on the image

plane. Now, if two locations on the solid object are chosen carefully, as shown in

Figure 1, and are both black dots, then it can be arranged that they generate just three

black images on the plane, two of the images coinciding. Notice that the distance between

each pair of dots is different: the further the corresponding point on the object is behind

the image plane, the further apart are its two image points.

The central dot shown on the image plane in the Figure represents two separate

locations on the object. Therefore these two locations must have the same color. In turn,

then, the other two dots shown in the image plane must be the same color. Overall, of

course, some dots must be different colors, or else the image plane would appear uniform

and not present any useful information about the object lying behind it. Such

considerations constrain the surface coloring of the object. It is sufficient to use only two

colors (for example, black and white), and there is considerable flexibility in choosing

them.

Figure 1 also illustrates the task of viewing autostereograms, of seeing depth in the

initially meaningless arrangement of random dots. Suppose the image plane is transferred

to a sheet of opaque paper. If the eyes converge to view the paper in the normal way,

then they are not converged to be able to reconstruct the solid image. The same effect

occurs when you look at a mark on a window: objects behind the window appear double.

In the case of random dot stereograms, seeing the solid image “double” is tantamount to

not seeing it at all. To view it correctly one must deliberately deconverge one’s eyes as

explained in Box 1.

A program for generating single-image random dot stereograms

Referring to Figure 1, it can be seen that constraints only affect points along a line that

lies in the same plane as the two eyes. This gives a clue to making the algorithm efficient:

it can construct the image line by line. The inevitable disadvantage is that there are no

constraints at any other angle, and therefore the stereo effect is only achievable when the



picture is upright (or upside down). Tyler and Clarke (1990) briefly discuss the

possibility of having orthogonal lines of constraints, but we will not pursue it here.

Our program is based on the geometry shown in Figure 2. The object to be portrayed

lies between two planes called the “near” and “far” planes. The latter is chosen to be the

same distance D behind the screen as the eyes are in front. This is a convenient value

because when viewing the autostereogram the eyes should converge on the far plane, and

you may be able to catch your reflection in the screen and use this to assist the

convergence process. Since initially you don’t know what you are looking for, it helps if

the eyes can initially converge on a large equidistant target. The near plane is a distance

µD in front of the far plane, and in the program µ is set to 1/3. The separation between

the near and far planes determines the depth of field (not the depth of focus—for all dots

actually lie on the image plane and both eyes should focus there). Increasing the depth of

field by increasing µ brings the near plane closer to the screen and causes greater

difficulty in attaining proper convergence of the eyes.

It is convenient to define the “image stereo separation” of a point on the surface of the

solid object viewed in 3D to be the distance between its image points lying in the image

plane. This quantity relates directly to the conventional measure of stereo disparity, which

is the difference in angle subtended at the eyes. Since the background is taken to be the

same distance behind the screen as the screen is from the eyes, the separation for the far

plane is half the distance between the eyes.

Figure 2 shows the stereo separation s for a point with specified z-coordinate. The

range of z-values is from 0, which corresponds to the far plane, to 1, which corresponds

to the near plane. Thus the point is a distance µzD in front of the far plane, or (1–µz)D

from the image plane. By similar triangles,

s = 1 − µz

2 − µz
E ,

giving stereo separation, s, as a function of z. This is the fundamental relationship on

which the program is built.

THE BASIC ALGORITHM

The first lines in the program of Figure 3 set the scene. The screen is maxX by maxY

pixels, and the object’s z-value is Z[x][y]. The depth of field µ is chosen to be 1/3.

Neither the eye separation nor the screen resolution are critical: approximate values will

do in both cases. The image stereo separation corresponding to the far plane is called

far.

The program processes one scan line at a time (using the large loop in lines 16–62 of

Figure 3). The key to solving the constraint equations is to record what the constraints are



in an initial pass (lines 26–56), and follow this with a second pass that allocates a random

pixel value (black or white) whenever there is a free choice, and otherwise obeys the

relevant constraint (lines 57–61).

Pixel constraints are specified by the same[] array. In general, each pixel may be

constrained to be the same color (black or white) as several others. However, it is

possible to arrange that each element of the array need only specify a single constraint on

each pixel. The same[] array is initialized by setting same[x]=x for every pixel,

representing the fact that, in the absence of any depth information, each pixel is

necessarily constrained to be the same as itself (line 24).

Then the picture is scanned giving, at point x, a separation s between a pair of equal

pixels that corresponds to the image stereo separation at that point. Calling these two

pixels left and right, then left is at x-s/2 and right at x+s/2, but just in case s is

odd, we can more accurately position right at left+s (lines 28–29). The pair of pixels,

left and right, must be constrained to have the same color. This is accomplished by

recording the fact in the same[] array. (However, there may be geometric reasons why

the corresponding point on the solid object is not visible along both lines of sight; this is

checked in lines 35–39 and is discussed in detail below.)

To ensure that the pixel at left is recorded as being the same as right, should we set

same[left]=right, or set same[right]=left, or both? In fact, it is unnecessary to set

them both. When the time comes to draw the pixels, the line will be scanned either left-to-

right or right-to-left, and in the latter case (for example) it is only necessary to ensure that

same[left]=right. There is no significance in which of the two directions is used. We

choose right-to-left (line 57), set same[left]=right, and require, as an invariant, that

same[x] ≤ y whenever x ≤ y.

Now same[left] may have already been set in the course of processing a previous

constraint. We have already decided that same[x] should record which pixel to the right

of x is the same as it. If same[left] is already constrained, that constraint is followed

rightwards (lines 43–46, using variable l to follow the same links) to find a pixel that is

not otherwise constrained. In following the constraints, the variable l may “jump” over

right. If this happens (line 43), lines 48–52 preserve the assumption that left<right

by swapping them.

Once the constraints have been set for all pixels in a scan line, the line is re-scanned in

decreasing x order, that is, from right to left as promised above, allocating pixel values

(lines 57–61). When a pixel is unconstrained (same[x]=x), a value is chosen for it

randomly, and stored in pix[x]. Otherwise its value must be constrained to be the same

as some pixel further to the right, and so pix[x] is set to pix[same[x]]. The routine

Set_Pixel() then sets the pixel to black or white on the screen as soon as its color is



known. (If desired, the number of calls to Set_Pixel() can be halved by first drawing a

white line across the scan line, and then only setting the black pixels.)

The code is followed by drawing two circular marks with their centers separated by an

appropriate amount, near the bottom of the screen (lines 63–64). The convergence marks

are given a separation of far, which places them on the background of the 3D picture.

Some viewers find it easier to see the stereograms by converging their eyes on the near

plane, and this is facilitated by separating the marks by separation(1) instead of far=

separation(0). Initial viewing may be slightly easier if the marks are placed at the

center of the screen, though for aesthetic reasons we prefer to place them near the bottom.

HIDDEN SURFACE REMOVAL

It may be that, because of a transition in the object (from the near to the far plane, say), a

surface in the foreground obscures one eye’s view of a more distant point. Hidden

surface removal is a technical detail, and very few objects make it visibly worthwhile. Yet

the advantage is that for any part of the object that is strictly hidden, there is one fewer

constraint to process. In turn, this gives the algorithm greater flexibility in allocating pixel

colors, which reduces the problem of artifactual “echoes” as discussed in the next

section. The hidden surface removal code is in lines 35–39 of Figure 3.

Figure 4 shows a point on the object that would cause two pixels of the image to be

linked together, were it not for an obscuring object that interrupts one eye’s view. The

crucial inequality for hidden surface removal is that z1 ≥ zt, where z1 is the z-coordinate

of a point on the obscuring object and zt is the z-coordinate of a point on the ray from the

eye to the original object. The x-coordinate is governed by the distance t, and if such an

interruption occurs for any value of t greater than 0 and up to the point where zt = 1, then

the original point is no longer visible by this eye. The small shaded triangle is similar to

the much larger one with the same apex but based on half of the line joining the eyes, and

so

t

(zt − z0 )µD
= E / 2

(2 − µz0 )D

(the relevant distances in the denominators are marked in Figure 4), from which it

follows that:

zt = z0 + 2(2 − µz0 )t
µE

.

This is calculated in line 36 of the program in Figure 3. The crucial inequality z1 ≥ zt

appears on line 37, and at the same time a test is made for the other eye’s view being

obscured. The whole operation is repeated for different values of t, from 1 up to the

maximum possible value which occurs when zt = 1.



This algorithm checks for obscuring surfaces at each point of the image plane, but if a

geometric object were being rendered rather than the Z[x][y] array, a more efficient

implementation could be devised using surface intersections.

Geometrical limitations

This section describes some of the geometrical limitations of the approach. In practice,

none of these detract from the depth effect.

GEOMETRICAL DISTORTION

As Figure 2 illustrates, the object being viewed will have a slight lateral distortion in the x

direction. Suppose a value of x has been reached (Figure 3, line 26) that corresponds

with point a on the image plane. In order to determine the stereo separation, the program

will look along the line aA to find the appropriate depth, which in this case locates a point

(marked A) on the far plane (line 27). However, the stereo separation should really be

governed by point A' instead. There might be something intervening between the eyes

and A', but not between the eyes and A. While it would be possible to modify the

program to correct the problem, this could only be done for a fixed viewing position.

There is an analogous distortion in the vertical or y direction, perpendicular to the

plane containing the eyes. Hidden-surface decisions are made by projecting backwards

from each scan line in a direction orthogonal to the viewing plane, and this is only

accurate when the object subtends a small vertical angle at the eyes. Neither the horizontal

nor the vertical distortion affects the depth geometry, and neither are noticeable at normal

viewing distances. For distant viewing both errors disappear (the lateral one disappears

because points A and A' of Figure 2 coincide).

The amount of depth resolution that is available is the same as the distance far–near+1,

in pixels, where far and near are the stereo separations corresponding to the far and near

planes, that is, separation(0) and separation(1) in the program. This is because

points on the far plane are separated by far pixels on the screen, points on the near plane

by near pixels, and intermediate values are interpolated. For the parameters in the

program far =90 and near =72, giving a total of 19 separate depth planes. The number of

depth planes increases in proportion with the output device resolution.

However, the depth planes are not spaced exactly the same distance apart, because the

stereo separation is not a linear function of z. Previous schemes for calculating single

image random dot stereograms (see Box 2) interpolate the z-values linearly into the space

between the near and far planes, creating a small depth distortion. The program of

Figure 3 corrects this problem by using the true non-linear separation function (line 7).



Finally, a very small bias is created by always rounding down when the stereo

separation is halved in line 28 of Figure 3, which tends to shift the image very slightly

rightwards. This is negligible in practice, but could be corrected if desired by

randomizing the direction of rounding to remove the consistent bias towards larger values

of left (and, consequently, right).

FALSE FUSION: ECHOES

Suppose there are constraints on pixels such that a=b and b=c. It follows that a=c. This

last constraint, interpreted geometrically, corresponds to a third point in 3D space, and if

pixel b lies between pixels a and c the new point lies further from the eyes than the points

constraining a=b or b=c. There may be no such point on the object! This phenomenon,

which follows inexorably from the transitivity of equality, can produce visible artifacts

that we call “echoes”.

Most transitive pixel constraints do not cause a visible echo. If two pixels are

constrained to be equal but are separated by more than far, the echo is conceptually

behind the object—indeed if the pixels are separated by more than E the echo is

impossible to see anyway since it corresponds to a virtual image behind the viewer’s

eyes. However, for regular objects such as plane figures, echoes may combine in

complex but systematic ways right across the image. Periodicities in constraints may

result in echoes which appear in the same depth plane as does a legitimate part of the

object. Such echoes can be very distracting, and of course may be quite misleading when

they occur in unknown or unfamiliar objects.

Fortunately, hidden surface removal reduces constraints for plane figures to the point

where echoes in the same plane as the figure cease to be a noticeable problem. For

example, Figure 5a shows the echoes that arise from the test pattern of Figure B1 if the

hidden-surface code is suppressed. It was generated as follows. First, a version of

Figure B1 was created without hidden surface removal. Then it was scanned for pairs of

pixels with the same value (black or white) that have a separation corresponding to the

near plane, that is, separation(1). Whenever this occurred, the midpoint was marked

black. Of course, it frequently happens by chance, so the resulting image is mottled, but

the visible echoes appear as the large connected black regions that can be seen in Figure

5a. If the procedure is repeated with the hidden-surface code in place, the corresponding

picture shows just the single large annulus, without any echoes at all. Visible echoes are

also produced by Tyler and Clarke’s (1990) scheme for calculating single image random

dot stereograms described in Box 2, and these appear in Figure 5b. The asymmetry of

this scheme is clearly evident in this figure.



Often, a visible echo creates such an implausible distortion that it remains unnoticed—

certainly when the object is familiar, such as a sphere or text written in relief.

Nevertheless, once an echo has been noticed, it may be hard to ignore it again! Once

seen, the echoes often persist, although for some people they come and go of their own

accord (like depth reversal in the Necker cube illusion). This is probably because both the

background plane and the echoes in the foreground are simultaneously present in the

autostereogram, and the brain must choose which to see.

FALSE FUSION: ARTIFACTS

Even though there may be no geometrical constraint that a=b, it can happen that a and b

are given the same color purely by chance. This will result in a visual artifact that may be

distracting to the eye.

With a computer screen display, artifacts can be effectively eliminated by displaying

different versions of the picture in rapid succession. This can be done efficiently by

storing all the constraints in an array, and then repeating lines 57–61 but with different

random numbers. This means that artifacts appear only intermittently and are therefore

hardly noticed. If the display can be recomputed fast enough, or if several versions are

generated in advance and cycled through quickly, a striking “shimmering” effect is

obtained. This makes it very much easier to see the depth illusion because the eyes cannot

latch on to chance patterns or focus on individual dots—the only constant is the 3D

image.

It is also possible to ameliorate artifacts by using gray levels. Rather than color the

pixels black and white, which are equal half the time, they can be given gray levels (or

colors) from a larger palette, say 8 gray levels. Then chance artifacts become less likely.

FALSE FUSION: INCORRECT CONVERGENCE

False fusion can also occur simply because the eyes are incorrectly converged. The most

common cause of this, in our experience, is having the eyes converged at far too great a

distance and seeing the virtual solid object that is imaged by alternate image pixels in the

image plane. Figure 6 shows the effect: instead of seeing the annulus in Figure B1 one

sees two interlocking rings. In fact, if the eyes really are separated by 2.5 inches as

assumed in the program, this effect will be achieved precisely when the gaze is directed at

infinity. The risk of perceiving 3D objects with the eyes set at an incorrect convergence

makes guide dots essential, especially for more complex objects.



Conclusions

Autostereograms are very satisfying to view and are becoming increasingly popular,

particularly as recreational posters and in scientific illustrations. A public-domain X-

windows demonstration program for displaying and printing autostereograms is available

from ftp.cs.waikato.ac.nz. It incorporates the basic algorithm of Figure 3, along

with an interface which gives control over all of the features discussed in this paper. As a

final example, and to illustrate an object that requires continuous change in depth,

Figure 7 shows a hemisphere bulging out of a plane.

Previous attempts at drawing autostereograms have relied on an asymmetric algorithm

that produces satisfactory but not ideal results. The present paper shows how a

symmetric algorithm may be derived and implemented; it is efficient and in practice as fast

as the incorrect algorithm. The correct implementation of geometrical constraints, together

with the hidden surface feature, enables higher levels of detail in the solid object to be

faithfully recorded in the stereogram. The “shimmering” effect that is possible on a

dynamic display renders stereograms much easier to view. These features give artists

greater freedom and scope for creative use of this new medium and provide the basis for

many interesting experiments with optical illusions.
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Box 1: Viewing a single image random dot stereogram

Figure B1a is a random dot stereogram of a large annulus, exactly the same size and

texture as that of Figure B1b, floating above the middle of the picture. The challenge of

successful viewing is that the viewer must decouple the eyes’ convergence and focusing.

Since this is never done in normal circumstances (except perhaps when tired) it may be

difficult to achieve a successful 3D effect initially. The trick is to converge the eyes at a

distance well beyond the paper on which the dots lie, yet focus them on the dots

themselves. Working in bright light can help, as contraction of the iris causes the depth of

field of the eyes to increase, and they rely less on focusing.

Altering the eyes’ convergence is not easy, and the two circular marks we have drawn

near the bottom of the picture can be used for assistance. Blinking (or covering) the eyes

alternately, the marks can be made to produce four images, two with the right eye and

two with the left. Now deconverge your vision so that all four images can be seen with

both eyes open. The aim is to move the two pairs of images closer together until the inner

two coincide and only three distinct marks are seen. The center mark is binocular while

the outer two are seen monocularly, with only one eye each. Fixate on the center one to

stabilize the image, and then carefully allow your gaze to wander around the whole

picture. Placing the convergence marks in the center of the picture instead of near the

bottom can make for easier viewing but usually spoils the picture.

When viewing the autostereogram you should strive to converge your eyes on the far

plane. In Figure B1a this is the same distance behind the paper as the eyes are in front.

Copying the stereogram onto a transparency greatly aids viewing. Mark an X on a plain

sheet of paper and hold the transparency about halfway between your eyes and the paper.

View the paper through the transparency and converge your eyes on the X. Carefully

allow your gaze to wander across the whole picture. Once you have some experience,

you can dispense with the transparency and work directly from the printed image.

Do not be content with an inferior 3D effect. If you become dimly aware of some

circularity in the dot pattern, along with some tenuous 3D effects, this is certainly not the

full illusion! Viewed properly, the annulus should leap out of the plane at you, and the

effect should be stable and persist through sustained and detailed examination of each part

of the image, both foreground and background. Stereopsis has hysteresis: once you have

begun to fuse an image, it becomes clearer as you look. The further your eyes are away

from the paper, the greater the depth effect. If you see two interlocking rings instead,

your eyes have converged incorrectly, twice as wide as they should be. (This and other

artifacts are described in the article.) Re-examine the convergence dots and strive to make

the four images into three. If you see the annulus behind the plane rather than in front of

it, you are viewing the stereogram with your eyes crossed, converging on a point in front



of the paper, instead of having them “diverged”, converging on a point behind the paper

(some people call the latter “wall-eyed or “boss-eyed”). Some people are able to cross

their eyes or diverge them at will; others can only diverge them.

Although you may at first capture the 3D picture without using the convergence

marks, it is worth learning to use them properly. If you wear spectacles to correct for

short-sightedness, it is advantageous to remove them: your natural focus will be closer

than the patterns appear to be when the eyes are correctly converged. If your spectacles

also correct for other sight defects, such as astigmatism, removing them may not help.

Give yourself plenty of time: it is often necessary to work for some minutes to achieve

the full 3D effect the first time around. Viewing becomes much easier with practice.

If you have real difficulty with viewing, photocopy two identical transparencies from

Figure B1a, line them up carefully, and slide one horizontally over the other until the

annulus appears. Although the picture is not in stereo, this will at least serve to convince

your eyes that there is an annulus hidden in the dots! Two identical transparencies are

recommended, rather than one and the original, since the heating and mangling in the

photocopier will tend to stretch the transparencies, and the annulus may only be visible if

both images are distorted similarly.



Box 2: Previous method for generating single image random dot
stereograms

Previous methods of generating autostereograms work by creating a random vertical strip

of dots and repeating the pattern along each horizontal scan line independently,

modulating it by the depth of the object at that point (Tyler & Clark, 1990; Slinker &

Burton, 1992). We will describe this process more precisely using a quantitative

example, but first we need some terminology.

Suppose the object comprises a foreground called the near plane and a background

called the far plane; both lie behind the image screen. In Figure B1a, for example, the

annulus is the near plane and the surface it floats over is the far plane, while the screen

corresponds to the piece of paper on which the Figure is drawn. Consider the two rays

from a point on the far plane to the eyes. These intersect the screen at two pixels, the

distance between which is called the stereo separation corresponding to the far plane. If

the background is the same distance behind the screen as the screen is from the eyes, then

this stereo separation is half the distance between the eyes, say 1.25 in (half of 2.5 in, a

typical eye separation).

The width of the initial strip should be the stereo separation corresponding to the far

plane. Suppose this is 90 pixels, corresponding to approximately half the distance

between the eyes, measured in pixels on a typical display screen with 72 pixels/in. To

give a depth impression of the far plane, the first dot would be repeated at position 91,

the second at position 92, and so on. At the point where the foreground object begins, the

dots are repeated at a smaller lag, say 72 pixels instead of 90, corresponding to the stereo

separation of the near plane. To portray an object that lies between the near and far

planes, an appropriate interpolation between 72 and 90 pixels would be used for the lag.

This is a simple but technically incorrect algorithm for generating an autostereogram,

which, nevertheless generally produces reasonable results. Copying the initial randomly-

selected strip of dots gives a directional bias that belies the symmetry of the actual

physical situation, and some people have reported difficulty viewing such images.

Viewing the generation process as a constraint-satisfaction problem, as described in the

article, yields a procedure that is correct and not much more complicated, and has no

left/right bias.



Box 3: The advantage of symmetric eye convergence

For stereoscopic depth to be perceived across a range of depths without seeing double,

the angular separation of corresponding parts of the retinas’ images must not be too great.

Specifically, the angle subtended on a retina—the stereo disparity—must be less than

about 0.5°. Under certain circumstances, larger or smaller disparities can be maintained.

For example, a rod held on the nose and pointing away from the face subtends too high a

disparity to be seen single near the face, but you “know” it is a single rod, and this

impression suffices to sense, if not patently see, depth uniformly along its length.

The range of angles subtended on a retina depends in which direction the eye itself is

pointing. Suppose one eye is converged inwards at a fixed angle θ to a perpendicular to

the image plane. Setting θ higher for one eye reduces it for the other, given that both eyes

converge on the same point in the image plane. Hence, equal, or symmetric, eye

convergence permits the largest range of depth change within any given limitation of

disparity. Take the eye separation to be 2.5 in, µ=1/3, the viewing distance to be 15 in

from the eye to the image plane, and consider a symmetric convergence angle

θ = arctan(E / 4D). Then all depth changes (0 ≤ z ≤ 1) have a disparity less than 0.5°.

The previous algorithm (Box 2) assumes that one eye looks straight at the image

(θ=0). For the full range of z and the same viewing conditions, this results in a huge

disparity of 5.6°. Put another way, for a disparity of at most 0.5° the effective range of z

is halved. Although this assumption makes constructing the image easy (because each

pixel only images one point on the object for the θ=0 eye; see Box 2), it distorts the

image asymmetrically and reduces the complexity of the images that some people can see

clearly. Note that a slight rotation of the head has no affect on these arguments, since the

eyes continue to converge at the same point (except for the minor change and unequal eye

distance to the image).

In contrast, the advantages of the symmetric method we describe are twofold: the

range of stereo disparity required for viewing is reduced, and parallax distortion is

reduced and also symmetric. Further advantages are hidden surface removal and correct

depth interpolation, though these refinements could also be applied to the previous

algorithm. Although the symmetric convergence approach places multiple constraints for

both eyes on each image pixel, we have shown that these constraints are readily solved.
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 1. /* Algorithm for drawing an autostereogram  */
 2.
 3. #define round(X) (int)((X)+0.5) /* Often need to round rather than truncate */
 4. #define DPI 72 /* Output device has 72 pixels per inch */
 5. #define E round(2.5*DPI) /* Eye separation is assumed to be 2.5 in */
 6. #define mu (1/3.0) /* Depth of field (fraction of viewing distance) */
 7. #define separation(Z) round((1-mu*Z)*E/(2-mu*Z))
 8. /* Stereo separation corresponding to position Z */
 9. #define far separation(0) /* ... and corresponding to far plane, Z=0 */
10. #define maxX 256 /* Image and object are both maxX by maxY pixels */
11. #define maxY 256
12.
13. void DrawAutoStereogram(float Z[][]) {
14. /* Object’s depth is Z[x][y] (between 0 and 1) */
15. int x, y; /* Coordinates of the current point */
16. for (y=0; y < maxY; y++) { /* Convert each scan line independently */
17. int pix[maxX]; /* Color of this pixel */
18. int same[maxX]; /* Points to a pixel to the right ... */
19. /* ... that is constrained to be this color */
20. int s; /* Stereo separation at this (x,y) point */
21. int left, right; /* X-values corresponding to left and right eyes */
22.
23. for (x=0; x < maxX; x++)
24. same[x] = x; /* Each pixel is initially linked with itself */
25.
26. for (x=0; x < maxX ; x++) {
27. s = separation(Z[x][y]);
28. left = x - s/2; /* Pixels at left and right ... */
29. right = left + s; /*                     ... must be the same ... */
30. if (0 <= left && right < maxX) { /* ... or must they? */
31. int visible; /* First, perform hidden-surface removal */
32. int t=1; /* We will check the points (x-t,y) and (x+t,y) */
33. float zt; /* Z-coord of ray at these two points */
34.
35. do {
36. zt = Z[x][y] + 2*(2 - mu*Z[x][y])*t/(mu*E);
37. visible = Z[x-t][y]<zt && Z[x+t][y]<zt; /* False if obscured */
38. t++;
39. } while (visible && zt < 1); /*  Done hidden-surface removal  ... */
40. if (visible) { /* ... so record the fact that pixels at */
41. int l = same[left]; /* ... left and right are the same */
42. while (l != left && l != right)
43. if (l < right) { /* But first, juggle the pointers ... */
44. left = l; /* ... until either same[left]=left */
45. l = same[left]; /* ... or same[left]=right */
46. }
47. else {
48. same[left] = right;
49. left = right;
50. l = same[left];
51. right = l;
52. }
53. same[left] = right; /* This is where we actually record it */
54. }
55. }
56. }
57. for (x=maxX-1 ; x>= 0 ; x--) {/*  Now set the pixels on this scan line */
58. if (same[x] == x) pix[x] = random()&1;/* Free choice; do it randomly */
59. else pix[x] = pix[same[x]]; /* Constrained choice; obey constraint */
60. Set_Pixel(x, y, pix[x]);
61. }
62. }
63. DrawCircle(maxX/2-far/2, maxY*19/20); /* Draw convergence dots at far plane, */
64. DrawCircle(maxX/2+far/2, maxY*19/20); /* near the bottom of the screen */
65. }

Figure 3 Algorithm for drawing an autostereogram



E/2

0ztz

z 01Image plane

D

t

Point on 
object

This object 
obscures one 

eye’s view

D

1z

(z –z  )µDtz 0z

(2–µz  )D0z

Figure 4 Geometry for hidden surface removal



(a)

Figure 5  Echos that can be seen in the same plane as the annulus
               (a)  For the algorithm of Figure 3 without hidden-surface removal
               (b)  For the previous algorithm, sketched in Box 2

(b)



Figure 6. False fusion caused by incorrect convergence of the eyes



Figure 7.  Stereogram showing a hemisphere



Figure B1 (b)  the annulus itself

Figure B1 (a)  Stereogram showing an annulus floating above a surface


