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Abstract. In this paper we upgrade linear logistic regression and boost-
ing to multi-instance data, where each example consists of a labeled bag
of instances. This is done by connecting predictions for individual in-
stances to a bag-level probability estimate by simple averaging and max-
imizing the likelihood at the bag level—in other words, by assuming that
all instances contribute equally and independently to a bag’s label. We
present empirical results for artificial data generated according to the
underlying generative model that we assume, and also show that the two
algorithms produce competitive results on the Musk benchmark datasets.

1 Introduction

Multi-instance (MI) learning differs from standard supervised learning in that
each example is not just a single instance: examples are collections of instances,
called “bags”, containing an arbitrary number of instances. However, as in stan-
dard supervised learning there is only one label for each example (i.e. bag). This
makes MI learning inherently more difficult because it is not clear how the bag
label relates to the individual instances in a bag. The standard way to approach
the problem is to assume that there is one “key” instance in a bag that trig-
gers whether the bag’s class label will be positive or negative.1 This approach
has been proposed for predicting the activity of a molecule, where the instances
correspond to different shapes of the molecule, and the assumption is that the
presence of a particular shape determines whether a molecule is chemically active
or not [1]. The task is then to identify these key instances. A different approach
is to assume that all instances contribute equally and independently to a bag’s
class label. In the above context this corresponds to assuming that the different
shapes of a molecule have a certain probability of being active and the average
of these probabilities determines the probability that the molecule will be ac-
tive. In this paper, we use the latter approach to upgrade logistic regression and
boosting to MI problems.

The paper is organized as follows. In Section 2 we explain the underlying gen-
erative model that we assume and illustrate it using artificial MI data based on

1 Throughout this paper we assume a classification task with two possible classes.



this model. In Section 3 we describe how we use the generative model to upgrade
linear logistic regression and boosting to MI learning. In Section 4 we evaluate
the resulting algorithms on both the artificial data and the Musk benchmark
problems [1]. Section 5 summarizes our results.

2 A Generative Model

We assume that the class label of a bag is generated in a two-stage process. The
first stage determines class probabilities for the individual instances in a bag,
and the second stage combines these probability estimates in some fashion to
assign a class label to the bag. The difficulty lies in the fact that we cannot
observe class labels for individual instances and therefore cannot estimate the
instance-level class probability function directly.

This general two-stage framework has previously been used in the Diverse
Density (DD) algorithm [2] to learn a classifier for MI problems. In the first
step, DD assumes a radial (or “Gaussian-like”) formulation for the instance-
level class probability function Pr(y|x) (where y is a class label—either 0 or
1—and x an instance). In the second step, it assumes that the values of Pr(y|x)
for the instances in a bag are combined using either a multi-stage (based on the
noisy-or model) or a one-stage (based on the most-likely-cause model) Bernoulli
process to determine the bag’s class label. In both cases DD essentially attempts
to identify ellipsoid areas of the instance space for which the probability of
observing a positive instance is high, i.e, it attempts to identify areas that have
a high probability of containing “key” instances. The parameters involved are
estimated by maximizing the bag-level likelihood.

In this paper we use the same two-stage framework to upgrade linear logis-
tic regression and boosting to MI data. However, we assume a different process
for combining the instance-level class probability estimates, namely that all in-
stances contribute equally to a bag’s class probability. Consider an instance-level

model that estimates Pr(y|x) or the log-odds function log Pr(y=1|x)
Pr(y=0|x) , and a bag

b that corresponds to a certain area in the instance space. Given this bag b with
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Fig. 1. An artificial dataset with 20 bags.

Equation 1 is based on the arithmetic mean of the instance-level class probability
estimates while Equation 2 involves the geometric mean.

The above generative models are best illustrated based on an artificial dataset.
Consider an artificial domain with two attributes. We create bags of instances
by defining rectangular regions in this two-dimensional instance space and sam-
pling instances from within each region. First, we generate coordinates for the
centroids of the rectangles according to a uniform distribution with a range of
[−5, 5] for each of the two dimensions. The size of a rectangle in each dimen-
sion is chosen from 2 to 6 with equal probability. Each rectangle is used to
create a bag of instances. For sampling the instances, we assume a symmetric
triangle distribution with ranges [−5, 5] in each dimension (and density function
f(x) = 0.2− 0.04|x|). From this distribution we sample n instances from within
a rectangle.

The number of instances n for each bag is chosen from 1 to 20 with equal
probability. We define the instance-level class probability by the linear logistic
model Pr(y = 1|x1, x2) = 1

1+e−x1−2x2
, where x1 and x2 are the two attribute val-

ues of an instance. Thus the log-odds function is a simple linear function, which
means the instance-level decision boundary is a line. Then we take Equation 2
to calculate Pr(y|b). Finally we label each bag by flipping a coin according to
this probability.

Figure 1 shows a dataset with 20 bags that was generated according to this
model. The black line in the middle is the instance-level decision boundary (i.e.
where Pr(y = 1|x1, x2) = 0.5) and the sub-space on the right side has instances
with higher probability to be positive. A rectangle indicates the region used to
sample points for the corresponding bag (and a dot indicates its centroid). The
top-left corner of each rectangle shows the bag index, followed by the number of
instances in the bag. Bags in gray belong to class “negative” and bags in black to



class “positive”. Note that bags can be on the “wrong” side of the instance-level
decision boundary because each bag was labeled by flipping a coin based on its
class probability.

3 Upgrading Linear Logistic Regression and Boosting

In this section we first show how to implement linear logistic regression based on
the above generative model. Then we do the same for additive logistic regression
(i.e. boosting)—more specifically, AdaBoost.M1 [3].

3.1 Linear Logistic Regression

The standard logistic regression model does not apply to multi-instance data
because the instances’ class labels are masked by the “collective” class label of
a bag. However, suppose we know how the instance-level class probabilities are
combined to form a bag-level probability, say, by Equation 2. Then we can apply
a standard optimization method (e.g. gradient descent) to search for a maximum
of the (bag-level) binomial likelihood based on the training data. This gives us
an indirect estimate of the instance-level logistic model.

The instance-level class probabilities are given by Pr(y = 1|x) = 1/(1 +
exp(−βx)) and Pr(y = 0|x) = 1/(1 + exp(βx)) respectively, where β is the
parameter vector to be estimated. If we assume bag-level probabilities are given
by Equation 2, this results in the bag-level model
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Based on this we can estimate the parameter vector β by maximizing the
bag-level binomial log-likelihood function:

LL =
N

∑

i

[yi log Pr(y = 1|b) + (1 − yi) log Pr(y = 0|b)] (4)

where N is the number of bags.
Note that this problem can actually be reduced to standard single-instance

logistic regression by converting each bag of instances into a single instance
representing the bag’s mean (because the instances only enter Equation 3 in
the sum

∑

i xi). The reason for this is the simple linear structure of the model
and the fact that the bag-level probabilities are generated based on the geo-
metric mean (Equation 2). In practice, it is usually not possible to say whether
the geometric mean is more appropriate than the arithmetic one, so we may
want to use Equation 1 as an alternative. In that case, we change the formula-
tion of Pr(y|b) based on Equation 1 and use this in conjunction with the same
log-likelihood function (Equation 4). This problem can no longer be solved by



1. Initialize weight of each bag to Wi = 1/N , i = 1, 2, . . . , N .
2. Repeat for m = 1, 2, . . . , M :

(a) Set Wij ←Wi/ni, assign the bag’s class label to each
of its instances, and build an instance-level model hm(xij) ∈ {−1, 1}.

(b) Within the ith bag (with ni instances), compute the error rate ei ∈ [0, 1]
by counting the number of misclassified instances within that bag,
i.e. ei =

P

j
1(hm(xij) 6=yi)/ni.

(c) If ei < 0.5 for all i’s, go to Step 3.
(d) Compute cm = argmin

P

i
Wi exp[(2ei − 1)cm] using numeric optimization.

(e) If(cm ≤ 0), go to Step 3.
(f) Set Wi ← Wi exp[(2ei − 1)cm] and renormalize so that

P

i
Wi = 1.

3. return sign[
P

j

P

m cmhm(xj)].

Fig. 2. The MIBoosting Algorithm.

applying the above transformation in conjunction with standard single-instance
logistic regression. In the remainder of this paper, we will call the former method
MILogisticRegressionGEOM and the latter one MILogisticRegressionARITH.

As usual, the maximization of the log-likelihood function is carried out via
numeric optimization because there is no direct analytical solution. The opti-
mization problem can be solved very efficiently because we are working with a
linear model. (Note that the radial formulation in the DD [2] algorithm, for ex-
ample, poses a difficult global optimization problem that is expensive to solve.) In
our implementation we use a quasi-Newton optimization procedure with BFGS
updates suggested in [4], searching for parameter values around zero.

3.2 Boosting

Both linear logistic regression and the model used by the DD algorithm assume
a limited family of patterns. Boosting is a popular algorithm for modeling more
complex relationships. It constructs an ensemble of so-called “weak” classifiers.
In the following we explain how to upgrade the AdaBoost.M1 algorithm to MI
problems, assuming the same generative model as in the case of linear logis-
tic regression. Note that AdaBoost.M1 can be directly applied to MI problems
(without any modifications) if the “weak” learner is a full-blown MI learner,
in the same way as ensemble classifiers for MI learning have been built using
bagging in [5]. In the following we consider the case where the weak learner is a
standard single-instance learner (e.g. C4.5 [6]).

Boosting, more specifically, AdaBoost.M1, originates from work in compu-
tational learning theory [3], but received a statistical explanation as additive
logistic regression in [7]. It can be shown that it minimizes an exponential loss
function in a forward stage-wise manner, ultimately estimating the log-odds func-

tion 1
2 log Pr(y=1|X)

Pr(y=0|X) based on an additive model [7]. To upgrade AdaBoost.M1

we use the generative model described in Section 2 in conjunction with Equa-
tion 2 (i.e. the geometric average). The pseudo code for the algorithm, called
“MIBoosting” is shown in Figure 2. Here, N is the number of bags, and we



use the subscript i to denote the ith bag, where i = 1, 2, . . . , N . There are ni

instances in the ith bag, and we use the subscript j to refer to the jth instance,
where j = 1, 2, . . . , ni. The jth instance in the ith bag is xij . Note that, for conve-
nience, we assume that the class label of a bag is either 1 or -1 (i.e. y ∈ {1,−1}),
rather than 1 or 0.

The derivation of the algorithm is analogous to that in [7]. We regard the
expectation sign E as the sample average instead of the population expectation.
We are looking for a function (i.e. classifier) F (b) that minimizes the exponential
loss EBEY |B[exp(−yF (b))]. In each iteration of boosting, the aim is to expand
F (b) into F (b)+cf(b) (i.e. adding a new “weak” classifier) so that the exponential
loss is minimized. In the following we will just write E[.] to denote EBEY |B[.],
and use Ew[.] to denote the weighted expectation, as in [7].

In each iteration of the algorithm, we search for the best f(b) to add to the
model. Second order expansion of exp(−ycf(b)) about f(b) = 0 shows that we
can achieve this by searching for the maximum of Ew[yf(b)], given bag-level
weights WB = exp(−yF (b)) [7]. If we had an MI-capable weak learner at hand
that could deal with bag weights, we could estimate f(b) directly. However we
are interested in wrapping our boosting algorithm around a single-instance weak
learner. Thus we expand f(b) into f(b) =

∑

n h(xj)/n, where h(xj) ∈ {−1, 1} is
the prediction of the weak classifier h(.) for the jth instance in b. We are seeking
a weak classifier h(.) that maximizes

Ew[yh(xb)/n] =

N
∑

i=1

ni
∑

j=1

[
1

ni

Wiyih(xij)].

This is maximized if h(xij) = yi, which means that we are seeking a classifier
h(.) that attempts to correctly predict the label of the bag that each instance
pertains to. More precisely, h(.) should minimize the weighted instance-level
classification error given instance weights Wi

ni
(assuming we give every instance its

bag’s label). This is exactly what standard single-instance learners are designed
to do (provided they can deal with instance weights). Hence we can use any
(weak) single-instance learner to generate the function h(.) by assigning each
instance the label of its bag and the corresponding weight Wi

ni
. This constitutes

Step 2a of the algorithm in Figure 2.
Now that we have found f(b), we have to look for the best multiplier c > 0.

To do this we can directly optimize the objective function

EBEY |B[exp(−yF (b) + c(−yf(b)))] =
∑

i

Wi exp[cm(−
y

∑

j h(xij)

ni

)]

=
∑

i

Wi exp[(2ei − 1)cm],

where ei =
∑

j 1(hm(xij) 6=yi)/ni (computed in Step 2b).
Minimization of this expectation constitutes Step 2d. Note that this function

will not have a global minimum if all ei < 0.5. In that case all bags will be



correctly classified by f(b), and no further boosting iterations can be performed.
Therefore this is checked in Step 2c. This is analogous to what happens in
standard AdaBoost.M1 if the current weak learner has zero error on the training
data.

Note that the solution of the optimization problem involving c may not
have an analytical form. Therefore we simply search for c using a quasi-Newton
method in Step 2d. The computational cost for this is negligible compared to the
time it takes to learn the weak classifier. The resulting value for c is not neces-
sarily positive. If it is negative we can simply reverse the prediction of the weak
classifier and get a positive c. However, we use the AdaBoost.M1 convention and
stop the learning process if c becomes negative. This is checked in Step 2e.

Finally, we update the bag-level weights in Step 2f according to the additive
structure of F (b), in the same way as in standard AdaBoost.M1. Note that,
the more misclassified instances a bag has, the greater its weight in the next
iteration. This is analogous to what happens in standard AdaBoost.M1 at the
instance level.

To classify a test bag, we can simply regard F (b) as the bag-level log-odds
function and take Equation 2 to make a prediction (Step 3). An appealing prop-
erty of this algorithm is that, if there is only one instance per bag, i.e. for single-
instance data, the algorithm naturally degenerates to normal AdaBoost.M1. To
see why, note that the solution for c in Step 2d will be exactly 1

2 log 1−errW

errW
,

where errW is the weighted error. Hence the weight update will be the same as
in standard AdaBoost.M1.

4 Experimental Results

In this section we first discuss empirical results for the artificial data from Sec-
tion 2. Then we evaluate our techniques on the Musk benchmark datasets.

4.1 Results for the Artificial Data

Because we know the artificial data from Section 2 is generated using a linear
logistic model based on the geometric mean formulation in Equation 2, MIL-
ogisticRegressionGEOM is the natural candidate to test on this specific data.
Figure 3 shows the parameters estimated by this method when the number of
bags increases. As expected, the estimated parameters converge to the true pa-
rameters asymptotically. However, more than 1000 bags are necessary to produce
accurate estimates.

To evaluate the performance of MIBoosting we created an independent test
set with 10,000 bags based on the same generative model. As the “weak” learner
we used decision stumps, performing 30 iterations of the boosting algorithm.
The test error for different numbers of training bags is plotted in Figure 4, and
compared to that of MI linear logistic regression. Not surprisingly, the latter out-
performs boosting because it matches the underlying generative model exactly.
However, both methods approach the optimum error rate on the test data.
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4.2 Results for the Musk Problems

In this section we present results for the Musk drug activity datasets [1]. The
Musk 1 data has 92 bags and 476 instances, the Musk 2 data 102 bags and 6598
instances. Both are two-class problems with 166 attributes. Because of the large
number of attributes, some regularization proved necessary to achieve good re-
sults with logistic regression. To this end we added an L2 penalty term λ||β||2

to the likelihood function in Equation 4, where λ is the ridge parameter.2 In our
experiments we set λ = 2. For boosting, we used C4.5 trees as the “weak” clas-
sifiers and 50 boosting iterations. We introduced some regularization by setting
the minimum number of instances per leaf to twice the average bag size (10 in-
stances for Musk 1, and 120 instances for Musk 2). The post-pruning mechanism
in C4.5 was turned off.

The upper part of Table 1 shows error estimates for the two variants of
MILogisticRegression and for MIBoosting. These were obtained by 10 runs of
stratified 10-fold cross-validation (CV) (at the bag level). The standard deviation
of the 10 estimates from the 10 runs is also shown. The lower part summarizes
some results for closely related statistical methods that can be found in the
literature. A summary of results for other multi-instance learning algorithms
can be found in [8]. Note also that the performance of MI learning algorithms
can be improved further using bagging, as shown in [5].

The first result in the lower part of Table 1 is for the Diverse Density algo-
rithm applied in conjunction with the noisy-or model [2]. This result was also
obtained by 10-fold cross-validation. The second result was produced by a neural
network. The MI Neural Network is a multi-layer perceptron adapted to multi-
instance problems by using a soft-max function to hone in on the “key” instances
in a bag [9].3 The last entry in Table 1 refers to a support vector machine (SVM)
used in conjunction with a Gaussian multi-instance kernel [8]. This method re-

2 We standardized the training data using the weighted mean and variance, each
instance being weighted by the inverse of the number of instances in its bag.

3 It is unclear how the error estimates for the neural network were generated.



Method Musk 1 Musk 2

MILogisticRegressionGEOM 14.13±2.23 17.74±1.17
MILogisticRegressionARITH 13.26±1.83 15.88±1.29
MIBoosting with 50 iterations 12.07±1.95 15.98±1.31

Diverse Density 11.1 17.5
MI Neural Network 12.0 18.0
SVM with Gaussian MI kernel 13.6±1.1 12.0±1.0

Table 1. Error rate estimates for the Musk datasets and standard deviations (if avail-
able).

places the dot product between two instances (used in standard SVMs) by the
sum of the dot products over all possible pairs of instances from two bags. This
method resembles ours in the sense that it also implicitly assumes all instances
in a bag are equally relevant to the classification of the bag. The error-estimates
for the SVM were generated using leave-10-out, which produces similar results
as 10-fold cross-validation on these datasets.

The results for logistic regression indicate that the arithmetic mean (Equa-
tion 1) is more appropriate than the geometric one (Equation 2) on the Musk
data. Furthermore, boosting improves only slightly on logistic regression. For
both methods the estimated error rates are slightly higher than for DD and the
neural network on Musk 1, and slightly lower on Musk 2. Compared to the SVM,
the results are similar for Musk 1, but the SVM appears to have an edge on the
Musk 2 data. However, given that logistic regression finds a simple linear model,
it is quite surprising that it is so competitive.

Figure 5 shows the effect of different numbers of iterations in the boosting
algorithm. When applying boosting to single-instance data, it is often observed
that the classification error on the test data continues to drop after the error on
the training data has reached zero. Figure 5 shows that this effect also occurs in
the multi-instance version of boosting—in this case applied to the Musk 1 data
and using decision stumps as the weak classifiers.

Figure 5 also plots the Root Relative Squared Error (RRSE) of the probabil-
ity estimates generated by boosting. It shows that the classification error on the
training data is reduced to zero after about 100 iterations but the RRSE keeps
decreasing until around 800 iterations. The generalization error, estimated using
10 runs of 10-fold CV, also reaches a minimum around 800 iterations, at 10.44%
(standard deviation: 2.62%). Note that this error rate is lower than the one for
boosted decision trees (Table 1). However, boosting decision stumps is too slow
for the Musk 2 data, where even 8000 iterations were not sufficient to minimize
the RRSE.

5 Conclusions

We have introduced multi-instance versions of logistic regression and boosting,
and shown that they produce results comparable to other statistical multi-
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instance techniques on the Musk benchmark datasets. Our multi-instance al-
gorithms were derived by assuming that every instance in a bag contributes
equally to the bag’s class label—a departure from the standard multi-instance
assumption that relates the likelihood of a particular class label to the presence
(or absence) of a certain “key” instance in the bag.
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