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Abstract—Accounting for misclassification costs is important
in many practical applications of machine learning, and cost-
sensitive techniques for classification have been studied exten-
sively. Utility-based learning provides a generalization of purely
cost-based approaches that considers both costs and benefits, en-
abling application to domains with complex cost-benefit settings.
However, there is little work on utility- or cost-based learning
for regression. In this paper, we formally define the problem of
utility-based regression and propose a strategy for maximizing
the utility of regression models. We verify our findings in a large
set of experiments that show the advantage of our proposal in
a diverse set of domains, learning algorithms and cost/benefit
settings.

I. INTRODUCTION

The task of learning with different costs is an important
and well studied problem in the context of classification (e.g.,
[1], [2], [3]). Predictive approaches that take into account
costs have important applications in many real-world domains
(e.g., medicine, meteorology, and environmental science).
Employing a cost-sensitive approach makes it possible to
tailor the model closely to the specific problem domain, e.g.,
to improve predictive performance on minority classes in
imbalanced datasets [4]. The main obstacle to wider usage
of cost-sensitive learning is that it can be difficult to establish
the cost matrix specifying the misclassification costs. Problem-
specific error costs are often unavailable or difficult to obtain,
requiring access to domain experts. Applying a purely cost-
based approach is also problematic when dealing with real
world problems that involve both costs and benefits.

The broader, more general framework of utility-based learn-
ing, which considers both benefits and costs, has been in-
troduced in [1], [5]. In utility-based learning, a negative
benefit (or cost) is assigned to model errors and a positive
benefit to accurate predictions. As shown in [1], [5], this
setting makes it possible to establish a baseline from which

costs and benefits are defined, rendering the definition of the
corresponding benefit matrix less prone to errors. Moreover, it
enables differentiation between accurate predictions across the
domain of the target variable by specifying correspondingly
larger or smaller benefits.

As a result, utility-based learning is focused on maximizing
utility, encompassing both costs and benefits, as opposed
to cost-sensitive learning, which is focused solely on cost
minimization. Our primary motivation for writing this paper
is that utility-based learning is suitable for both classification
and regression tasks, but research and application in this area
has been concerned primarily with classification.

In the context of regression, the notion of a utility matrix
needs to be extended to that of a utility surface—a function
of the predicted and actual values of the target variable of the
domain. In this paper, we address the problem of utility-based
learning using such a utility surface. We formalize the problem
of utility-based regression and propose and test a method to
optimize the utility of regression models.

The main goals of this paper are to i) define the problem
of utility-based learning in regression tasks and ii) propose
and evaluate a solution for solving this problem. Our main
contributions are that we i) define the utility-based learning
problem; ii) propose and test a solution for this problem;
and iii) analyse the impact of different utility surfaces on the
performance achieved. The paper is organized as follows. In
Section II, the problem definition is presented. Our proposal
is described in Section III, and the results of an extensive
experimental evaluation are discussed in Section IV. Section
V provides a brief review of related work, and Section VI
presents the main conclusions of this paper.

II. PROBLEM DEFINITION

In this section we will formally define the utility-based
regression framework that will be used in this work. The
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goal of regression is to derive a model that approximates an
unknown function Y = f(X1; X2; � � � ; Xp). This function
maps the values of a set of p features onto the values of a
target variable. The model m approximating f is fitted using
a training set D = fhxi; yiigni=1 with known covariates xi
and target variable yi. The trained model can then estimate
target values ŷ for new data with unknown target values. The
optimization of the model given n training datums is usually
performed by minimizing a given loss function L(y; ŷ), such
as the squared error

L(y; ŷ) = (y � ŷ)
2
: (1)

This traditional regression objective does not take into
account expected costs and benefits of the estimates, which
can be important in real world applications. Let us consider
an example of such an application.

Example 1 (Air Quality Prediction). Consider the
LNO2Emissions data set,* which has a continuous target
variable (LNO2) that represents hourly measured values
of the logarithm of the concentration of NO2 (particles)
in Oslo, Norway, between October 2001 and August 2003.
The seven covariates include information on the traffic,
temperature, wind, hour and day. Table I presents a more
detailed description of this data set. High values of LNO2
indicate a bad air quality as opposed to lower LNO2 values.
However, both extremes (low and high) are rare in the data
set. This can be observed in Figure 1 which shows the density
function of the target variable approximated through a kernel
density estimator.

Considering this data set, suppose that a decision maker
is interested in predicting the LNO2 variable, for determining
when to impose traffic restrictions to prevent the location from
reaching a dangerous atmosphere. In this case, the decision
maker’s preferences are not uniform across the target variable
domain, and his main goal is to obtain a predictive model with
high accuracy on high extreme values of LNO2.

We start by introducing some notions, starting with the
concept of a relevance function, which was proposed by Torgo
and Ribeiro [6] and Ribeiro [5]. It expresses the importance
that the user assigns to different values of the target variable.

Definition 1 (Relevance Function). A relevance function,
which we will denote by �(), is a function that maps the target
variable into a scale of relevance in [0,1]:

�(y) : Y ! [0; 1] (2)

where 0 represents minimum relevance and 1 represents max-
imum relevance.

This function represents the benefit of zero error predictions
across the target variable domain, and is the analogue of
the diagonal of a benefit matrix in regression tasks. The

*A sample of 500 cases from a data set that has its origin in a study
relating air pollution with traffic volume and meteorological variables. The
data is available from the StatLib Datasets Archive: http://lib.stat.cmu.edu/
datasets/.
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Fig. 1. Distribution of the target variable LNO2.

assumption that completely accurate predictions cannot incur
costs motivates the introduction of this function.

To encode a decision maker’s preferences and incorporate
these in our modelling process, we can use the notion of a
relevance function to define a function that assigns a utility
score to pairs of estimated and actual target values. This
function can be viewed as a utility surface.

Definition 2 (Utility Surface). A utility surface is a function
that maps pairs of values (y; ŷ) into a utility scale in [-1,1]:

U : Y � Y �! [�1; 1]

(y; ŷ) 7�! U(y; ŷ) = g(L(y; ŷ); �(y); �(ŷ))

(3)

where a positive utility value represents the benefit and a
negative utility value represents the negative benefit (cost)
associated with predicting ŷ for the true value y.

The notion of a utility surface was presented by Torgo
and Ribeiro [6] and Ribeiro [5] to extend the concept of
benefit matrices for classification, as proposed by Elkan [1], to
regression. A utility surface can be thought of as a continuous
version of the benefit matrix. Our definition of the utility of
(y; ŷ) is based on a function g(:) that establishes utility using
three components: i) the loss L(y; ŷ), ii) the relevance of y,
and iii) the relevance of ŷ. This means that both the magnitude
of the error observed and the user-assigned relevance scores
for the true and predicted values contribute to the utility score.

Note that a utility surface includes all the information in
the corresponding relevance function. The utility of perfect
predictions corresponds to their relevance scores: for all
pairs of points (y; y), U(y; y) = g(L(y; y); �(y); �(y)) =
g(0; �(y); �(y)) = �(y). We make the notion of relevance
explicit because it is used in an elegant framework for eliciting
a utility surface presented in [5]. Establishing a benefit matrix
for classification is challenging; establishing a utility surface
even more so. To address this problem, Ribeiro [5] developed

http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/


TABLE I
LNO2 DATA SET CHARACTERISTICS

Features Target
LCarsH Temp WSpeed TempDiff WDir Hour Day LNO2

Min 4.13 -18.60 0.30 -5.40 2.00 1.00 32.00 1.22
1st Qu. 6.18 -3.90 1.68 -0.20 72.00 6.00 118.80 3.21
Median 7.43 1.10 2.80 0.00 97.00 12.50 212.00 3.85
Mean 6.97 0.85 3.06 0.15 143.40 12.38 310.50 3.70
3rd Qu. 7.79 4.90 4.20 0.60 220.00 18.00 513.00 4.22
Max 8.35 21.10 9.90 4.30 359.00 24.00 608.00 6.40

a method for automatically obtaining both a relevance function
and a utility surface for regression tasks. The method estab-
lishes relevance scores assuming that the rarest extreme values
are likely to be the most important ones. A utility score for
each pair of values (y; ŷ) is derived by taking into account
both the error measured through a given loss function and
the relevance of y and ŷ. More precisely, this method resorts
to the notions of benefits and costs of numeric predictions
for providing the following definition of the utility of the
predictions of a regression model,

Up�(ŷ; y) = B�(ŷ; y) � Cp�(ŷ; y)

= �(y) � (1� �B(ŷ; y)) � �p(ŷ; y) � �C(ŷ; y)
(4)

where B�(ŷ; y), Cp�(ŷ; y), �B(ŷ; y) and �C(ŷ; y) are functions
related to the notions of costs and benefits of predictions that
are defined in [5].

The method is based on the assumption that the user is
primarily interested in either one or both extreme ends of
the spectrum of target values. The motivation behind this
assumption is that rare and important values are often located
at the extremes of the distribution of the target variable. The
framework allows the user some flexibility in deciding which
type of errors should be more or less penalized, providing
an automatic mechanism that adjusts the costs to different
settings. This control is accomplished through a parameter
p 2 [0; 1] that specifies which types of errors should incur
higher costs. Selecting the value 0.5 for p assigns the same
weight for all types of errors. This mechanism can be thought
of as the parallel in regression to the decision of assigning
more costs to false positives, false negatives or both types of
errors in a classification problem.

Example 2 (Relevance Function and Utility Surface for
the LNO2 Variable). Assume that a group of domain experts
has provided to the decision maker the relevance function in
Figure 2 and the utility surface displayed in Figure 3. The
latter specifies the benefits and costs, i.e., the utility for pairs
of true and predicted values of LNO2.

In this case, high predictive accuracy of a model on the
high values of the target variable yields large benefits, while
high accuracy on the remaining values has benefits that tend
to zero as the values get lower. Simultaneously, the models
incurs large costs when substantially mispredicting on high
values of the target variable while the costs for mispredictions
on the low LNO2 values are lower. This is controlled with the
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Fig. 2. Relevance function for the LNO2 variable considering that high
extreme values are the most important ones.
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Fig. 3. Utility surface for LNO2.

parameter p, which in this case is set to 0.75. This means
that mistakes occuring on high LNO2 values are more costly
than those occuring on the lower values. This surface reflects
the domains knowledge that high predictive accuracy on the
high values of the LNO2 variable is more important than high
predictive accuracy on the low values.

Given the concept of a utility surface, we are now ready



to state the task of utility-based regression, which is based on
the assumption that a rational agent should maximize expected
utility.

Definition 3 (Utility-based Regression). Consider a predic-
tive task with a continuous target variable Y whose domain
is Y and a user-defined utility surface U(y; ŷ). The goal of
utility-based regression is to obtain the model that provides
the maximum utility.

The main goal of utility-based regression tasks is to obtain
predictions that achieve high expected utility according to the
user preferences expressed through a utility surface. This con-
trasts with standard regression approaches, which are focused
on minimizing expected loss.

III. LEARNING BY OPTIMIZING UTILITY

Traditional loss function minimization is not appropriate
when performing utility-based regression; more suitable per-
formance metrics must be applied. Observing scores of a loss
function is insufficient because the utility surface must be
taken into account. The user’s goal is to maximize utility;
therefore, the model’s performance must be assessed by con-
sidering the utility of the predictions. This is analogous to
the case of cost-sensitive classification where the performance
assessment metrics reflect the expected cost rather than the
average error. Ribeiro [5] proposed two metrics that are
suitable for evaluating utility-based regression: Mean Utility
(MU) and Normalized Mean Utility (NMU). Equations 5 and
6 provide the definitions of these two evaluation metrics for
the setting considered in this paper. NMU is a normalized
version of MU that yields scores in the [0; 1] interval. We will
use NMU in this paper.

MU =
1

n

nX
i=1

U(yi; ŷi) (5)

NMU =

Pn
i=1 U(yi; ŷi) + n

2n
(6)

Example 3 (Unsuitability of traditional metrics). Let us
consider a test sample containing 10 examples of the previ-
ously considered LNO2 Emissions data set. For this test set, we
generated three artificial model predictions. These predictions
are shown in Figure 4. The models were generated so that
model m1 obtains the best performance on the high values of
the target variable, model m2 displays the best performance
on the mean values of the target variable distribution and
model m3 performs well on low Y values. Table II shows the
performance assessment of these models according to several
different settings, including the standard loss functions Mean
Absolute Deviation (MAD) and Mean Squared Error (MSE).
The different utility-based evaluation settings were obtained
by applying corresponding utility surfaces. For each of these
settings, the superscript pi represents the type of penalization
in the utility surface used and the subscript H, L, or B
indicates whether high, low or both low and high extremes
were considered relevant in the utility surface. The best model
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Fig. 4. Predictions of three artificial models on a 10 sample test set.

for each metric and setting considered is shown in bold. The
rankings in Table II show that the use of MAD or MSE
would lead to the selection of the m2 model. In contrast,
when considering the NMU measure, this algorithm is never
selected. Moreover, it is clear that depending on the setting
considered, i.e., depending on the utility surface defined, the
ranking of the three models can be very different: NMU
is able to adapt to different user preferences bias and the
results obtained are strongly influenced by the utility-surface
considered, as expected. Figure 5 shows the three models’
predictions for the setting NMUBp0:5, where extreme values
at both ends of the spectrum are considered relevant and the
same penalization is assigned for both types of errors. The
utility is shown in color-coded fashion. The resulting heat map
exhibits symmetry because of the symmetric setting considered
for constructing the utility function.

Note that the above example was constructed to exhibit
a complete mismatch between the models’ performance ob-
tained using standard metrics and that obtained using utility-
based metrics. Such extreme discrepancies may not occur in
every situation in practice. The important fact that we want
to highlight is that standard metrics do not reflect the model’s
performance in accordance with the user preferences.

Let us now formally define how the optimal prediction for a
given case can be determined in a utility-based context. This
definition is based on establishing the expected utility of a
prediction using the conditional density of the target variable.
Let fY jX represent the conditional probability density function
of Y given the occurrence of the value x of X . Equation 7
provides the definition of the conditional probability density
function based on both the joint and marginal density func-
tions.

fY jX(yjX = x) =
fX;Y (x; y)

fX(x)
(7)

where fX;Y (x; y) represents the joint density of X and Y , and
fX(x) is the marginal density of X .




