
The

WEKA
Workbench

Eibe Frank, Mark A. Hall, and Ian H. Witten

Online Appendix for
“Data Mining: Practical Machine Learning Tools and Techniques”

Morgan Kaufmann, Fourth Edition, 2016

2

Contents

1 Introduction to Weka 7
1.1 What’s in WEKA? . 7
1.2 How do you use it? . 8
1.3 What else can you do? . 8
1.4 How do you get it? . 9
1.5 The package management system . 9

2 The Explorer 15
2.1 Getting started . 16

2.1.1 Preparing the data . 17
2.1.2 Loading the data into the Explorer . 17
2.1.3 Building a decision tree . 18
2.1.4 Examining the output . 19
2.1.5 Doing it again . 19
2.1.6 Working with models . 21
2.1.7 When things go wrong . 22

2.2 Exploring the Explorer . 22
2.2.1 Loading and filtering files . 23
2.2.2 Converting files to ARFF . 23
2.2.3 Using filters . 24
2.2.4 Training and testing learning schemes . 25
2.2.5 Using a metalearner . 26
2.2.6 Clustering and association rules . 26
2.2.7 Attribute selection . 27
2.2.8 Visualization . 27

2.3 Filtering algorithms . 27
2.3.1 Unsupervised attribute filters . 28

2.3.1.1 Adding and removing attributes 28
2.3.1.2 Changing values . 30
2.3.1.3 Conversions . 30
2.3.1.4 String conversion . 31
2.3.1.5 Time series . 32
2.3.1.6 Randomizing the attributes . 32

2.3.2 Unsupervised instance filters . 32
2.3.2.1 Randomizing and subsampling 32
2.3.2.2 Sparse instances . 33

2.3.3 Supervised filters . 33

3

4 CONTENTS

2.3.3.1 Supervised attribute filters . 34
2.3.3.2 Supervised instance filters . 34

2.4 Learning algorithms . 35
2.4.1 Bayesian classifiers . 35
2.4.2 Trees . 36
2.4.3 Rules . 37
2.4.4 Functions . 37
2.4.5 Neural networks . 39
2.4.6 Lazy classifiers . 40
2.4.7 Miscellaneous classifiers . 40
2.4.8 Metalearning algorithms . 41

2.4.8.1 Bagging and randomization . 41
2.4.8.2 Boosting . 41
2.4.8.3 Combining classifiers . 42
2.4.8.4 Cost-sensitive learning . 42
2.4.8.5 Optimizing performance . 42
2.4.8.6 Retargeting classifiers for different tasks 43

2.5 Clustering algorithms . 43
2.6 Association rule learners . 44
2.7 Attribute selection . 45

2.7.1 Attribute subset evaluators . 45
2.7.2 Single-attribute evaluators . 46
2.7.3 Search methods . 46

3 The Knowledge Flow Interface 73
3.1 Getting started . 73
3.2 Knowledge Flow components . 75
3.3 Configuring and connecting the components . 77
3.4 Incremental learning . 78

4 The Experimenter 81
4.1 Getting started . 81
4.2 Running an experiment . 83
4.3 Analyzing the results . 83
4.4 Simple setup . 84
4.5 Advanced setup . 85
4.6 The Analyze panel . 87
4.7 Distributing processing over several machines . 89

5 The Command-Line Interface 91
5.1 Getting started . 91

5.1.1 weka.Run . 91
5.2 The structure of WEKA . 92

5.2.1 Classes, instances, and packages . 92
5.2.2 The weka.core package . 93
5.2.3 The weka.classifiers package . 93
5.2.4 Other packages . 102
5.2.5 Javadoc indexes . 102

5.3 Command-line options . 102

CONTENTS 5

5.3.1 Generic options . 104
5.3.2 Scheme-specific options . 105

6 Embedded Machine Learning 107
6.1 A simple data mining application . 107
6.2 main() . 107
6.3 messageClassifier() . 111
6.4 updateData() . 111
6.5 classifyMessage() . 112

7 Writing New Learning Schemes 113
7.1 An example classifier . 113

7.1.1 buildClassifier() . 120
7.1.2 makeTree() . 120
7.1.3 computeInfoGain() . 121
7.1.4 classifyInstance() . 121
7.1.5 toSource() . 122
7.1.6 main() . 122

7.2 Conventions for implementing classifiers . 126
7.2.1 Capabilities . 126

6 CONTENTS

Chapter 1

Introduction to Weka

The WEKA workbench is a collection of machine learning algorithms and data preprocessing
tools that includes virtually all the algorithms described in our book. It is designed so that you
can quickly try out existing methods on new datasets in flexible ways. It provides extensive
support for the whole process of experimental data mining, including preparing the input data,
evaluating learning schemes statistically, and visualizing the input data and the result of learning.
As well as a wide variety of learning algorithms, it includes a wide range of preprocessing tools.
This diverse and comprehensive toolkit is accessed through a common interface so that its users
can compare different methods and identify those that are most appropriate for the problem at
hand. WEKA was developed at the University of Waikato in New Zealand; the name stands for
Waikato Environment for Knowledge Analysis. Outside the university the WEKA, pronounced
to rhyme with Mecca, is a flightless bird with an inquisitive nature found only on the islands of
New Zealand. The system is written in Java and distributed under the terms of the GNU General
Public License. It runs on almost any platform and has been tested under Linux, Windows, and
Macintosh operating systems.

1.1 What’s in WEKA?
WEKA provides implementations of learning algorithms that you can easily apply to your
dataset. It also includes a variety of tools for transforming datasets, such as the algorithms
for discretization and sampling. You can preprocess a dataset, feed it into a learning scheme,
and analyze the resulting classifier and its performance—all without writing any program code
at all.

The workbench includes methods for the main data mining problems: regression, classifica-
tion, clustering, association rule mining, and attribute selection. Getting to know the data is an
integral part of the work, and many data visualization facilities and data preprocessing tools are
provided. All algorithms take their input in the form of a single relational table that can be read
from a file or generated by a database query.

One way of using WEKA is to apply a learning method to a dataset and analyze its output
to learn more about the data. Another is to use learned models to generate predictions on new
instances. A third is to apply several different learners and compare their performance in order
to choose one for prediction. In the interactive WEKA interface you select the learning method
you want from a menu. Many methods have tunable parameters, which you access through a
property sheet or object editor. A common evaluation module is used to measure the performance
of all classifiers. Implementations of actual learning schemes are the most valuable resource that

7

8 CHAPTER 1. INTRODUCTION TO WEKA

WEKA provides. But tools for preprocessing the data, called filters, come a close second. Like
classifiers, you select filters from a menu and tailor them to your requirements.

1.2 How do you use it?
The easiest way to use WEKA is through a graphical user interface called the Explorer. This
gives access to all of its facilities using menu selection and form filling. For example, you can
quickly read in a dataset from a file and build a decision tree from it. The Explorer guides you
by presenting options as forms to be filled out. Helpful tool tips pop up as the mouse passes
over items on the screen to explain what they do. Sensible default values ensure that you can
get results with a minimum of effort—but you will have to think about what you are doing to
understand what the results mean.

There are three other graphical user interfaces to WEKA. The Knowledge Flow interface
allows you to design configurations for streamed data processing. A fundamental disadvantage
of the Explorer is that it holds everything in main memory—when you open a dataset, it im-
mediately loads it all in. That means that it can only be applied to small-to medium-sized
problems. However, WEKA contains some incremental algorithms that can be used to process
very large datasets. The Knowledge Flow interface lets you drag boxes representing learning
algorithms and data sources around the screen and join them together into the configuration
you want. It enables you to specify a data stream by connecting components representing data
sources, preprocessing tools, learning algorithms, evaluation methods, and visualization modules.
If the filters and learning algorithms are capable of incremental learning, data will be loaded and
processed incrementally.

WEKA’s third interface, the Experimenter, is designed to help you answer a basic practical
question when applying classification and regression techniques: Which methods and parameter
values work best for the given problem? There is usually no way to answer this question a
priori, and one reason we developed the workbench was to provide an environment that enables
WEKA users to compare a variety of learning techniques. This can be done interactively using
the Explorer. However, the Experimenter allows you to automate the process by making it easy
to run classifiers and filters with different parameter settings on a corpus of datasets, collect
performance statistics, and perform significance tests. Advanced users can employ the Exper-
imenter to distribute the computing load across multiple machines using Java remote method
invocation. In this way you can set up large-scale statistical experiments and leave them to run.

The fourth interface, called the Workbench, is a unified graphical user interface that combines
the other three (and any plugins that the user has installed) into one application. The Workbench
is highly configurable, allowing the user to specify which applications and plugins will appear,
along with settings relating to them.

Behind these interactive interfaces lies the basic functionality of WEKA. This can be accessed
in raw form by entering textual commands, which gives access to all features of the system.
When you fire up WEKA you have to choose among five different user interfaces via the WEKA
GUI Chooser: the Explorer, Knowledge Flow, Experimenter, Workbench, and command-line
interfaces. Most people choose the Explorer, at least initially.

1.3 What else can you do?
An important resource when working with WEKA is the online documentation, which has been
automatically generated from the source code and concisely reflects its structure. We will explain
how to use this documentation. We will also identify WEKA’s major building blocks, highlighting

1.4. HOW DO YOU GET IT? 9

which parts contain supervised learning methods, which contain tools for data preprocessing,
and which contain methods for other learning schemes. The online documentation gives the only
complete list of available algorithms because WEKA is continually growing and—being generated
automatically from the source code—the online documentation is always up to date. Moreover,
it becomes essential if you want to proceed to the next level and access the library from your
own Java programs or write and test learning schemes of your own.

In most data mining applications, the machine learning component is just a small part of
a far larger software system. If you intend to write a data mining application, you will want
to access the programs in WEKA from inside your own code. By doing so, you can solve the
machine learning subproblem of your application with a minimum of additional programming.
We show how to do that by presenting an example of a simple data mining application in Java.
This will enable you to become familiar with the basic data structures in WEKA, representing
instances, classifiers, and filters.

If you intend to become an expert in machine learning algorithms (or, indeed, if you already
are one), you will probably want to implement your own algorithms without having to address
such mundane details as reading the data from a file, implementing filtering algorithms, or
providing code to evaluate the results. If so, we have good news for you: WEKA already
includes all this. To make full use of it, you must become acquainted with the basic data
structures. To help you reach this point, we will describe these structures in more detail and
explain an illustrative implementation of a classifier.

1.4 How do you get it?
WEKA is available from http://www.cs.waikato.ac.nz/ml/weka. You can download either a
platform-specific installer or an executable Java jar file that you run in the usual way if Java is
installed. We recommend that you download and install it now, and follow through the examples
in the upcoming sections.

1.5 The package management system
The WEKA software has evolved considerably since the third edition of this book was published.
Many new algorithms and features have been added to the system, a number of which have been
contributed by the community. With so many algorithms on offer we felt that the software could
be considered overwhelming to the new user. Therefore a number of algorithms and community
contributions were removed and placed into plugin packages. A package management system
was added that allows the user to browse for, and selectively install, packages of interest.

Another motivation for introducing the package management system was to make the process
of contributing to the WEKA software easier, and to ease the maintenance burden on the WEKA
development team. A contributor of a plugin package is responsible for maintaining its code and
hosting the installable archive, while WEKA simply tracks the package metadata. The package
system also opens the door to the use of third-party libraries, something that we would have
discouraged in the past in order to keep a lightweight footprint for WEKA.

Figure 1.1 shows the main window of the graphical package manger, which can be accessed
from the Tools menu in the GUI Chooser panel shown in Figure 1.2. The very first time the
package manager is accessed it will download information about the currently available packages.
This requires an internet connection, however, once the package metadata has been downloaded
it is possible to use the package manager to browse package information while offline. Of course,
an Internet connection is still required to be able to actually install a package.

10 CHAPTER 1. INTRODUCTION TO WEKA

Figure 1.1: The graphical package manager.

Figure 1.2: The GUI Chooser.

The package manager presents a list of packages near the top of its window and a panel at
the bottom that displays information on the currently selected package in the list. The user
can choose to display packages that are available but not yet installed, only packages that are
installed, or all packages. The list presents the name of each package, the broad category that
it belongs to, the version currently installed (if any), the most recent version of the package
available that is compatible with the version of WEKA being used, and a field that, for installed
packages, indicates whether the package has been loaded successfully by WEKA or not. Although

1.5. THE PACKAGE MANAGEMENT SYSTEM 11

Figure 1.3: Choosing a version of the DMNBtext package to install.

not obvious at first glance, it is possible to install older versions of a particular package. The
Repository version field in the list is actually a drop-down box. Figure 1.3 shows selecting a
version of the DMNBtext package to install. The list of packages can be sorted, in ascending or
descending order, by clicking on either the package or category column header.

Figure 1.4: Additional information for the DMNBtext package.

(a) Primary package. (b) Dependency.

Figure 1.5: Installing a package with dependencies.

The information panel at the bottom of the window has clickable links for each version of a
given package. “Latest” always refers to the latest version of the package, and is the same as the
highest version number available. Clicking one of these links displays further information, such

12 CHAPTER 1. INTRODUCTION TO WEKA

as the author of the package, its license, where the installable archive is located, and its depen-
dencies. Figure 1.4 shows this information for the DMNBtext package. The information about
each package is also browsable at the Web location where WEKA’s package metadata is hosted.
At the time of writing this can be found at http://weka.sourceforge.net/packageMetaData/.
All packages have at least one dependency listed—the minimum version of the core WEKA
system that they can work with. Some packages list further dependencies on other packages.
For example, the multiInstanceLearning package depends on the multiInstanceFilters package.
When installing multiInstanceLearning, and assuming that multiInstanceFilters is not already
installed, the system will inform the user the multiInstanceFilters is required and will be installed
automatically. Figure 1.5 shows the dialogs displayed by the package manager when installing
multiInstanceLearning.

The package manager displays what are known as official packages for WEKA. These are
packages that have been submitted to the WEKA team for a cursory review and have had their
metadata added to the official central metadata repository. For one reason or another, an author
of a package might decide to make it available in an unofficial capacity. These packages do not
appear in the official list on the web, or in the list displayed by the graphical package manager.
If the user knows the URL to an archive containing an unofficial package, it can be installed by
using the button in the upper right-hand corner of the package manager window.

Figure 1.6: New/updated packages available.

Whenever a new package, or new version of an existing one, becomes available the package
manager informs the user by displaying a large yellow warning icon. Hovering over this icon
displays a tool-tip popup that lists the new packages and prompts the user to click the Refresh
repository cache button. Clicking this button downloads a fresh copy of all the package infor-
mation to the user’s computer. Figure 1.6 shows what is displayed in the situation where there
is one new package available and one upgrade to an existing package.

Figure 1.7: Changing the load status of a package.

The Install and Uninstall buttons at the top of the package manager’s window do exactly as
their names suggest. More than one package can be installed or uninstalled in one go by selecting

1.5. THE PACKAGE MANAGEMENT SYSTEM 13

multiple entries in the list. By default, WEKA attempts to load all installed packages, and if
a package cannot be loaded for some reason a message will be displayed in the Loaded column
of the list. The user can opt to prevent a particular package from being loaded by selecting
it and then clicking the Toggle load button. This will mark the package as one that should
not be loaded the next time that WEKA is started. This can be useful if an unstable package
is generating errors, conflicting with another package (perhaps due to third-party libraries), or
otherwise preventing WEKA from operating properly. Figure 1.7 shows what is displayed when
a package’s load status is toggled.

14 CHAPTER 1. INTRODUCTION TO WEKA

Chapter 2

The Explorer

Figure 2.1: The Explorer interface.

WEKA’s main graphical user interface, the Explorer, gives access to all its facilities using
menu selection and form filling. It is illustrated in Figure 2.1. To begin, there are six different
panels, selected by the tabs at the top, corresponding to the various data mining tasks that
WEKA supports. Further panels can become available by installing appropriate packages.

15

16 CHAPTER 2. THE EXPLORER

2.1 Getting started
Suppose you have some data and you want to build a decision tree from it. First, you need to
prepare the data, then fire up the Explorer and load in the data. Next you select a decision
tree construction method, build a tree, and interpret the output. It is easy to do it again with
a different tree construction algorithm or a different evaluation method. In the Explorer you
can flip back and forth between the results you have obtained, evaluate the models that have
been built on different datasets, and visualize graphically both the models and the datasets
themselves—including any classification errors the models make.

(a) Spreadsheet. (b) CSV.

(c) ARFF.

Figure 2.2: Weather data.

2.1. GETTING STARTED 17

2.1.1 Preparing the data
The data is often presented in a spreadsheet or database. However, WEKA’s native data storage
method is ARFF format. You can easily convert from a spreadsheet to ARFF. The bulk of
an ARFF file consists of a list of the instances, and the attribute values for each instance are
separated by commas. Most spreadsheet and database programs allow you to export data into
a file in comma-separated value (CSV) format as a list of records with commas between items.
Having done this, you need only load the file into a text editor or word processor; add the dataset’s
name using the @relation tag, the attribute information using @attribute, and a @data line; and
save the file as raw text. For example, Figure 2.19 shows an Excel spreadsheet containing the
weather data, the data in CSV form loaded into Microsoft Word, and the result of converting
it manually into an ARFF file. However, you do not actually have to go through these steps to
create the ARFF file yourself, because the Explorer can read CSV spreadsheet files directly, as
described later.

2.1.2 Loading the data into the Explorer

(a) Choosing the Explorer inter-
face.

(b) Reading in the weather data.

Figure 2.3: Weather data in the Explorer.

Let us load this data into the Explorer and start analyzing it. Fire up WEKA to get the GUI
Chooser panel in Figure 2.3a. Select Explorer from the five choices on the right-hand side. (The
others were mentioned earlier: Simple CLI is the old-fashioned command-line interface.)

What you see next is the main Explorer screen, shown in Figure 2.3b. Actually, the figure
shows what it will look like after you have loaded in the weather data. The six tabs along the
top are the basic operations that the Explorer supports: right now we are on Preprocess. Click
the Open file button to bring up a standard dialog through which you can select a file. Choose
the weather.arff file. If you have it in CSV format, change from ARFF data files to CSV data
files. When you specify a .csv file it is automatically converted into ARFF format.

Having loaded the file, the screen will be as shown in Figure 2.3b. This tells you about the
dataset: it has 14 instances and five attributes (center left); the attributes are called outlook,

18 CHAPTER 2. THE EXPLORER

temperature, humidity, windy, and play (lower left). The first attribute, outlook, is selected by
default (you can choose others by clicking them) and has no missing values, three distinct values,
and no unique values; the actual values are sunny, overcast, and rainy and they occur five, four,
and five times, respectively (center right). A histogram at the lower right shows how often each
of the two values of the class, play, occurs for each value of the outlook attribute. The attribute
outlook is used because it appears in the box above the histogram, but you can draw a histogram
of any other attribute instead. Here play is selected as the class attribute; it is used to color the
histogram, and any filters that require a class value use it too.

The outlook attribute in Figure 2.3b is nominal. If you select a numeric attribute, you see its
minimum and maximum values, mean, and standard deviation. In this case the histogram will
show the distribution of the class as a function of this attribute.

You can delete an attribute by clicking its checkbox and using the Remove button. All
selects all the attributes, None selects none, Invert inverts the current selection, and Pattern
selects those attributes whose names match a user-supplied regular expression. You can undo
a change by clicking the Undo button. The Edit button brings up an editor that allows you to
inspect the data, search for particular values and edit them, and delete instances and attributes.
Right-clicking on values and column headers brings up corresponding context menus.

2.1.3 Building a decision tree

(a) Finding J4.8 in the classifiers
list.

(b) The Classify tab.

Figure 2.4: J4.8 in the Explorer.

To see what the C4.5 decision tree learner does with this dataset, use the J4.8 algorithm,
which is WEKA’s implementation of this algorithm. (J4.8 actually implements a later and
slightly improved version called C4.5 revision 8, which was the last public version of this family
of algorithms before C5.0 was released.) Click the Classify tab to get a screen that looks like
Figure 2.4b. Actually, the figure shows what it will look like after you have analyzed the weather
data.

First select the classifier by clicking the Choose button at the top left, opening up the trees
section of the hierarchical menu in Figure 2.4a, and finding J48. The menu structure represents

2.1. GETTING STARTED 19

the organization of the WEKA code into modules and the items you need to select are always
at the lowest level. Once selected, J48 appears in the line beside the Choose button as shown in
Figure 2.4b, along with its default parameter values. If you click that line, the J4.8 classifier’s
object editor opens up and you can see what the parameters mean and alter their values if you
wish. The Explorer generally chooses sensible defaults.

Having chosen the classifier, invoke it by clicking the Start button. WEKA works for a
brief period—when it is working, the little bird at the lower right of Figure 2.4b jumps up and
dances—and then produces the output shown in the main panel of Figure 2.4b.

2.1.4 Examining the output
Figure 2.5 shows the full output (Figure 2.4b only gives the lower half). At the beginning

is a summary of the dataset, and the fact that 10-fold cross-validation was used to evaluate it.
That is the default, and if you look closely at Figure 2.4b you will see that the Cross-validation
box at the left is checked. Then comes a pruned decision tree in textual form. The model that
is shown here is always one generated from the full dataset available from the Preprocess panel.
The first split is on the outlook attribute, and then, at the second level, the splits are on humidity
and windy, respectively. In the tree structure, a colon introduces the class label that has been
assigned to a particular leaf, followed by the number of instances that reach that leaf, expressed
as a decimal number because of the way the algorithm uses fractional instances to handle missing
values. If there were incorrectly classified instances (there aren’t in this example) their number
would appear too: thus 2.0/1.0 means that two instances reached that leaf, of which one is
classified incorrectly. Beneath the tree structure the number of leaves is printed; then the total
number of nodes (Size of the tree). There is a way to view decision trees more graphically, which
we will encounter later.

The next part of the output gives estimates of the tree’s predictive performance. In this
case they are obtained using stratified cross-validation with 10 folds, the default in Figure 2.4b.
As you can see, more than 30% of the instances (5 out of 14) have been misclassified in the
cross-validation. This indicates that the results obtained from the training data are optimistic
compared with what might be obtained from an independent test set from the same source.
From the confusion matrix at the end observe that 2 instances of class yes have been assigned
to class no and 3 of class no are assigned to class yes.

As well as the classification error, the evaluation module also outputs the Kappa statistic, the
mean absolute error, and the root mean-squared error of the class probability estimates assigned
by the tree. The root mean-squared error is the square root of the average squared loss. The
mean absolute error is calculated in a similar way using the absolute instead of the squared
difference. It also outputs relative errors, which are based on the prior probabilities (i.e., those
obtained by the ZeroR learning scheme described later). Finally, for each class it also outputs
various statistics. Also reported is the per-class average of each statistic, weighted by the number
of instances from each class. All of these evaluation measures are discussed in Chapter 5 of the
book.

2.1.5 Doing it again
You can easily run J4.8 again with a different evaluation method. Select Use training set (near
the top left in Figure 2.4b) and click Start again. The classifier output is quickly replaced to show
how well the derived model performs on the training set, instead of showing the cross-validation
results. This evaluation is highly optimistic. It may still be useful, because it generally represents
an upper bound to the model’s performance on fresh data. In this case, all 14 training instances

20 CHAPTER 2. THE EXPLORER

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: weather
Instances: 14
Attributes: 5

outlook
temperature
humidity
windy
play

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

outlook = sunny
| humidity <= 75: yes (2.0)
| humidity > 75: no (3.0)
outlook = overcast: yes (4.0)
outlook = rainy
| windy = TRUE: no (2.0)
| windy = FALSE: yes (3.0)

Number of Leaves : 5

Size of the tree : 8

Time taken to build model: 0.27 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 9 64.2857 %
Incorrectly Classified Instances 5 35.7143 %
Kappa statistic 0.186
Mean absolute error 0.2857
Root mean squared error 0.4818
Relative absolute error 60 %
Root relative squared error 97.6586 %
Total Number of Instances 14

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.778 0.6 0.7 0.778 0.737 0.789 yes
0.4 0.222 0.5 0.4 0.444 0.789 no

Weighted Avg. 0.643 0.465 0.629 0.643 0.632 0.789

=== Confusion Matrix ===

a b <-- classified as
7 2 | a = yes
3 2 | b = no

Figure 2.5: Output from the J4.8 decision tree learner.

2.1. GETTING STARTED 21

are classified correctly. In some cases a classifier may decide to leave some instances unclassified,
in which case these will be listed as Unclassified Instances. This does not happen for most
learning schemes in WEKA.

The panel in Figure 2.4b has further test options: Supplied test set, in which you specify a
separate file containing the test set, and Percentage split, with which you can hold out a certain
percentage of the data for testing. You can output the predictions for each instance by clicking
the More options button and checking the appropriate entry. There are other useful options, such
as suppressing some output and including other statistics such as entropy evaluation measures
and cost-sensitive evaluation. For the latter you must enter a cost matrix: type the number of
classes into the Classes box (and terminate it with the Enter or Return key) to get a default
cost matrix, then edit the values as required.

2.1.6 Working with models
The small pane at the lower left of Figure 2.4b, which contains one highlighted line, is a history
list of the results. The Explorer adds a new line whenever you run a classifier. Because you
have now run the classifier twice, the list will contain two items. To return to a previous result
set, click the corresponding line and the output for that run will appear in the Classifier Output
pane. This makes it easy to explore different classifiers or evaluation schemes and revisit the
results to compare them.

The result history list is the entry point to some powerful features of the Explorer. When you
right-click an entry a menu appears that allows you to view the results in a separate window, or
save the result buffer. More importantly, you can save the model that WEKA has generated in
the form of a Java object file. You can reload a model that was saved previously, which generates
a new entry in the result list. If you now supply a test set, you can reevaluate the old model on
that new set.

Several items on the right-click menu allow you to visualize the results in various ways. At
the top of the Explorer interface is a separate Visualize tab, but that is different: it shows the
dataset, not the results for a particular model. By right-clicking an entry in the history list
you can see the classifier errors. If the model is a tree or a Bayesian network you can see its
structure. You can also view the margin curve and various cost and threshold curves, including
the cost/benefit analysis tool. For all of these you must choose a class value from a submenu.
The Visualize threshold curve menu item allows you to see the effect of varying the probability
threshold above which an instance is assigned to that class. You can select from a wide variety of
curves that include the ROC and recall-precision curves. To see these, choose the X- and Y-axes
appropriately from the menus given. For example, set X to False Positive Rate and Y to True
Positive Rate for an ROC curve or X to Recall and Y to Precision for a recall-precision curve.

Figure 2.6 shows two ways of looking at the result of using J4.8 to classify the iris dataset—we
use this rather than the weather data because it produces more interesting pictures. Figure 2.6a
shows the tree. Right-click a blank space in this window to bring up a menu enabling you to
automatically scale the view or force the tree into the window. Drag the mouse to pan around
the space. It’s also possible to visualize the instance data at any node, if it has been saved by
the learning algorithm.

Figure 2.6b shows the classifier errors on a two-dimensional plot. You can choose which
attributes to use for X and Y using the selection boxes at the top. Alternatively, click one of
the speckled horizontal strips to the right of the plot: left-click for X and right-click for Y. Each
strip shows the spread of instances along that attribute. X and Y appear beside the ones you
have chosen for the axes.

The data points are colored according to their class: blue, red and green for Iris setosa, Iris

22 CHAPTER 2. THE EXPLORER

versicolor, and Iris virginica, respectively (there is a key at the bottom of the screen). Correctly
classified instances are shown as crosses; incorrectly classified ones appear as boxes (of which
there are three in Figure 2.6b). You can click on an instance to bring up relevant details: its
instance number, the values of the attributes, its class, and the predicted class.

2.1.7 When things go wrong
Beneath the result history list, at the bottom of Figure 2.3b, is a status line that says, simply,
OK. Occasionally this changes to See error log, an indication that something has gone wrong.
For example, there may be constraints among the various different selections you can make in a
panel. Most of the time the interface grays out inappropriate selections and refuses to let you
choose them. But occasionally the interactions are more complex, and you can end up selecting
an incompatible set of options. In this case, the status line changes when WEKA discovers the
incompatibility—typically when you press Start. To see the error, click the Log button to the
left of the bird in the lower right-hand corner of the interface. WEKA also writes a detailed
log to a file, called weka.log, under the wekafiles directory in the user’s home directory. This
often contains more information about the causes of problems than the Explorer’s Log window
because it captures debugging output directed to the standard out and error channels.

2.2 Exploring the Explorer
We have briefly investigated two of the six tabs at the top of the Explorer window in Figure 2.3b
and Figure 2.4b. In summary, here’s what all of the tabs do:

1. Preprocess: Choose the dataset and modify it in various ways.

2. Classify: Train learning schemes that perform classification or regression and evaluate
them.

3. Cluster : Learn clusters from the dataset.

4. Associate: Learn association rules for the data and evaluate them.

5. Select attributes: Select the most relevant aspects of the dataset.

6. Visualize: View different two-dimensional plots of the data and interact with them.

Each tab gives access to a whole range of facilities. In our tour so far, we have barely scratched
the surface of the Preprocess and Classify panels.

At the bottom of every panel is a Status box and a Log button. The status box displays
messages that keep you informed about what’s going on. For example, if the Explorer is busy
loading a file, the status box will say so. Right-clicking anywhere inside this box brings up a
little menu with two options: display the amount of memory available to WEKA, and run the
Java garbage collector. Note that the garbage collector runs constantly as a background task
anyway.

Clicking the Log button opens a textual log of the actions that WEKA has performed in this
session, with timestamps.

As noted earlier, the little bird at the lower right of the window jumps up and dances when
WEKA is active. The number beside the × shows how many concurrent processes are running.
If the bird is standing but stops moving, it’s sick! Something has gone wrong, and you may have
to restart the Explorer.

2.2. EXPLORING THE EXPLORER 23

2.2.1 Loading and filtering files
Along the top of the Preprocess panel in Figure 2.3b are buttons for opening files, URLs, and
databases. Initially, only files whose names end in .arff appear in the file browser; to see others,
change the Format item in the file selection box.

2.2.2 Converting files to ARFF
WEKA has converters for the following file formats:

• spreadsheet files with extension .csv,

• C4.5’s native file format with extensions .names and .data,

• serialized instances with extension .bsi,

• LIBSVM format files with extension .libsvm,

• SVM-Light format files with extension .dat,

• XML-based ARFF format files with extension .xrff,

• JSON-based ARFF format files with extension .json,

• ASCII Matlab files with extension .m.

The appropriate converter is used based on the file extension. If WEKA cannot load the
data, it tries to interpret it as ARFF. If that fails, it pops up the box shown in Figure 2.7a.

This is a generic object editor, used throughout WEKA for selecting and configuring object.
For example, when you set parameters for a classifier, you use the same kind of box. The
CSVLoader for .csv files is selected by default, and the More button gives you more information
about it, shown in Figure 2.7b. It is always worth looking at the documentation! In this case,
it explains that the spreadsheet’s first row determines the attribute names and gives a brief
description of the CSVLoader’s options. Click OK to use this converter. For a different one,
click Choose to select from the list in Figure 2.7c.

The ArffLoader is the first option, and we reached this point only because it failed. The
second option is for the C4.5 format, in which there are two files for a dataset, one giving field
names and the other giving the actual data. The third option, CSVLoader, is the default, and
we clicked Choose because we want a different one. The fourth option is for reading from a
database rather than a file; however, the SQLViewer tool, shown in Figure 2.8 and accessible by
pressing the Open DB button on the Preprocess panel, is a more user-friendly route for accessing
a database. The “serialized instances” option is for reloading datasets that have been saved as
Java serialized object. Any Java object can be saved in this format and reloaded. As a native
Java format, it is quicker to load that an ARFF file, which must be parsed and checked. When
repeatedly reloading a large dataset it may be worth saving it in this form.

The tenth menu item is for importing a directory containing plain text files for the purposes
of text mining. The imported directory is expected to have a specific structure—namely a set
of subdirectories, each containing one or more text files with the extension .txt. Each text file
becomes one instance in the dataset, with a string attribute holding the contents of the file and a
nominal class attribute holding the name of the subdirectory that it came from. This dataset can
then be further processed into word frequencies using the StringToWordVector filter (covered in
the next section). The last option is for loading data files in XRFF, the XML Attribute Relation

24 CHAPTER 2. THE EXPLORER

File format. As the name suggests, this gives ARFF header and instance information in the
XML markup language.

Further features of the generic object editor in Figure 2.7a are Save, which saves a configured
object, and Open, which opens a previously saved one. These are not useful for this particular
kind of object. But other generic object editor panels have many editable properties, and having
gone to some trouble to set them up you may want to save the configured object to reuse later.

Files on your computer are not the only source of datasets for WEKA. You can open a
URL, and WEKA will use the hypertext transfer protocol (HTTP) to download an ARFF file
from the Web. Or you can open a database (Open DB)—any database that has a Java database
connectivity (JDBC) driver—and retrieve instances using the SQL Select statement. This returns
a relation that WEKA reads in as an ARFF file. To make this work with your database, you
may need to modify the file weka/experiment/DatabaseUtils.props in the WEKA distribution by
adding your database driver to it. (To access this file, expand the weka.jar file in the WEKA
distribution.) Figure 2.8 shows the SQLViewer tool that appears when Open DB is clicked. In
this example, the iris dataset has been extracted from a single database table.

Data can be saved in all these formats (with the exception of the directory containing text
files) using the Save button in the Preprocess panel (Figure 2.3b). It is also possible to generate
artificial data using the Generate button. Artificial data suitable for classification can be gen-
erated from decision lists, radial-basis function networks and Bayesian networks, as well as the
classic LED24 domain. Artificial regression data can be generated according to mathematical
expressions. There are also several generators for producing artificial data for clustering pur-
poses. Apart from loading and saving datasets, the Preprocess panel also allows you to filter
them. Filters are an important component of WEKA.

2.2.3 Using filters
Clicking Choose (near the top left) in Figure 2.3b gives a list of filters like that in Figure 2.9a.
Actually, you get a collapsed version: click on an arrow to open up its contents. We will describe
how to use a simple filter to delete specified attributes from a dataset, in other words, to perform
manual attribute selection. The same effect can be achieved more easily by selecting the relevant
attributes using the tick boxes and pressing the Remove button. Nevertheless we describe the
equivalent filtering operation explicitly, as an example.

Remove is an unsupervised attribute filter, and to see it you must scroll further down the
list. When selected, it appears in the line beside the Choose button, along with its parameter
values—in this case the line reads simply “Remove”. Click that line to bring up a generic object
editor with which you can examine and alter the filter’s properties. (You did the same thing
earlier by clicking the J48 line in Figure 2.4b to open the J4.8 classifier’s object editor.) The
object editor for the Remove filter shown in Figure 2.9b.

To learn about it, click More to show the information in Figure 2.9c. This explains that the
filter removes a range of attributes from the dataset. It has an option, attributeIndices, that
specifies the range to act on and another called invertSelection that determines whether the
filter selects attributes or deletes them. There are boxes for both of these in the object editor
shown in Figure 2.9b, and in fact we have already set them to 1,2 (to affect attributes 1 and
2, namely outlook and temperature) and False (to remove rather than retain them). Click OK
to set these properties and close the box. Notice that the line beside the Choose button now
reads Remove –R 1,2. In the command-line version of the Remove filter, the option –R is used
to specify which attributes to remove. After configuring an object it’s often worth glancing at
the resulting command-line formulation that the Explorer sets up.

Figure 2.9 demonstrates a further feature of the generic object editor, namely “capabilities.”

2.2. EXPLORING THE EXPLORER 25

Algorithms in WEKA may provide information about what data characteristics they can handle,
and, if they do, a Capabilities button appears underneath More in the generic object editor
(Figure 2.9b). Clicking it brings up Figure 2.9d, which gives information about what the method
can do. Here it states that Remove can handle many attribute characteristics, such as different
types (nominal, numeric, relational, etc.) and missing values. It shows the minimum number of
instances that are required for Remove to operate on.

Figure 2.9e shows a list of selected constraints on capabilities, which is obtained by clicking
the Filter button at the bottom of Figure 2.9a. If the current dataset exhibits some characteristic
that is ticked in Figure 2.9e but missing from the capabilities for the Remove filter (Figure 2.9d),
the Apply button to the right of Choose in Figure 2.3b will be grayed out, as will the entry in
the list in Figure 2.9a. Although you cannot apply it, you can nevertheless select a grayed-out
entry to inspect its options, documentation and capabilities using the generic object editor. You
can release individual constraints by deselecting them in Figure 2.9e, or click the Remove filter
button to clear all the constraints.

Apply the filter by clicking Apply (at the right-hand side of Figure 2.3b). Immediately the
screen in Figure 2.10 appears—just like the one in Figure 2.3b but with only three attributes,
humidity, windy, and play. At this point the fifth button in the row near the top becomes active.
Undo reverses the filtering operation and restores the original dataset, which is useful when you
experiment with different filters.

The first attribute, humidity, is selected and a summary of its values appears on the right.
As a numeric attribute, the minimum and maximum values, mean, and standard deviation are
shown. Below is a histogram that shows the distribution of the play attribute. Unfortunately,
this display is impoverished because the attribute has so few different values that they fall into
two equal-sized bins. More realistic datasets yield more informative histograms.

2.2.4 Training and testing learning schemes
The Classify panel lets you train and test learning schemes that perform classification or regres-
sion. Section 2.1 explained how to interpret the output of a decision tree learner and showed the
performance figures that are automatically generated by the evaluation module. The interpreta-
tion of these is the same for all models that predict a categorical class. However, when evaluating
models for numeric prediction, WEKA produces a different set of performance measures

As an example, in Figure 2.11a the CPU performance dataset has been loaded into WEKA.
You can see the histogram of values of the first attribute, MYCT, at the lower right. In Fig-
ure 2.11b the model tree inducer M5’ has been chosen as the classifier by going to the Classify
panel, clicking the Choose button at the top left, opening up the trees section of the hierarchi-
cal menu shown in Figure 2.4a, finding M5P, and clicking Start. The hierarchy helps to locate
particular classifiers by grouping items with common functionality

Figure 2.12 shows the output. The pruned model tree contains splits on three of the six
attributes in the data. The root splits on the CHMIN attribute, yielding a linear model at the
leaf on the left-hand branch and the remaining structure in the right-hand branch. There are
five leaves in all, each with a corresponding linear model. The first number in parentheses at
each leaf is the number of instances that reach it; the second is the root mean squared error of
the predictions from the leaf’s linear model for those instances, expressed as a percentage of the
standard deviation of the class attribute computed over all the training data. The description of
the tree is followed by several figures that measure its performance. These are derived from the
test option chosen in Figure 2.11b, 10-fold cross-validation (not stratified, because stratification
does not apply when the class is numeric).

Ordinary linear regression, another scheme for numeric prediction, is found under Linear-

26 CHAPTER 2. THE EXPLORER

Regression in the functions section of the menu in Figure 2.4a. It builds a single linear regression
model rather than the five in Figure 2.12; not surprisingly, its performance is slightly worse.

To get a feel for their relative performance, let us visualize the errors these schemes make,
as we did for the iris dataset in Figure 2.6b. Right-click the entry in the history list and select
Visualize classifier errors to bring up the two-dimensional plot of the data in Figure 2.16. The
points are color coded by class—but in this case the color varies continuously because the class
is numeric. In Figure 2.16 the MMAX attribute has been selected for the X-axis and CHMAX
has been chosen for the Y-axis because this gives a reasonable spread of points. Each data point
is marked by a cross whose size indicates the absolute value of the error for that instance. The
smaller crosses in Figure 2.13a (for M5’), when compared with those in Figure 2.13b (for linear
regression), show that M5’ is superior.

2.2.5 Using a metalearner
Metalearners take simple classifiers and turn them into more powerful learners. For example,
to boost decision stumps in the Explorer, go to the Classify panel and choose the classifier
AdaboostM1 from the meta section of the hierarchical menu. When you configure this classifier
by clicking it, the object editor shown in Figure 2.14 appears. This has its own classifier field,
which we set to DecisionStump (as shown). This method could itself be configured by clicking
(except that DecisionStump happens to have no editable properties). Click OK to return to the
main Classify panel and Start to try out boosting decision stumps up to 10 times. It turns out
that this mislabels only 7 of the 150 instances in the iris data—good performance considering
the rudimentary nature of decision stumps and the rather small number of boosting iterations.

2.2.6 Clustering and association rules
Use the Cluster and Associate panels to invoke clustering algorithms and methods for finding
association rules. When clustering, WEKA shows the number of clusters and how many instances
each cluster contains. For some algorithms the number of clusters can be specified by setting a
parameter in the object editor. For probabilistic clustering methods, WEKA measures the log-
likelihood of the clusters on the training data: the larger this quantity, the better the model fits
the data. Increasing the number of clusters normally increases the likelihood, but may overfit.

The controls on the Cluster panel are similar to those for Classify. You can specify some of
the same evaluation methods—use training set, supplied test set, and percentage split (the last
two are used with the log-likelihood). A further method, classes to clusters evaluation, compares
how well the chosen clusters match a preassigned class in the data. You select an attribute
(which must be nominal) that represents the “true” class. Having clustered the data, WEKA
determines the majority class in each cluster and prints a confusion matrix showing how many
errors there would be if the clusters were used instead of the true class. If your dataset has a class
attribute, you can ignore it during clustering by selecting it from a pull-down list of attributes,
and see how well the clusters correspond to actual class values. Finally, you can choose whether
or not to store the clusters for visualization. The only reason not to do so is to conserve space.
As with classifiers, you visualize the results by right-clicking on the result list, which allows you
to view two-dimensional scatter plots like the one in Figure 2.6b. If you have chosen classes to
clusters evaluation, the class assignment errors are shown. For the Cobweb clustering scheme,
you can also visualize the tree.

The Associate panel is simpler than Classify or Cluster. WEKA contains several algorithms
for determining association rules and no methods for evaluating such rules. Figure 2.15 shows
the output from the Apriori program for association rules on the nominal version of the weather

2.3. FILTERING ALGORITHMS 27

data. Despite the simplicity of the data, several rules are found. The number before the arrow is
the number of instances for which the antecedent is true; that after the arrow is the number of
instances for which the consequent is true also; and the confidence (in parentheses) is the ratio
between the two. Ten rules are found by default: you can ask for more by using the object editor
to change numRules.

2.2.7 Attribute selection
The Select attributes panel gives access to several methods for attribute selection. This involves
an attribute evaluator and a search method. Both are chosen in the usual way and configured
with the object editor. You must also decide which attribute to use as the class. Attribute
selection can be performed using the full training set or using cross-validation. In the latter case
it is done separately for each fold, and the output shows how many times—that is, in how many
of the folds—each attribute was selected. The results are stored in the history list. When you
right-click an entry here you can visualize the dataset in terms of the selected attributes (choose
Visualize reduced data).

2.2.8 Visualization
The Visualize panel helps you visualize a dataset—not the result of a classification or clustering
model, but the dataset itself. It displays a matrix of two-dimensional scatter plots of every pair
of attributes. Figure 2.16a shows the iris dataset. You can select an attribute—normally the
class—for coloring the data points using the controls at the bottom. If it is nominal, the coloring
is discrete; if it is numeric, the color spectrum ranges continuously from blue (low values) to
orange (high values). Data points with no class value are shown in black. You can change the
size of each plot, the size of the points, and the amount of jitter, which is a random displacement
applied to X and Y values to separate points that lie on top of one another. Without jitter, a
thousand instances at the same data point would look just the same as one instance. You can
reduce the size of the matrix of plots by selecting certain attributes, and you can subsample the
data for efficiency. Changes in the controls do not take effect until the Update button is clicked.

Click one of the plots in the matrix to enlarge it. For example, clicking on the top left plot
brings up the panel in Figure 2.16b. You can zoom in on any area of this panel by choosing
Rectangle from the menu near the top right and dragging out a rectangle on the viewing area like
that shown. The Submit button near the top left rescales the rectangle into the viewing area.

2.3 Filtering algorithms
Now we take a detailed look at the filtering algorithms implemented within WEKA. These are
accessible from the Explorer, and also from the Knowledge Flow and Experimenter interfaces
described later. All filters transform the input dataset in some way. When a filter is selected
using the Choose button, its name appears in the line beside that button. Click that line to get
a generic object editor to specify its properties. What appears in the line is the command-line
version of the filter, and the parameters are specified with minus signs. This is a good way of
learning how to use the WEKA commands directly.

There are two kinds of filter: unsupervised and supervised. This seemingly innocuous dis-
tinction masks a rather fundamental issue. Filters are often applied to a training dataset and
then also applied to the test file. If the filter is supervised—for example, if it uses class values
to derive good intervals for discretization—applying it to the test data will bias the results. It is
the discretization intervals derived from the training data that must be applied to the test data.

28 CHAPTER 2. THE EXPLORER

When using supervised filters you must to be careful to ensure that the results are evaluated
fairly, an issue that does not arise with unsupervised filters.

We treat WEKA’s unsupervised and supervised filtering methods separately. Within each
type there is a further distinction between attribute filters, which work on the attributes in the
datasets, and instance filters, which work on the instances. To learn more about a particular
filter, select it in the WEKA Explorer and look at its associated object editor, which defines
what the filter does and the parameters it takes.

2.3.1 Unsupervised attribute filters
We will first discuss WEKA’s unsupervised attribute filters, which do not require a class attribute
to be set.

2.3.1.1 Adding and removing attributes

Add inserts an attribute at a given position, whose value is declared to be missing for all instances.
Use the generic object editor to specify the attribute’s name, where it will appear in the list of
attributes, and its possible values (for nominal attributes); for date attributes you can also
specify the date format. Copy copies existing attributes so that you can preserve them when
experimenting with filters that overwrite attribute values. Several attributes can be copied
together using an expression such as 1âĂŞ3 for the first three attributes, or first-3,5,9-last for
attributes 1, 2, 3, 5, 9, 10, 11, 12 The selection can be inverted, affecting all attributes except
those specified. These features are shared by many filters. AddUserFields can be used to add
multiple new attributes to a dataset in one go. The user can specify the name, type and value
to use for each attribute.

AddID inserts a numeric identifier attribute at the user-specified index in the list of attributes.
An identifier attribute is useful for keeping track of individual instances after a dataset has been
processed in various ways, such as being transformed by other filters, or having the order of the
instances randomized.

Remove has already been described. Similar filters are RemoveType, which deletes all at-
tributes of a given type (nominal, numeric, string, date, or relational), and RemoveUseless,
which deletes constant attributes and nominal attributes whose values are different for almost
all instances. You can decide how much variation is tolerated before an attribute is deleted by
specifying the number of distinct values as a percentage of the total number of values. Note
that some unsupervised attribute filters behave differently if the menu in the Preprocess panel
has been used to set a class attribute. (By default, the last attribute is the class attribute.) For
example, RemoveType and RemoveUseless both skip the class attribute.

InterquartileRange adds new attributes that indicate whether the values of instances can be
considered outliers, or extreme values. The definition of outlier and extreme value is based on
the difference between the 25th and 75th quartile of an attribute’s values. Values are flagged
as extreme if they exceed the 75th quartile (or fall below the 25th quartile) by the product of
the user-specified extreme value factor and the interquartile range. Values that are not extreme
values but exceed the 75th quartile (or fall below the 25th quartile) by the product of the outlier
factor and the interquartile range are flagged as outliers. The filter can be configured to flag an
instance as an outlier or extreme if any of its attribute values are deemed outliers or extreme,
or to generate an outlier/extreme indicator pair for each attribute. It is also possible to flag
all extreme values as outliers, and to output attributes that indicate by how many interquartile
ranges an attribute’s value deviates from the median.

AddCluster applies a clustering algorithm to the data before filtering it. You use the object
editor to choose the clustering algorithm. Clusterers are configured just as filters are. The

2.3. FILTERING ALGORITHMS 29

AddCluster object editor contains its own Choose button for the clusterer, and you configure
the clusterer by clicking its line and getting another object editor panel, which must be filled in
before returning to the AddCluster object editor. This is probably easier to understand when
you do it in practice than when you read about it here! At any rate, once you have chosen a
clusterer, AddCluster uses it to assign a cluster number to each instance, as a new attribute. The
object editor also allows you to ignore certain attributes when clustering, specified as described
previously for Copy. ClusterMembership uses a clusterer, again specified in the filter’s object
editor, to generate membership values. A new version of each instance is created whose attributes
are these values. The class attribute, if set, is ignored during clustering.

AddExpression creates a new attribute by applying a mathematical function to numeric at-
tributes. The expression can contain attribute references and constants; arithmetic operators +,
–,*, /, and ˆ; the functions log and exp, abs and sqrt, floor, ceil and rint1, sin, cos and tan; and
parentheses. Attributes are specified by the prefix a, for example, a7 is the seventh attribute.
An example expression is

a1ˆ2*a5/log(a7*4.0)

There is a debug option that replaces the new attribute’s value with a postfix parse of the
supplied expression.

MathExpression is similar to AddExpression but can be applied to multiple attributes. Rather
than creating a new attribute it replaces the original values with the result of the expression in
situ; because of this, the expression cannot reference the value of other attributes. All the
operators that apply to AddExpression can be used, as well as the minimum, maximum, mean,
sum, sum-squared and standard deviation of the attribute being processed. Furthermore, simple
if-then-else expressions involving the operators and functions can be applied as well.

Whereas AddExpression and MathExpression apply mathematical functions specified in tex-
tual form, NumericTransform performs an arbitrary transformation by applying a given Java
function to selected numeric attributes. The function can be anything that takes a double as its
argument and returns another double, for example, sqrt() in java.lang.Math. One parameter is
the name of the Java class that implements the function (which must be a fully qualified name);
another is the name of the transformation method itself.

Normalize scales all numeric values in the dataset to lie between 0 and 1. The normalized
values can be further scaled and translated with user-supplied constants. Center and Standardize
transform them to have zero mean; Standardize gives them unit variance too. All three skip the
class attribute, if set. RandomSubset randomly selects a subset of the attributes to include in
the output; the user specifies how many (as a percentage of the number of attributes). The class
attribute, if set, is always included.

CartesianProduct produces a new attribute with values resulting from performing the Carte-
sian product between two or more nominal attributes. The name of the new attribute is a
concatenation of the names of the original attributes.

PartitionedMultiFilter is a special filter that applies a set of filters to a corresponding set of
attribute ranges in the input dataset. The user supplies and configures each filter, and defines
the range of attributes for them to work with. There is an option to delete attributes that are
not covered by any of the ranges. Only filters that operate on attributes are allowed. The output
of the individual filters is assembled into a new dataset.

Reorder alters the order of the attributes in the data; the new order is specified by supplying
a list of attribute indices. By omitting or duplicating indices it is possible to delete attributes or
make several copies of them.

1The rint function rounds to the closest integer.

30 CHAPTER 2. THE EXPLORER

2.3.1.2 Changing values

SwapValues swaps the positions of two values of a nominal attribute. The order of values is
entirely cosmetic—it does not affect learning at all—but if the class is selected, changing the
order affects the layout of the confusion matrix. MergeTwoValues merges values of a nominal
attribute into a single category. The new value’s name is a concatenation of the two original
ones, and every occurrence of either of the original values is replaced by the new one. The index
of the new value is the smaller of the original indices. For example, if you merge the first two
values of the outlook attribute in the weather data—in which there are five sunny, four overcast,
and five rainy instances—the new outlook attribute will have values sunny overcast and rainy;
there will be nine sunny overcast instances and the original five rainy ones. MergeManyValues
is similar to MergeTwoValues but allows any number of values of a nominal attribute to be
replaced by a single category. The user can specify the name of the new category to create.
MergeInfrequentValues also merges several nominal values into one category, but in this case the
process is controlled by a user-supplied minimum frequency. Values that occur fewer times than
this minimum are replaced with the new category. Like SwapValues, the new value’s name is a
concatenation of the the original ones. The user can opt to have a short identifier, based on a
hash code, used as the new value instead—this is useful if the concatenated names become very
long.

One way of dealing with missing values is to replace them globally before applying a learning
scheme. ReplaceMissingValues replaces each missing value by the mean for numeric attributes
and the mode for nominal ones. If a class is set, missing values of that attribute are not replaced
by default, but this can be changed. ReplaceMissingWithUserConstant is another filter that can
replace missing values. In this case, it allows the user to specify a constant value to use. This
constant can be specified separately for numeric, nominal and date attributes.

ReplaceWithMissingValue is a filter that does the opposite of the ones we have just discussed—
it replaces non-missing values, for a user-specified range of attributes, with missing values at
random. The probability that a given value will be replaced with a missing value can be set as
an option.

NumericCleaner replaces the values of numeric attributes that are too small, too large or too
close to a particular value with default values. A different default can be specified for each case,
along with thresholds for what is considered to be too large or small and a tolerance value for
defining “too close” can be specified as well.

AddValues adds any values from a user-supplied list that are not already present in a nominal
attribute. The labels can optionally be sorted. ClassAssigner can be used to set or unset a
dataset’s class attribute. The user supplies the index of the new class attribute; a value of zero
unsets the existing class attribute.

SortLabels can be used to sort the values of selected nominal attributes.

2.3.1.3 Conversions

Many filters convert attributes from one form to another. Discretize uses equal-width or equal-
frequency binning to discretize a range of numeric attributes, specified in the usual way. For
the former method the number of bins can be specified or chosen automatically by maximizing
the likelihood using leave-one-out cross-validation. It is also possible to create several binary
attributes instead of one multi-valued one. For equal-frequency discretization, the desired number
of instances per interval can be changed. PKIDiscretize discretizes numeric attributes using
equal-frequency binning; the number of bins is the square root of the number of values (excluding
missing values). Both these filters skip the class attribute by default.

2.3. FILTERING ALGORITHMS 31

MakeIndicator converts a nominal attribute into a binary indicator attribute and can be used
to transform a multiclass dataset into several two-class ones. It substitutes a binary attribute
for the chosen nominal one, whose values for each instance are 1 if a particular original value
was present and 0 otherwise. The new attribute is declared to be numeric by default, but it can
be made nominal if desired.

For some learning schemes, such as support vector machines, multivalued nominal attributes
must be converted to binary ones. The NominalToBinary filter transforms all specified multival-
ued nominal attributes in a dataset into binary ones, replacing each attribute with k values by
k binary attributes using a simple one-per-value (“one-hot”) encoding. The new attributes will
be numeric by default. Attributes that are already binary are left untouched. NumericToBinary
converts all numeric attributes into nominal binary ones (except the class, if set). If the value of
the numeric attribute is exactly 0, the new attribute will be 0, and if it is missing, the new at-
tribute will be missing; otherwise, the value of the new attribute will be 1. These filters also skip
the class attribute. NumericToNominal converts numeric attributes to nominal ones by simply
adding every distinct numeric value to the list of nominal values. This can be a useful filter to
apply after importing a .csv file—WEKA’s CSV import facility creates a numeric attribute for
any data column whose values can all be parsed as numbers, unless configured to do otherwise,
but it might make sense to interpret the values of an integer attribute as discrete instead.

FirstOrder takes a range of N numeric attributes and replaces them with N – 1 numeric
attributes whose values are the differences between consecutive attribute values from the original
instances. For example, if the original attribute values were 3, 2, and 1, the new ones will be –1
and –1.

KernelFilter converts the data to a kernel matrix: it outputs a new dataset, containing the
same number of instances as before, in which each value is the result of evaluating a kernel
function on a pair of the original instances. By default, all attributes are transformed to center
them around zero before the kernels are computed, though they are not rescaled to unit variance.
However, different filters can be specified.

PrincipalComponents performs a principal components transformation on the dataset. First,
any multi-valued nominal attributes are converted to binary, and missing values are replaced by
means. The data is normalized (by default). The number of components is normally determined
based on the user-specified proportion of variance to be covered, but it is also possible to specify
the number of components explicitly.

Transpose, as the name suggests, transposes the data—instances become attributes and at-
tributes become instances. If the first attribute in the original data is a nominal or string
identifier, this will be used to create attribute names in the transposed data. Any other at-
tributes must be numeric. The attribute names in the original data are used to create a string
identifier attribute in the transposed data.

2.3.1.4 String conversion

A string attribute has an unspecified number of values. StringToNominal converts it to nominal
with a set number of values. You should ensure that all string values that will appear in potential
test data are represented in the dataset. NominalToString converts the other way.

StringToWordVector produces numeric attributes that represent the frequency of words in
the value of a string attribute. The set of words—that is, the new attribute set—is determined
from the full set of values in the string attribute. The new attributes can be named with a
user-determined prefix to keep attributes derived from different string attributes distinct.

There are many options that affect tokenization. Words can be formed from contiguous
alphabetic sequences or separated by a given set of delimiter characters. In the latter case, they

32 CHAPTER 2. THE EXPLORER

can be further split into n-grams (with user-supplied minimum and maximum length), or be
processed by a stemming algorithm. They can be converted to lowercase before being added
to the dictionary, or all words on a supplied list of stopwords can be ignored. Words that are
not among the top k words ranked by frequency can be discarded (slightly more than k words
will be retained if there are ties at the kth position). If a class attribute has been assigned, the
top k words for each class will be kept (this can be turned off by the user). The value of each
word attribute reflects its presence or absence in the string, but this can be changed. A count of
the number of times the word appears in the string can be used instead. Word frequencies can
be normalized to give each document’s attribute vector the same Euclidean length—this length
is not chosen to be 1, to avoid the very small numbers that would entail, but is the average
length of all documents that appear as values of the original string attribute. Alternatively, the
frequencies fij for word i in document j can be transformed using log (1 + fij) or the TFIDF
measure.

FixedDictionaryStringToWordVector is similar to StringToWordVector but allows the user to
provide a dictionary file containing the words that will form the attributes, rather than building
a dictionary on the fly. The format of the dictionary file is that of one word per line, with each
followed by an optional count (separated by a comma) of how many documents in the corpus
from which the dictionary was derived contained that word.

ChangeDateFormat alters the formatting string that is used to parse date attributes. Any
format supported by Java’s SimpleDateFormat class can be specified.

2.3.1.5 Time series

Two filters work with time series data. TimeSeriesTranslate replaces the values of an attribute
(or attributes) in the current instance with the equivalent value in some other (previous or future)
instance. TimeSeriesDelta replaces attribute values in the current instance with the difference
between the current value and the value in some other instance. In both cases instances in which
the time-shifted value is unknown may be removed, or missing values used.

2.3.1.6 Randomizing the attributes

Other attribute filters degrade the data. AddNoise takes a nominal attribute and changes a
given percentage of its values. Missing values can be retained or changed along with the rest.
Obfuscate anonymizes data by renaming the relation, attribute names, and nominal and string
attribute values. RandomProjection projects the dataset on to a lower-dimensional subspace
using a random matrix with columns of unit length. The class attribute is not included in the
projection.

2.3.2 Unsupervised instance filters
WEKA’s instance filters affect all instances in a dataset rather than all values of a particular
attribute or set of attributes.

2.3.2.1 Randomizing and subsampling

Randomize does just what the name suggests—it randomizes the order of the instances in the
dataset. The user can specify a random number seed to use in this process.

There are various ways of generating subsets of the data. Use Resample to produce a random
sample by sampling with or without replacement, or RemoveFolds to split the data into a given
number of cross-validation folds and reduce it to just one of them. If a random number seed is

2.3. FILTERING ALGORITHMS 33

provided, the dataset will be shuffled before the subset is extracted. ReservoirSample uses the
reservoir sampling algorithm to produce a random sample (without replacement) from a dataset.
When used from the Knowledge Flow interface (see Chapter 3) or from the command line, the
dataset is read incrementally, so that datasets that exceed main memory can be sampled.

RemovePercentage removes a given percentage of instances, and RemoveRange removes a
certain range of instance numbers. To remove all instances that have certain values for nominal
attributes, or numeric values above or below a certain threshold, use RemoveWithValues. By
default all instances are deleted that exhibit one of a given set of nominal attribute values (if
the specified attribute is nominal) or a numeric value below a given threshold (if it is numeric).
However, the matching criterion can be inverted. The attribute information is normally left
unchanged, but this can be altered so that corresponding values of a nominal attribute are
deleted from its definition.

RemoveFrequentValues can be used to remove those instances containing the most- or least-
frequent values of a particular nominal attribute; the user can specify how many frequent or
infrequent values to remove.

SubsetByExpression selects all instances that satisfy a user-supplied logical expression. The
expression can involve mathematical operators and functions, such as those used by AddExpres-
sion and MathExpression, and logical operators (such as and, or and not), applied to attribute
values. For example, the expression

(CLASS is ’mammal’) and (ATT14 > 2)

selects only those instances whose class attribute has the value mammal and whose 14th at-
tribute exceeds 2.

You can remove outliers by applying a classification method to the dataset (specifying it just
as the clustering method was specified previously for AddCluster) and use RemoveMisclassified to
delete the instances that it misclassifies. The process is normally repeated until the data is fully
cleansed, but a maximum number of iterations can be specified instead. Cross-validation can be
used rather than evaluation on the training data, and for numeric classes an error threshold can
be specified.

2.3.2.2 Sparse instances

The NonSparseToSparse and SparseToNonSparse filters convert between the regular representa-
tion of a dataset and its sparse representation.

2.3.3 Supervised filters
Supervised filters are available from the Explorer’s Preprocess panel, just as unsupervised ones
are. As mentioned earlier, you need to be careful with them because, despite appearances, they
are not really preprocessing operations. We noted this earlier with regard to discretization—it
must not use the test data’s class values because these are supposed to be unknown—and this
is true for supervised filters in general.

Because of popular demand, WEKA allows you to invoke supervised filters as a preprocessing
operation, just like unsupervised filters. However, if you intend to use them for classification you
should adopt a different methodology. A metalearner is provided so that the process of building
the filtering model becomes part of the learning process. This filters the test data using the filter
that has been created from the training data. It is also useful for some unsupervised filters. For
example, in StringToWordVector the dictionary will be created from the training data alone:

34 CHAPTER 2. THE EXPLORER

words that are novel in the test data will be discarded. To use a supervised filter in this way,
invoke the FilteredClassifier metalearning scheme from the meta section of the menu displayed
by the Classify panel’s Choose button. Figure 2.17a shows the object editor for this metalearning
scheme. With it you choose a classifier and a filter. Figure 2.17b shows the menu of filters.

Supervised filters, just like unsupervised ones, are divided into attribute and instance filters.

2.3.3.1 Supervised attribute filters

Discretize, highlighted in Figure 2.17, uses the MDL method of supervised discretization. You
can specify a range of attributes or force the discretized attribute to be binary. The class must
be nominal. By default Fayyad and Irani’s (1993) criterion is used, but Kononenko’s method
(1995) is an option.

There is a supervised version of the NominalToBinary filter that transforms all multivalued
nominal attributes to binary ones. In this version, the transformation depends on whether the
class is nominal or numeric. If nominal, the same method as before is used: an attribute with
k values is transformed into k binary attributes. If the class is numeric, however, the method
described in used by the model tree learner M5’ is applied. In either case the class itself is not
transformed.

ClassOrder changes the ordering of the class values. The user determines whether the new
ordering is random or in ascending or descending class frequency. This filter must not be used
with the FilteredClassifier metalearning scheme!

AddClassification adds to the data the predictions of a given classifier, which can be either
trained on the input dataset or loaded from a file as a serialized object. New attributes can be
added that hold the predicted class value, the predicted probability distribution (if the class is
nominal), or a flag that indicates misclassified instances (or, for numeric classes, the difference
between the predicted and actual class values).

AttributeSelection applies a given attribute selection technique in order to reduce the number
of attributes in the data. The user can choose which attribute or subset evaluator to use and
combine it with a search strategy in order to implement an attribute selection method.

ClassConditionalProbabilities converts the values of nominal and numeric attributes into class
conditional probability estimates. For each original attribute A converted, it creates as many
new attributes as there are class values, where the value of the new attribute corresponding to
class Ck is P (A|Ck). This is essentially the same as what the naive Bayes classifier computes
and, in fact, the implementation uses naive Bayes internally. Like the unsupervised filters that
merge nominal values, this filter can help when dealing with nominal attributes that have a large
number of distinct values.

2.3.3.2 Supervised instance filters

There are four supervised instance filters. Resample is like the eponymous unsupervised instance
filter except that it maintains the class distribution in the subsample. Alternatively, it can be
configured to bias the class distribution towards a uniform one. Sampling can be performed with
(default) or without replacement. SpreadSubsample also produces a random subsample, but
the frequency difference between the rarest and the most common class can be controlled—for
example, you can specify at most a 2 : 1 difference in class frequencies. You can also limit the
number of instances in any class by specifying an explicit maximum count.

SMOTE is another filter that samples the data and alters the class distribution (Chawla
et al., 2002). Like SpreadSubsample, it can be used to adjust the relative frequency between
minority and majority classes in the data—but it takes care not to undersample majority classes
and it oversamples the minority class by creating synthetic instances using a k-nearest neighbor

2.4. LEARNING ALGORITHMS 35

approach. The user can specify the oversampling percentage and the number of neighbors to use
when creating synthetic instances.

Like the unsupervised instance filter RemoveFolds, StratifiedRemoveFolds outputs a specified
cross-validation fold for the dataset, except that this time the fold is stratified.

2.4 Learning algorithms
On the Classify panel, when you select a learning algorithm using the Choose button the
command-line version of the classifier appears in the line beside the button, including the pa-
rameters specified with minus signs. To change them, click that line to get an appropriate object
editor. The classifiers in WEKA are divided into Bayesian classifiers, trees, rules, functions, lazy
classifiers and a final miscellaneous category. We describe them briefly here, along with their
parameters. To learn more, choose one in the WEKA Explorer interface and examine its object
editor. A further kind of classifier, the metalearner, is described in the next section.

2.4.1 Bayesian classifiers
NaiveBayes implements the probabilistic Naive Bayes classifier. NaiveBayesSimple uses the
normal distribution to model numeric attributes. NaiveBayes can use kernel density estimators,
which improve performance if the normality assumption is grossly incorrect; it can also handle
numeric attributes using supervised discretization.

Figure 2.18 shows the output of NaiveBayes on the weather data. The salient difference
between this and the output in Figure 2.5 of J48 on the same data is that instead of a tree in
textual form, here the parameters of the Naive Bayes model are presented in a table. The first
column shows attributes and the other two show class values; entries are either frequency counts
of nominal values or parameters of normal distributions for numeric attributes. For example,
Figure 2.18 shows that the mean temperature value for instances of class yes is 72.9697, while for
instances for which windy = yes the values true and false occur 4 and 7 times respectively. The
grand total of the yes and no counts for windy is, surprisingly, 18—more than the 14 instances
in the weather data (the situation for outlook is even worse, totaling 20). The reason is that
NaiveBayes avoids zero frequencies by applying the Laplace correction, which involves initializing
each count to 1 rather than to 0.

NaiveBayesUpdateable is an incremental version that processes one instance at a time; it can
use a kernel estimator but not discretization. NaiveBayesMultinomial implements the multino-
mial Bayes classifier; NaiveBayesMultinomialUpdateable is an incremental version. NaiveBayes-
MultinomialText is a version of incremental multinomial naive Bayes that can work directly on
string attributes. It effectively performs the function of the StringToWordVector filter, minus
the TF/IDF transformation, on the fly.

BayesNet learns Bayesian nets under the assumptions made in Section 6.7: nominal attributes
(numeric ones are prediscretized) and no missing values (any such values are replaced globally).
There are four different algorithms for estimating the conditional probability tables of the net-
work. Search is done using the K2 or the TAN algorithms, or more sophisticated methods based
on hill-climbing, simulated annealing, tabu search, and genetic algorithms. Optionally search
speed can be improved using AD trees. There are also two algorithms that use conditional inde-
pendence tests to learn the structure of the network; alternatively, the network structure can be
loaded from an XML file. More details on the implementation of Bayesian networks in WEKA
can be found in Bouckaert (2004).

You can observe the network structure by right-clicking the history item and selecting Visu-
alize graph. Figure 2.19a shows the graph for the nominal version of the weather data, which in

36 CHAPTER 2. THE EXPLORER

fact corresponds to the Naive Bayes result with all probabilities conditioned on the class value.
This is because the search algorithm defaults to K2 with the maximum number of parents of
a node set to one. Reconfiguring this to three by clicking on K2 in the configuration panel
yields the more interesting network in Figure 2.19b. Clicking on a node shows its probability
distribution—Figure 2.19c is obtained by clicking on the windy node in Figure 2.19b.

2.4.2 Trees
Of the tree classifiers in WEKA, we have already seen how to use J4.8, which reimplements
C4.5. To see the options, click the line beside the Choose button in Figure 2.4b to bring up the
object editor in Figure 2.20. You can build a binary tree instead of one with multiway branches.
You can set the confidence threshold for pruning (default 0.25), and the minimum number of
instances permissible at a leaf (default 2). Instead of standard C4.5 pruning you can choose
reduced-error pruning. The numFolds parameter (default 3) determines the size of the pruning
set: the data is divided equally into that number of parts and the last one used for pruning.
When visualizing the tree it is nice to be able to consult the original data points, which you
can do if saveInstanceData has been turned on (it is off, or False, by default to reduce memory
requirements). You can suppress subtree raising, yielding a more efficient algorithm; force the
algorithm to use the unpruned tree instead of the pruned one; or use Laplace smoothing for
predicted probabilities.

DecisionStump, designed for use with the boosting methods described later, builds one-level
binary decision trees for datasets with a categorical or numeric class, dealing with missing values
by treating them as a separate value and extending a third branch from the stump. Trees built by
RandomTree consider a given number of random features at each node, performing no pruning.
RandomForest constructs random forests by bagging ensembles of random trees.

REPTree builds a decision or regression tree using information gain/variance reduction and
prunes it using reduced-error pruning. Optimized for speed, it only sorts values for numeric
attributes once. It deals with missing values by splitting instances into pieces, as C4.5 does. You
can set the minimum number of instances per leaf, maximum tree depth (useful when boosting
trees), minimum proportion of training set variance for a split (numeric classes only), and number
of folds for pruning.

M5P is the model tree learner M5′ described in Chapter 7 of the book.
LMT builds logistic model trees. It can deal with binary and multiclass target variables,

numeric and nominal attributes, and missing values. When fitting the logistic regression func-
tions at a node using the LogitBoost algorithm, it uses cross-validation to determine how many
iterations to run just once and employs the same number throughout the tree instead of cross-
validating at every node. This heuristic (which you can switch off) improves the run time
considerably, with little effect on accuracy. Alternatively, you can set the number of boosting
iterations to be used throughout the tree manually, or use a fast heuristic based on the Akaike
Information Criterion instead of cross-validation. Weight trimming during the boosting process
can be used to further improve run time. Normally, it is the misclassification error that cross-
validation minimizes, but the mean absolute error of the probability estimates can be chosen
instead. The splitting criterion can be based on C4.5’s information gain (the default) or on the
LogitBoost residuals, striving to improve the purity of the residuals. LMT employs the minimal
cost-complexity pruning mechanism to produce a compact tree structure.

HoeffdingTree is an implementation of the incremental decision tree algorithm described in
Chapter 13 of the book. It offers options to create splits based on information gain or the Gini
index. Predictions at the leaves of the tree can be made by either majority class or naive Bayes
models.

2.4. LEARNING ALGORITHMS 37

2.4.3 Rules
DecisionTable builds a decision table classifier. It evaluates feature subsets using best-first search
and can use cross-validation for evaluation (Kohavi 1995b). An option uses the nearest-neighbor
method to determine the class for each instance that is not covered by a decision table entry,
instead of the table’s global majority, based on the same set of features.

OneR is the 1R classifier with one parameter: the minimum bucket size for discretization.
Figure 2.21 shows its output for the labor negotiations data. The Classifier model part shows
that wage-increase-first-year has been identified as the basis of the rule produced, with a split at
the value 2.9 dividing bad outcomes from good ones (the class is also good if the value of that
attribute is missing). Beneath the rules the fraction of training instances correctly classified by
the rules is given in parentheses.

Part obtains rules from partial decision trees. It builds the tree using C4.5’s heuristics with
the same user-defined parameters as J4.8. Figure 2.22 shows the output of Part for the labor
negotiations data. Three rules are found, and are intended to be processed in order, the prediction
generated for any test instance being the outcome of the first rule that fires. The last, “catch-all,”
rule will always fire if no other rule fires. As with J48, the numbers in parentheses that follow
each rule give the number of instances that are covered by the rule followed by the number that
are misclassified (if any).

M5Rules obtains regression rules from model trees built using M5’. Ridor learns rules with
exceptions by generating the default rule, using incremental reduced-error pruning to find excep-
tions with the smallest error rate, finding the best exceptions for each exception, and iterating.

JRip implements Ripper algorithm, including heuristic global optimization of the rule set (Co-
hen 1995). NNge is a nearest-neighbor method for generating rules using nonnested generalized
exemplars.

2.4.4 Functions
Algorithms that fall into the functions category include an assorted group of classifiers that

can be written down as mathematical equations in a reasonably natural way. Other methods, such
as decision trees and rules, cannot (there are exceptions: Naive Bayes has a simple mathematical
formulation). Four of them implement linear regression. SimpleLinearRegression learns a linear
regression model based on a single attribute—it chooses the one that yields the smallest squared
error. Missing values and nonnumeric attributes are not allowed. Figure 2.23 shows the output
of SimpleLinearRegression for the CPU performance data. The attribute that has the smallest
squared error in this case is MMAX.

LinearRegression performs least-squares multiple linear regression including attribute selec-
tion, either greedily using backward elimination or by building a full model from all attributes
and dropping terms one by one in decreasing order of their standardized coefficients until a stop-
ping criteria is reached. Both methods use a version of the AIC termination criterion. Attribute
selection can be turned off. The implementation has two further refinements: a heuristic mech-
anism for detecting collinear attributes (which can be turned off) and a ridge parameter that
stabilizes degenerate cases and can reduce overfitting by penalizing large coefficients. Technically,
LinearRegression implements ridge regression.

SMO implements the sequential minimal optimization algorithm for training a support vector
classifier (Platt, 1998; Keerthi et al., 2001), using kernel functions such as polynomial or Gaussian
kernels. Missing values are replaced globally, nominal attributes are transformed into binary ones,
and attributes are normalized by default—note that the coefficients in the output are based on
the normalized data. Normalization can be turned off, or the input standardized to zero mean
and unit variance. Pairwise classification is used for multiclass problems. Logistic regression

38 CHAPTER 2. THE EXPLORER

models can be fitted to the support vector machine output to obtain probability estimates. In
the multiclass case the predicted probabilities will be combined using pairwise coupling (Hastie
and Tibshirani, 1998). When working with sparse instances, turn normalization off for faster
operation.

Figure 2.24 shows the output of SMO on the iris data. A polynomial kernel with an ex-
ponent of 1 has been used, making the model a linear support vector machine. Since the iris
data contains three class values, three binary SMO models have been output—one hyperplane
to separate each possible pair of class values. Furthermore, since the machine is linear, the hy-
perplanes are expressed as functions of the attribute values in the original (albeit normalized)
space. Figures 2.25 and 2.26 show the result when the exponent of the polynomial kernel is
set to 2, making the support vector machine nonlinear. There are three binary SMO models
as before, but this time the classifiers are expressed as functions of the support vectors. Each
support vector is shown enclosed in angle brackets, along with the value of its coefficient α. The
value of the offset parameter, b, is shown as the last component of each function.

SMOreg implements the sequential minimal optimization algorithm for learning a support
vector regression model (Smola and SchÃűlkopf, 1998).

VotedPerceptron is the voted perceptron algorithm. Winnow modifies the basic perceptron to
use multiplicative updates. The implementation allows for a second multiplier β—different from
1/α—to be used, which makes the algorithm slightly more flexible than the version of balanced
Winnow discussed in the book.

GaussianProcesses implements the Bayesian Gaussian process technique for non-linear re-
gression. Users can specify the kernel function, along with a “noise” regularization parameter
for controlling the closeness of fit. They can choose to have the training data normalized or
standardized before learning the regression. For point estimates, this method is equivalent to
kernel ridge regression.

SGD implements stochastic gradient descent learning of linear models. Models can be learned
in either a batch or incremental fashion. The loss function chosen determines the type of model
learned. Available loss functions include the hinge loss (linear support vector classifier), log
loss (logistic regression), squared loss (least squares linear regression), epsilon-insensitive loss
(support vector regression) and Huber loss (robust regression). SGDText, like NaiveBayesMulti-
nomialText, is a version that is designed for text classification and can operate directly on string
attributes. SGDText is limited to just the hinge and log loss.

SimpleLogistic builds logistic regression models, fitting them using LogitBoost with simple
regression functions as base learners and determining how many iterations to perform using cross-
validation—which supports automatic attribute selection. SimpleLogistic generates a degenerate
logistic model tree comprising a single node, and supports the options given earlier for LMT.

Logistic is an alternative implementation for building and using a multinomial logistic regres-
sion model with a ridge estimator to guard against overfitting by penalizing large coefficients,
based on work by le Cessie and van Houwelingen (1992). Figure 2.27 shows its output on the iris
data. The coefficients of the regression functions are shown in tabular form, one for each class
value except for the last class. Given m input attributes and k classes, the probability predicted
for class j (with the exception of the last class) is given by

P (j|a1, a2, ..., am) = exp(wj
0+wj

1a1+wj
2a2+...+wj

mam)
1+

∑k−1
j=1

exp(wj
0+wj

1a1+wj
2a2+...+wj

mam)

where wj
0 is the intercept term for class j. The probability of the last class k is given by

1−
∑k−1

j=1 P (j|a1, a2, ..., am)

2.4. LEARNING ALGORITHMS 39

Beneath the table of regression coefficients is a second table giving an estimate of the odds
ratio for each input attribute and class value. For a given attribute, this value gives an indication
of its influence on the class when the values of the other attributes are held fixed.

2.4.5 Neural networks
MultilayerPerceptron is a neural network that is trained using back propagation. Although listed
under functions, it differs from the other schemes because it has its own user interface. If you
load up the numeric version of the weather data, invoke MultilayerPerceptron, set GUI to True
in its object editor, and run the network by clicking Start on the Classify panel, the diagram in
Figure 2.28 appears in a separate window. This network has three layers: an input layer on the
left with one rectangular box for each attribute (colored green); a hidden layer next to it (red) to
which all the input nodes are connected; and an output layer at the right (orange). The labels at
the far right show the classes that the output nodes represent. Output nodes for numeric classes
are automatically converted to unthresholded linear units.

Before clicking Start to run the network, you can alter its structure by adding nodes and
connections. Nodes can be selected or deselected. All six nodes in the hidden and output layers
in Figure 2.28 are deselected, indicated by the gray color of their center. To select a node, simply
click on it. This changes the color of its center from gray to bright yellow. To deselect a node,
right-click in an empty space. To add a node, ensure that none is selected and left-click anywhere
in the panel; the new node will be selected automatically. In Figure 2.28, a new node has been
added at the lower center. To connect two nodes, select the start node and then click on the
end one. If several start nodes are selected, they are all connected to the end node. If you click
in empty space instead, a new node is created as the end node. Notice that connections are
directional (although the directions are not shown). The start nodes remain selected; thus you
can add an entire hidden layer with just a few clicks, as shown in Figure 2.28b. To remove a
node, ensure that no nodes are selected and right-click it; this also removes all connections to it.
To remove a single connection, select one node and right-click the node at the other end.

As well as configuring the structure of the network, you can control the learning rate, the
momentum, and the number of passes that will be taken through the data, called epochs. The
network begins to train when you click Start, and a running indication of the epoch and the error
for that epoch is shown at the lower left of the panel in Figure 2.28. Note that the error is based
on a network that changes as the value is computed. For numeric classes the error value depends
on whether the class is normalized. The network stops when the specified number of epochs is
reached, at which point you can accept the result or increase the desired number of epochs and
press Start again to continue training.

MultilayerPerceptron need not be run through the graphical interface. Several parameters
can be set from the object editor to control its operation. If you are using the graphical interface
they govern the initial network structure, which you can override interactively. With autoBuild
set, hidden layers are added and connected up. The default is to have the one hidden layer shown
in Figure 2.28a, but without autoBuild this would not appear and there would be no connections.
The hiddenLayers parameter defines what hidden layers are present and how many nodes each
one contains. Figure 2.28a is generated by a value of 4 (one hidden layer with four nodes), and
although 2.28b was created by adding nodes interactively, it could have been generated by setting
hiddenLayers to 4,5 (one hidden layer with four nodes and another with five). The value is a
comma-separated list of integers; 0 gives no hidden layers. Furthermore, there are predefined
values that can be used instead of integers: i is the number of attributes, o the number of
class values, a the average of the two, and t their sum. The default, a, was used to generate
Figure 2.28a.

40 CHAPTER 2. THE EXPLORER

The options learningRate and momentum set values for these parameters, which can be
overridden in the graphical interface. A decay parameter causes the learning rate to decrease
with time: it divides the starting value by the epoch number to obtain the current rate. This
sometimes improves performance and may stop the network from diverging. The reset parameter
automatically resets the network with a lower learning rate and begins training again if it is
diverging from the answer (this option is only available if the graphical interface is not used).

The trainingTime parameter sets the number of training epochs. Alternatively, a percentage
of the data can be set aside for validation (using validationSetSize): then training continues
until performance on the validation set starts to deteriorate consistently—or until the specified
number of epochs is reached. If the percentage is set to zero, no validation set is used. The
validationThreshold parameter determines how many consecutive times the validation set error
can deteriorate before training is stopped.

The NominalToBinaryFilter filter is specified by default in the MultilayerPerceptron object
editor; turning it off may improve performance on data in which the nominal attributes are
really ordinal. The attributes can be normalized (with normalizeAttributes), and a numeric class
can be normalized too (with normalizeNumericClass). Both may improve performance; these
options are turned on by default.

2.4.6 Lazy classifiers
Lazy learners store the training instances and do no real work until classification time. The
simplest lazy learner is the k-nearest-neighbor classifier, which is implemented by IBk. A variety
of different search algorithms can be used to speed up the task of finding the nearest neighbors.
A linear search is the default, but other options include kD-trees, ball trees and so-called “cover
trees” (Beygelzimer et al., 2006). The distance function used is a parameter of the search
method. The default is the same as for IB1, that is, the Euclidean distance; other options include
Chebyshev, Manhattan and Minkowski distances. The number of nearest neighbors (default k
= 1) can be specified explicitly in the object editor or determined automatically using leave-one-
out cross-validation, subject to an upper limit given by the specified value. Predictions from
more than one neighbor can be weighted according to their distance from the test instance, and
two different formulas are implemented for converting the distance into a weight. The number
of training instances kept by the classifier can be restricted by setting the window size option.
As new training instances are added, the oldest ones are removed to maintain the number of
training instances at this size KStar is a nearest-neighbor method with generalized distance
function based on transformations, discussed in Chapter 7 of the book.

LWL is a general algorithm for locally weighted learning. It assigns weights using an instance-
based method and builds a classifier from the weighted instances. The classifier is selected in
LWL’s object editor: a good choice is naive Bayes or logistic regression for classification problems
and linear regression for regression problems. You can set the number of neighbors used, which
determines the kernel bandwidth, and the kernel shape to use for weighting—linear, inverse, or
Gaussian. Attribute normalization is turned on by default.

2.4.7 Miscellaneous classifiers
The “Misc.” category includes just two classifiers, unless further corresponding WEKA packages
have been installed. SerializedClassifier loads a model that has been serialized to a file and
uses it for prediction. Providing a new training dataset has no effect, because it encapsulates a
static model. Similarly, performing cross-validation using SerializedClassifier makes little sense.
InputMappedClassifier wraps a base classifier (or model that has been serialized to a file) and

2.4. LEARNING ALGORITHMS 41

constructs a mapping between the attributes present in the incoming test data and those that
were seen when the model was trained. Values for attributes present in the test data but not
in the training data are simply ignored. Values for attributes present at training time but not
present in the test data receive missing values. Similarly, missing values are used for incoming
nominal values not seen during training.

2.4.8 Metalearning algorithms
Metalearning algorithms take classifiers and turn them into more powerful learners. One param-
eter specifies the base classifier(s); others specify the number of iterations for iterative schemes
such as bagging and boosting and an initial seed for the random number generator. We already
met FilteredClassifier in Section 2.3.3: it runs a classifier on data that has been passed through
a filter, which is a parameter. The filter’s own parameters are based exclusively on the training
data, which is the appropriate way to apply a supervised filter to test data.

2.4.8.1 Bagging and randomization

Bagging bags a classifier to reduce variance. This implementation works for both classification
and regression, depending on the base learner. In the case of classification, predictions are
generated by averaging probability estimates, not by voting. One parameter is the size of the
bags as a percentage of the training set. Another is whether to calculate the out-of-bag error,
which gives the average error of the ensemble members (Breiman 2001).

RandomCommittee is even simpler: it builds an ensemble of base classifiers and averages their
predictions. Each one is based on the same data but uses a different random number seed. This
only makes sense if the base classifier is randomized; otherwise, all classifiers would be the same.

RandomSubSpace builds an ensemble of classifiers, each trained using a randomly selected
subset of the input attributes. Aside from the number of iterations and random seed to use, it
provides a parameter to control the size of the attribute subsets. RotationForest implements the
rotation forest ensemble learner. Although the classic paper on rotation forests, Rodriguez et
al. (2006), uses random subspaces and principal components to create an ensemble of decision
trees, WEKA’s implementation allows the base classifier to be any classification or regression
scheme. The principal components transformation is performed by WEKA’s filter of the same
name. RotationForest can be configured to use other projections such as random projections
or partial least squares. Other parameters control the size of the subspaces and the number of
instances that are input to the projection filter.

2.4.8.2 Boosting

AdaBoostM1 implements the classic boosting algorithm. It can be accelerated by specifying
a threshold for weight pruning. AdaBoostM1 resamples if the base classifier cannot handle
weighted instances (you can also force resampling anyway).

Whereas AdaBoostM1 only applies to nominal classes, AdditiveRegression enhances the per-
formance of a regression learner. There are two parameters: shrinkage, which governs the learning
rate, and the maximum number of models to generate. If the latter is infinite, work continues
until the error stops decreasing.

LogitBoost performs additive logistic regression. Like AdaBoostM1, it can be accelerated
by specifying a threshold for weight pruning. The appropriate number of iterations can be
determined using internal cross-validation; there is a shrinkage parameter that can be tuned to
prevent overfitting; and you can choose resampling instead of reweighting.

42 CHAPTER 2. THE EXPLORER

2.4.8.3 Combining classifiers

Vote provides a baseline method for combining classifiers. The default scheme is to average their
probability estimates or numeric predictions, for classification and regression respectively. Other
combination schemes are available, for example, using majority voting for classification.

Stacking combines classifiers using stacking for both classification and regression problems.
You specify the base classifiers, the metalearner, and the number of cross-validation folds.

2.4.8.4 Cost-sensitive learning

There is one metalearner, called CostSensitiveLearning, for cost-sensitive learning. The cost
matrix can be supplied as a parameter or loaded from a file in the directory set by the onDe-
mandDirectory property, named by the relation name and with the extension cost. CostSen-
sitiveClassifier either reweights training instances according to the total cost assigned to each
class or predicts the class with the minimum expected misclassification cost rather than the most
likely one.

2.4.8.5 Optimizing performance

Five metalearners use the wrapper technique to optimize the base classifier’s performance. At-
tributeSelectedClassifier selects attributes, reducing the data’s dimensionality before passing it
to the classifier. You can choose the attribute evaluator and search method as in the Select
attributes panel described in Section 2.2. CVParameterSelection optimizes performance by using
cross-validation to select parameters. For each parameter you give a string containing its lower
and upper bounds and the desired number of increments. For example, to vary parameter –P
from 1 to 10 in increments of 1, use

P 1 10 10

The number of cross-validation folds to be used can be specified.
MultiScheme selects a classifier to use from among several by using either the resubstitution

error or cross-validation on the training data. Performance is measured using percentage correct
in the case of classification and mean squared error for regression.

IterativeClassifierOptimizer optimizes the number of iterations performed by iterative clas-
sifiers, such as boosting methods, using cross-validation on the training data. Performance can
be measured using any of the metrics described in Chapter 5 of the book. The user can specify
parameters such as how many cross-validation folds to use, how many iterations to look ahead
in order to find a better solution, and how often to perform the evaluation (if evaluation of every
iteration is proving too time consuming).

The fifth metalearner, ThresholdSelector, optimizes one of a number of different evaluation
metrics, including F-measure, precision, recall, accuracy and true positive rate, by selecting a
probability threshold on the classifier’s output. Performance can measured on the training data,
on a holdout set, or by cross-validation. The probabilities returned by the base learner can be
rescaled into the full range [0,1], which is useful if the scheme’s probabilities are restricted to a
narrow subrange. The metalearner can be applied to multiclass problems by specifying the class
value for which the optimization is performed as

1. The first class value.

2. The second class value.

2.5. CLUSTERING ALGORITHMS 43

3. Whichever value is least frequent.

4. Whichever value is most frequent.

5. The first class named yes, pos(itive), or 1.

2.4.8.6 Retargeting classifiers for different tasks

Three metalearners adapt learners designed for one kind of task to another. ClassificationViaRe-
gression performs classification using a regression method by binarizing the class and building
a regression model for each value. RegressionByDiscretization is a regression scheme that dis-
cretizes the class attribute into a specified number of bins using equal-width discretization and
then employs a classifier. The predictions are the weighted average of the mean class value for
each discretized interval, with weights based on the predicted probabilities for the intervals.

MultiClassClassifier handles multiclass problems with two-class classifiers using any of these
methods:

1. One versus all the rest.

2. Pairwise classification using voting to predict.

3. Exhaustive error-correcting codes.

4. Randomly selected error-correcting codes.

Random code vectors are known to have good error-correcting properties: a parameter spec-
ifies the length of the code vector as a factor that is multiplied by the number of classes in the
data. For pairwise classification, pairwise coupling of probability estimates can be turned on.

2.5 Clustering algorithms
The Cluster panel provides access to clustering algorithms. Cobweb and SimpleKMeans are de-
scribed in Chapter 4 of the book; EM is described in Chapter 9. For the EM implementation
you can specify how many clusters to generate, or the algorithm can decide by cross-validating
the loglikelihood—in which case the number of folds is fixed at 10 (unless there are fewer than
10 training instances). You can specify the maximum number of iterations and set the min-
imum allowable standard deviation for the normal density calculation. Clusters are Gaussian
distributions with diagonal covariance matrices. SimpleKMeans clusters data using k-means;
the number of clusters is specified by a parameter. The user can choose between the Euclidean
and Manhattan distance metrics. In the latter case the algorithm is actually k-medians instead
k-means, and the centroids are based on medians rather than means in order to minimize the
within-cluster distance function.

Figure 2.29 shows the output of SimpleKMeans for the weather data, with default options:
two clusters and Euclidean distance. The result of clustering is shown as a table whose rows are
attribute names and whose columns correspond to the cluster centroids; an additional cluster
at the beginning shows the entire data set. The number of instances in each cluster appears in
parentheses at the top of its column. Each table entry is either the mean (numeric attribute)
or mode (nominal attribute) of the corresponding attribute for the cluster in that column; users
can choose to show standard deviations (numeric attribute) and frequency counts (nominal at-
tributes) as well. The bottom of the output shows the result of applying the learned clustering
model. In this case, it assigned each training instance to one of the clusters, showing the same

44 CHAPTER 2. THE EXPLORER

result as the parenthetical numbers at the top of each column. An alternative is to use a separate
test set or a percentage split of the training data, in which case the figures would be different.

Figure 2.29 shows the output of EM for the same data, with the number of clusters set to
two. Although there is no notion of the number of instances in each cluster, the columns are
again headed by its prior probability in parentheses. The table entries show the parameters
of normal distributions for numeric attributes or frequency counts for the values of nominal
attributes—and here the fractional count values reveal the “soft” nature of the clusters produced
by the EM algorithm, in that any instance can be split between several clusters. At the bottom
the loglikelihood of the model (again with respect to the training data) is shown, as well as the
number of instances assigned to each cluster when the learned model is applied to the data as a
classifier.

Cobweb implements both the Cobweb algorithm for nominal attributes and the Classit algo-
rithm for numeric attributes. The ordering and priority of the merging and splitting operators
differs from the original Cobweb and Classit papers (where it is somewhat ambiguous). This
implementation always compares four different ways of treating a new instance and chooses the
best: adding it to the best host, making it into a new leaf, merging the two best hosts and adding
it to the merged node, and splitting the best host and adding it to one of the splits. Acuity and
cutoff are parameters.

HierarchicalClusterer implements agglomerative (bottom-up) generation of hierarchical clus-
ters (Section 6.8 of the book). Several different link types, which are ways of measuring the
distance between clusters, are available as options.

FarthestFirst implements the farthest-first traversal algorithm of Hochbaum and Shmoys
(1985), cited by Sanjoy Dasgupta (2002); a fast, simple, approximate clusterer modeled on k-
means. MakeDensityBasedClusterer is a metaclusterer that wraps a clustering algorithm to
make it return a probability distribution and density. To each cluster and attribute it fits a
discrete distribution or a symmetric normal distribution (whose minimum standard deviation is
a parameter).

Canopy implements the canopy clustering algorithm algorithm of McCallum, Nigam and
Ungar (2000). Canopy clustering is often used as an initialization strategy for k-means or as a
fast approximate clustering method for use on large datasets, where applying another algorithm
directly might be impractical. The algorithm partitions the input data into proximity regions
(canopies) in the form of hyperspheres defined by a loose distance, T1, from the region’s center.
A second tight distance, T2 (where T2 < T1), is used to control how many canopies are formed
by the algorithm. At most two passes over the data are required. The first pass creates the
canopies, and it starts by choosing one instance at random to form the center of the first canopy.
Following this, each of the remaining instances are considered in turn, by computing its distance
to the center of each existing canopy. If a given instance is outside the T2 distance to all canopies
then it forms a new canopy, otherwise it is discarded. The second pass over the data assigns
instances to canopies and makes use of the loose T1 distance. Because canopies can overlap
according to T1 distance, it is possible for a given instance to belong to more than one canopy.

2.6 Association rule learners
WEKA has three association rule learners. Apriori implements the Apriori algorithm. It starts
with a minimum support of 100% of the data items and decreases this in steps of 5% until
there are at least 10 rules with the required minimum confidence of 0.9 or until the support has
reached a lower bound of 10%, whichever occurs first. (These default values can be changed.)
There are four alternative metrics for ranking rules: Confidence, which is the proportion of

2.7. ATTRIBUTE SELECTION 45

the examples covered by the premise that are also covered by the consequent; Lift, which is
determined by dividing the confidence by the support; Leverage, which is the proportion of
additional examples covered by both the premise and the consequent beyond those expected if
the premise and consequent were statistically independent; and Conviction, a measure defined
by Brin et al. (1997). You can also specify a significance level, and rules will be tested for
significance at this level. Apriori has an option to limit the rules found to those that contain
just the value of a single attribute in the consequence of the rule. Such rules are called “class”
association rules—i.e., classification rules.

In order to process market-basket data with Apriori, where we are interested in knowing
(from the items present in shoppers’ baskets) which items are purchased together, it is necessary
to encode the input ARFF data in a specific way. In particular, since we are not interested in
co-occurrence of items not present in shopping baskets, the attributes corresponding to items
should be declared as single-valued nominal ones in the ARFF file. Missing values can be used
to indicate the absence of an item from a shopping basket.

FPGrowth implements the frequent pattern tree mining algorithm. Being designed for market-
basket data, Apriori’s special encoding for this type of data is not implemented here. All at-
tributes are expected to be binary nominal ones, and the user can specify which of the two values
is to be treated as positive, i.e., indicates presence in the basket (the default is to use the second
value). FPGrowth can operate on either standard or sparse instances. Most of its options are
the same as for Apriori. It finds the requested number of rules in the same way—by iteratively
decreasing the minimum support. Optionally, the user can have FPGrowth find all the rules
that meet the lower bound for the minimum support and the minimum value set for the ranking
metric (confidence, lift, leverage or conviction).

FilteredAssociator allows the data to be passed through a filter before it reaches an associator.
Both the filter and the base associator are options that the user can configure.

2.7 Attribute selection

Figure 2.31 shows that part of WEKA’s attribute selection panel where you specify the attribute
evaluator and search method. Attribute selection is normally done by searching the space of
attribute subsets, evaluating each one. A potentially faster but less accurate approach is to
evaluate the attributes individually and sort them, discarding attributes that fall below a chosen
cut-off point.

2.7.1 Attribute subset evaluators

Subset evaluators take a subset of attributes and return a numerical measure that guides the
search. They are configured like any other WEKA object. CfsSubsetEval assesses the predictive
ability of each attribute individually and the degree of redundancy among them, preferring sets
of attributes that are highly correlated with the class but with low intercorrelation. An option
iteratively adds attributes that have the highest correlation with the class, provided that the set
does not already contain an attribute whose correlation with the attribute in question is even
higher. Missing can be treated as a separate value, or its counts can be distributed among other
values in proportion to their frequency.

Whereas CfsSubsetEval is a filter method of attribute selection, WrapperSubsetEval imple-
ments a wrapper method. WrapperSubsetEval uses a classifier to evaluate attribute set and
employs cross-validation to estimate the accuracy of the learning scheme for each set.

46 CHAPTER 2. THE EXPLORER

2.7.2 Single-attribute evaluators
Single-attribute evaluators are used with the Ranker search method to generate a ranked list from
which Ranker discards a given number (explained in the next subsection). ReliefFAttributeEval
is instance-based: it samples instances randomly and checks neighboring instances of the same
and different classes. It operates on discrete and continuous class data. Parameters specify the
number of instances to sample, the number of neighbors to check, whether to weight neighbors
by distance, and an exponential function that governs how rapidly weights decay with distance.

InfoGainAttributeEval evaluates attributes by measuring their information gain with respect
to the class. It discretizes numeric attributes first using the MDL-based discretization method (it
can be set to binarize them instead). This method, along with the next three, can treat missing
as a separate value or distribute the counts among other values in proportion to their frequency.
ChiSquaredAttributeEval evaluates attributes by computing the chi-squared statistic with respect
to the class. GainRatioAttributeEval evaluates attributes by measuring their gain ratio with
respect to the class. SymmetricalUncertAttributeEval evaluates an attribute by measuring its
symmetrical uncertainty with respect to the class.

OneRAttributeEval uses the simple accuracy measure adopted by the OneR classifier. It can
use the training data for evaluation, as OneR does, or it can apply internal cross-validation: the
number of folds is a parameter. It adopts OneR’s simple discretization method: the minimum
bucket size is a parameter.

Unlike other single-attribute evaluators, PrincipalComponents transforms the set of attributes.
The new attributes are ranked in order of their eigenvalues. Optionally, a subset is selected by
choosing sufficient eigenvectors to account for a given proportion of the variance (95% by default).
Finally, the reduced data can be transformed back to the original space.

2.7.3 Search methods
Search methods traverse the attribute space to find a good subset. Quality is measured by the
chosen attribute subset evaluator. Each search method can be configured with WEKA’s object
editor. BestFirst performs greedy hill climbing with backtracking; you can specify how many
consecutive nonimproving nodes must be encountered before the system backtracks. It can search
forward from the empty set of attributes, backward from the full set, or start at an intermediate
point (specified by a list of attribute indexes) and search in both directions by considering all
possible single-attribute additions and deletions. Subsets that have been evaluated are cached
for efficiency; the cache size is a parameter.

GreedyStepwise searches greedily through the space of attribute subsets. Like BestFirst, it
may progress forward from the empty set or backward from the full set. Unlike BestFirst, it
does not backtrack but terminates as soon as adding or deleting the best remaining attribute
decreases the evaluation metric. In an alternative mode, it ranks attributes by traversing the
space from empty to full (or vice versa) and recording the order in which attributes are selected.
You can specify the number of attributes to retain or set a threshold below which attributes are
discarded.

Finally we describe Ranker, which as noted earlier is not a search method for attribute subsets
but a ranking scheme for individual attributes. It sorts attributes by their individual evaluations
and must be used in conjunction with one of the single-attribute evaluators—not an attribute
subset evaluator. Ranker not only ranks attributes but also performs attribute selection by
removing the lower-ranking ones. You can set a cut-off threshold below which attributes are
discarded, or specify how many attributes to retain. You can specify certain attributes that
must be retained regardless of their rank.

2.7. ATTRIBUTE SELECTION 47

(a) J4.8 tree for the iris data.

(b) J4.8 ’s errors on the iris data.

Figure 2.6: Visualizing the result of J4.8 on the iris data.

48 CHAPTER 2. THE EXPLORER

(a) Generic Object Editor. (b) More information.

(c) Choosing a converter (click Choose).

Figure 2.7: The Generic Object Editor.

2.7. ATTRIBUTE SELECTION 49

Figure 2.8: The SQLViewer tool.

50 CHAPTER 2. THE EXPLORER

(a) The filters menu.

(b) An object editor. (c) More information (click More).

(d) Information about the filter’s capabilities (click
Capabilities).

(e) Constraints on capabilities.

Figure 2.9: Choosing a filter.

2.7. ATTRIBUTE SELECTION 51

Figure 2.10: The weather data with two attributes removed.

52 CHAPTER 2. THE EXPLORER

(a) CPU data in the Preprocess panel.

(b) M5’’s performance on the CPU data.

Figure 2.11: Processing the CPU performance data with M5’.

2.7. ATTRIBUTE SELECTION 53

=== Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0
Relation: cpu
Instances: 209
Attributes: 7

MYCT
MMIN
MMAX
CACH
CHMIN
CHMAX
class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

M5 pruned model tree:
(using smoothed linear models)

CHMIN <= 7.5 : LM1 (165/12.903%)
CHMIN > 7.5 :
| MMAX <= 28000 :
| | MMAX <= 13240 :
| | | CACH <= 81.5 : LM2 (6/18.551%)
| | | CACH > 81.5 : LM3 (4/30.824%)
| | MMAX > 13240 : LM4 (11/24.185%)
| MMAX > 28000 : LM5 (23/48.302%)

LM num: 1
class =
-0.0055 * MYCT + 0.0013 * MMIN + 0.0029 * MMAX + 0.8007 * CACH + 0.4015 * CHMAX

+ 11.0971

LM num: 2
class =
-1.0307 * MYCT + 0.0086 * MMIN + 0.0031 * MMAX + 0.7866 * CACH - 2.4503 * CHMIN

+ 1.1597 * CHMAX + 70.8672

LM num: 3
class = -1.1057 * MYCT + 0.0086 * MMIN + 0.0031 * MMAX + 0.7995 * CACH

- 2.4503 * CHMIN + 1.1597 * CHMAX + 83.0016

LM num: 4
class = -0.8813 * MYCT + 0.0086 * MMIN + 0.0031 * MMAX + 0.6547 * CACH

- 2.3561 * CHMIN + 1.1597 * CHMAX + 82.5725

LM num: 5
class = -0.4882 * MYCT + 0.0218 * MMIN + 0.003 * MMAX + 0.3865 * CACH

- 1.3252 * CHMIN + 3.3671 * CHMAX - 51.8474

Number of Rules : 5

Time taken to build model: 0.14 seconds

=== Cross-validation ===
=== Summary ===

Correlation coefficient 0.9274
Mean absolute error 29.8309
Root mean squared error 60.7112
Relative absolute error 30.9967 %
Root relative squared error 37.7434 %
Total Number of Instances 209

Figure 2.12: Output from the M5’ program for numeric prediction.

54 CHAPTER 2. THE EXPLORER

(a) M5’.

(b) Linear regression.

Figure 2.13: Visualizing errors.

2.7. ATTRIBUTE SELECTION 55

Figure 2.14: Configuring a metalearner for boosting decision stumps.

1. outlook=overcast 4 ==> play=yes 4 <conf:(1)> lift:(1.56) lev:(0.1) [1] conv:(1.43)
2. temperature=cool 4 ==> humidity=normal 4 <conf:(1)> lift:(2) lev:(0.14) [2] conv:(2)
3. humidity=normal windy=FALSE 4 ==> play=yes 4 <conf:(1)> lift:(1.56) lev:(0.1) [1] conv:(1.43)
4. outlook=sunny play=no 3 ==> humidity=high 3 <conf:(1)> lift:(2) lev:(0.11) [1] conv:(1.5)
5. outlook=sunny humidity=high 3 ==> play=no 3 <conf:(1)> lift:(2.8) lev:(0.14) [1] conv:(1.93)
6. outlook=rainy play=yes 3 ==> windy=FALSE 3 <conf:(1)> lift:(1.75) lev:(0.09) [1] conv:(1.29)
7. outlook=rainy windy=FALSE 3 ==> play=yes 3 <conf:(1)> lift:(1.56) lev:(0.08) [1] conv:(1.07)
8. temperature=cool play=yes 3 ==> humidity=normal 3 <conf:(1)> lift:(2) lev:(0.11) [1] conv:(1.5)
9. outlook=sunny temperature=hot 2 ==> humidity=high 2 <conf:(1)> lift:(2) lev:(0.07) [1] conv:(1)

10. temperature=hot play=no 2 ==> outlook=sunny 2 <conf:(1)> lift:(2.8) lev:(0.09) [1] conv:(1.29)

Figure 2.15: Output from the Apriori program for association rules.

56 CHAPTER 2. THE EXPLORER

(a) Scatter plot matrix.

(b) Zoomed in on a cell from the matrix.

Figure 2.16: Visualizing the iris data.

2.7. ATTRIBUTE SELECTION 57

(a) Configuring FilteredClassifier. (b) The menu of filters.

Figure 2.17: Using WEKA’s metalearner for discretization.

58 CHAPTER 2. THE EXPLORER

=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes
Relation: weather
Instances: 14
Attributes: 5

outlook
temperature
humidity
windy
play

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Naive Bayes Classifier

Class
Attribute yes no

(0.63) (0.38)
===============================
outlook

sunny 3.0 4.0
overcast 5.0 1.0
rainy 4.0 3.0
[total] 12.0 8.0

temperature
mean 72.9697 74.8364
std. dev. 5.2304 7.384
weight sum 9 5
precision 1.9091 1.9091

humidity
mean 78.8395 86.1111
std. dev. 9.8023 9.2424
weight sum 9 5
precision 3.4444 3.4444

windy
TRUE 4.0 4.0
FALSE 7.0 3.0
[total] 11.0 7.0

Time taken to build model: 0 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 9 64.2857 %
Incorrectly Classified Instances 5 35.7143 %
Kappa statistic 0.1026
Mean absolute error 0.4649
Root mean squared error 0.543
Relative absolute error 97.6254 %
Root relative squared error 110.051 %
Total Number of Instances 14

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.889 0.800 0.667 0.889 0.762 0.122 0.444 0.633 yes
0.200 0.111 0.500 0.200 0.286 0.122 0.444 0.397 no

Weighted Avg. 0.643 0.554 0.607 0.643 0.592 0.122 0.444 0.548

=== Confusion Matrix ===

a b <-- classified as
8 1 | a = yes
4 1 | b = no

Figure 2.18: Output of NaiveBayes for the weather data.

2.7. ATTRIBUTE SELECTION 59

(a) Default outpuit. (b) Maximum number of parents set to three in the
search algorithm.

(c) The probability distribution table for the windy
node in (b).

Figure 2.19: Visualizing a Bayesian network for the weather data (nominal version).

60 CHAPTER 2. THE EXPLORER

Figure 2.20: Changing the parameters for J4.8.

2.7. ATTRIBUTE SELECTION 61

=== Run information ===

Scheme: weka.classifiers.rules.OneR -B 6
Relation: labor-neg-data
Instances: 57
Attributes: 17

duration
wage-increase-first-year
wage-increase-second-year
wage-increase-third-year
cost-of-living-adjustment
working-hours
pension
standby-pay
shift-differential
education-allowance
statutory-holidays
vacation
longterm-disability-assistance
contribution-to-dental-plan
bereavement-assistance
contribution-to-health-plan
class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

wage-increase-first-year:
< 2.9-> bad
>= 2.9-> good
?-> good
(48/57 instances correct)

Time taken to build model: 0 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 41 71.9298 %
Incorrectly Classified Instances 16 28.0702 %
Kappa statistic 0.3382
Mean absolute error 0.2807
Root mean squared error 0.5298
Relative absolute error 61.3628 %
Root relative squared error 110.9627 %
Total Number of Instances 57

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.450 0.135 0.643 0.450 0.529 0.349 0.657 0.482 bad
0.865 0.550 0.744 0.865 0.800 0.349 0.657 0.731 good

Weighted Avg. 0.719 0.404 0.709 0.719 0.705 0.349 0.657 0.644

=== Confusion Matrix ===

a b <-- classified as
9 11 | a = bad
5 32 | b = good

Figure 2.21: Output of OneR for the labor negotiations data.

62 CHAPTER 2. THE EXPLORER

=== Run information ===

Scheme: weka.classifiers.rules.PART -M 2 -C 0.25 -Q 1
Relation: labor-neg-data
Instances: 57
Attributes: 17

duration
wage-increase-first-year
wage-increase-second-year
wage-increase-third-year
cost-of-living-adjustment
working-hours
pension
standby-pay
shift-differential
education-allowance
statutory-holidays
vacation
longterm-disability-assistance
contribution-to-dental-plan
bereavement-assistance
contribution-to-health-plan
class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

PART decision list

wage-increase-first-year > 2.5 AND
longterm-disability-assistance = yes AND
statutory-holidays > 10: good (25.67)

wage-increase-first-year <= 4 AND
working-hours > 36: bad (19.4/1.58)

: good (11.93/2.18)

Number of Rules : 3

Time taken to build model: 0.01 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 45 78.9474 %
Incorrectly Classified Instances 12 21.0526 %
Kappa statistic 0.5378
Mean absolute error 0.2884
Root mean squared error 0.4339
Relative absolute error 63.0507 %
Root relative squared error 90.8836 %
Total Number of Instances 57

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.700 0.162 0.700 0.700 0.700 0.538 0.726 0.613 bad
0.838 0.300 0.838 0.838 0.838 0.538 0.726 0.758 good

Weighted Avg. 0.789 0.252 0.789 0.789 0.789 0.538 0.726 0.707

=== Confusion Matrix ===

a b <-- classified as
14 6 | a = bad
6 31 | b = good

Figure 2.22: Output of Part for the labor negotiations data.

2.7. ATTRIBUTE SELECTION 63

=== Run information ===

Scheme: weka.classifiers.functions.SimpleLinearRegression
Relation: cpu
Instances: 209
Attributes: 7

MYCT
MMIN
MMAX
CACH
CHMIN
CHMAX
class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Linear regression on MMAX

0.01 * MMAX - 34

Predicting 0 if attribute value is missing.

Time taken to build model: 0 seconds

=== Cross-validation ===
=== Summary ===

Correlation coefficient 0.7844
Mean absolute error 53.8054
Root mean squared error 99.5674
Relative absolute error 55.908 %
Root relative squared error 61.8997 %
Total Number of Instances 209

Figure 2.23: Output of SimpleLinearRegression on the CPU performance data.

64 CHAPTER 2. THE EXPLORER

=== Run information ===

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1
-K ‘‘weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007’’
-calibrator ‘‘weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4’’

Relation: iris
Instances: 150
Attributes: 5

sepallength
sepalwidth
petallength
petalwidth
class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

SMO

Kernel used:
Linear Kernel: K(x,y) = <x,y>

Classifier for classes: Iris-setosa, Iris-versicolor

BinarySMO
Machine linear: showing attribute weights, not support vectors.

0.6829 * (normalized) sepallength
+ -1.523 * (normalized) sepalwidth
+ 2.2034 * (normalized) petallength
+ 1.9272 * (normalized) petalwidth
- 0.7091

Number of kernel evaluations: 352 (70.32% cached)

Classifier for classes: Iris-setosa, Iris-virginica

BinarySMO
Machine linear: showing attribute weights, not support vectors.

0.5886 * (normalized) sepallength
+ -0.5782 * (normalized) sepalwidth
+ 1.6429 * (normalized) petallength
+ 1.4777 * (normalized) petalwidth
- 1.1668

Number of kernel evaluations: 284 (68.996% cached)

Classifier for classes: Iris-versicolor, Iris-virginica

BinarySMO
Machine linear: showing attribute weights, not support vectors.

0.3176 * (normalized) sepallength
+ -0.863 * (normalized) sepalwidth
+ 3.0543 * (normalized) petallength
+ 4.0815 * (normalized) petalwidth
- 4.5924

Number of kernel evaluations: 453 (61.381% cached)

Time taken to build model: 0.03 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 144 96 %
Incorrectly Classified Instances 6 4 %
Kappa statistic 0.94
Mean absolute error 0.2311
Root mean squared error 0.288
Relative absolute error 52 %
Root relative squared error 61.101 %
Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Iris-setosa
0.980 0.050 0.907 0.980 0.942 0.913 0.965 0.896 Iris-versicolor
0.900 0.010 0.978 0.900 0.938 0.910 0.970 0.930 Iris-virginica

Weighted Avg. 0.960 0.020 0.962 0.960 0.960 0.941 0.978 0.942

=== Confusion Matrix ===

a b c <-- classified as
50 0 0 | a = Iris-setosa
0 49 1 | b = Iris-versicolor
0 5 45 | c = Iris-virginica

Figure 2.24: Output of SMO on the iris data.

2.7. ATTRIBUTE SELECTION 65

=== Run information ===

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1
-K ‘‘weka.classifiers.functions.supportVector.PolyKernel -E 2.0 -C 250007’’
-calibrator ‘‘weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4’’

Relation: iris
Instances: 150
Attributes: 5

sepallength
sepalwidth
petallength
petalwidth
class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

SMO

Kernel used:
Poly Kernel: K(x,y) = <x,y>ˆ2.0

Classifier for classes: Iris-setosa, Iris-versicolor

BinarySMO

1 * <0.333333 0.166667 0.457627 0.375 > * X]
- 1 * <0.222222 0.541667 0.118644 0.166667 > * X]
- 1 * <0.138889 0.416667 0.067797 0.083333 > * X]
- 1 * <0.166667 0.416667 0.067797 0.041667 > * X]
+ 1 * <0.222222 0.208333 0.338983 0.416667 > * X]
- 1 * <0.055556 0.125 0.050847 0.083333 > * X]
- 1 * <0.027778 0.375 0.067797 0.041667 > * X]
+ 1 * <0.166667 0.166667 0.389831 0.375 > * X]
+ 1 * <0.361111 0.208333 0.491525 0.416667 > * X]
+ 1 * <0.194444 0 0.423729 0.375 > * X]
- 1 * <0.194444 0.416667 0.101695 0.041667 > * X]
- 1 * <0.138889 0.458333 0.101695 0.041667 > * X]
+ 1 * <0.194444 0.125 0.389831 0.375 > * X]
+ 0.3697 * <0.361111 0.375 0.440678 0.5 > * X]
- 0.4599 * <0.138889 0.416667 0.067797 0 > * X]
- 0.9098 * <0.194444 0.625 0.101695 0.208333 > * X]
+ 1 * <0.333333 0.166667 0.474576 0.416667 > * X]
+ 1 * <0.388889 0.25 0.423729 0.375 > * X]
- 0.8085

Number of support vectors: 18

Number of kernel evaluations: 2416 (72.564% cached)

Classifier for classes: Iris-setosa, Iris-virginica

BinarySMO
1 * <0.166667 0.208333 0.59322 0.666667 > * X]

- 0.856 * <0.055556 0.125 0.050847 0.083333 > * X]
+ 0.1315 * <0.555556 0.333333 0.694915 0.583333 > * X]
- 1 * <0.222222 0.541667 0.118644 0.166667 > * X]
+ 1 * <0.472222 0.083333 0.677966 0.583333 > * X]
- 0.2756 * <0.194444 0.625 0.101695 0.208333 > * X]
- 1.0183

Number of support vectors: 6

Number of kernel evaluations: 1364 (60.726% cached)

Classifier for classes: Iris-versicolor, Iris-virginica

BinarySMO
1 * <0.555556 0.208333 0.677966 0.75 > * X]

- 1 * <0.305556 0.416667 0.59322 0.583333 > * X]
- 1 * <0.666667 0.458333 0.627119 0.583333 > * X]
- 1 * <0.472222 0.583333 0.59322 0.625 > * X]
+ 1 * <0.444444 0.416667 0.694915 0.708333 > * X]
- 1 * <0.527778 0.083333 0.59322 0.583333 > * X]
+ 1 * <0.416667 0.291667 0.694915 0.75 > * X]
- 1 * <0.472222 0.291667 0.694915 0.625 > * X]
+ 0.4559 * <0.555556 0.375 0.779661 0.708333 > * X]
- 1 * <0.666667 0.416667 0.677966 0.666667 > * X]
+ 1 * <0.611111 0.416667 0.762712 0.708333 > * X]
- 1 * <0.5 0.375 0.627119 0.541667 > * X]
- 1 * <0.722222 0.458333 0.661017 0.583333 > * X]
+ 1 * <0.472222 0.083333 0.677966 0.583333 > * X]
+ 1 * <0.583333 0.458333 0.762712 0.708333 > * X]
+ 1 * <0.611111 0.5 0.694915 0.791667 > * X]
+ 1 * <0.5 0.416667 0.661017 0.708333 > * X]
- 1 * <0.694444 0.333333 0.644068 0.541667 > * X]
- 1 * <0.5 0.416667 0.610169 0.541667 > * X]
+ 1 * <0.416667 0.291667 0.694915 0.75 > * X]
+ 1 * <0.527778 0.333333 0.644068 0.708333 > * X]
- 1 * <0.444444 0.5 0.644068 0.708333 > * X]
+ 1 * <0.5 0.25 0.779661 0.541667 > * X]
+ 1 * <0.555556 0.291667 0.661017 0.708333 > * X]
+ 1 * <0.361111 0.333333 0.661017 0.791667 > * X]
- 1 * <0.555556 0.208333 0.661017 0.583333 > * X]
- 0.4559 * <0.555556 0.125 0.576271 0.5 > * X]
+ 1 * <0.555556 0.333333 0.694915 0.583333 > * X]
+ 1 * <0.166667 0.208333 0.59322 0.666667 > * X]
+ 1 * <0.805556 0.416667 0.813559 0.625 > * X]
- 1 * <0.555556 0.541667 0.627119 0.625 > * X]
+ 1 * <0.472222 0.416667 0.644068 0.708333 > * X]
- 1 * <0.361111 0.416667 0.59322 0.583333 > * X]
- 1 * <0.583333 0.5 0.59322 0.583333 > * X]
- 1 * <0.472222 0.375 0.59322 0.583333 > * X]
- 1 * <0.611111 0.333333 0.610169 0.583333 > * X]
- 3.5378

Number of support vectors: 36

Number of kernel evaluations: 3524 (66.711% cached)

Time taken to build model: 0.01 seconds

Figure 2.25: Output of SMO with a nonlinear kernel on the iris data.

66 CHAPTER 2. THE EXPLORER

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 144 96 %
Incorrectly Classified Instances 6 4 %
Kappa statistic 0.94
Mean absolute error 0.2311
Root mean squared error 0.288
Relative absolute error 52 %
Root relative squared error 61.101 %
Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Iris-setosa
0.940 0.030 0.940 0.940 0.940 0.910 0.955 0.904 Iris-versicolor
0.940 0.030 0.940 0.940 0.940 0.910 0.972 0.916 Iris-virginica

Weighted Avg. 0.960 0.020 0.960 0.960 0.960 0.940 0.976 0.940

=== Confusion Matrix ===

a b c <-- classified as
50 0 0 | a = Iris-setosa
0 47 3 | b = Iris-versicolor
0 3 47 | c = Iris-virginica

Figure 2.26: Output of SMO with a nonlinear kernel on the iris data, cont’d.

2.7. ATTRIBUTE SELECTION 67

=== Run information ===

Scheme: weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4
Relation: iris
Instances: 150
Attributes: 5

sepallength
sepalwidth
petallength
petalwidth
class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Logistic Regression with ridge parameter of 1.0E-8
Coefficients...

Class
Variable Iris-setosa Iris-versicolor
===
sepallength 21.8065 2.4652
sepalwidth 4.5648 6.6809
petallength -26.3083 -9.4293
petalwidth -43.887 -18.2859
Intercept 8.1743 42.637

Odds Ratios...
Class

Variable Iris-setosa Iris-versicolor
===
sepallength 2954196659.8892 11.7653
sepalwidth 96.0426 797.0304
petallength 0 0.0001
petalwidth 0 0

Time taken to build model: 0.01 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 144 96 %
Incorrectly Classified Instances 6 4 %
Kappa statistic 0.94
Mean absolute error 0.0287
Root mean squared error 0.1424
Relative absolute error 6.456 %
Root relative squared error 30.2139 %
Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Iris-setosa
0.920 0.020 0.958 0.920 0.939 0.910 0.970 0.933 Iris-versicolor
0.960 0.040 0.923 0.960 0.941 0.911 0.975 0.933 Iris-virginica

Weighted Avg. 0.960 0.020 0.960 0.960 0.960 0.940 0.982 0.955

=== Confusion Matrix ===

a b c <-- classified as
50 0 0 | a = Iris-setosa
0 46 4 | b = Iris-versicolor
0 2 48 | c = Iris-virginica

Figure 2.27: Output of Logistic for the iris data.

68 CHAPTER 2. THE EXPLORER

(a) Beginning the process of editing the network to add a second hidden layer.

(b) The finished network with two hidden layers.

Figure 2.28: Using WEKA’s neural-network graphical user interface.

2.7. ATTRIBUTE SELECTION 69

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -init 0 -max-candidates 100
-periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 2
-A ‘‘weka.core.EuclideanDistance -R first-last’’ -I 500
-num-slots 1 -S 10

Relation: weather
Instances: 14
Attributes: 5

outlook
temperature
humidity
windy
play

Test mode: evaluate on training data

=== Clustering model (full training set) ===

kMeans
======

Number of iterations: 3
Within cluster sum of squared errors: 16.237456311387238

Initial starting points (random):

Cluster 0: rainy,75,80,FALSE,yes
Cluster 1: overcast,64,65,TRUE,yes

Missing values globally replaced with mean/mode

Final cluster centroids:
Cluster#

Attribute Full Data 0 1
(14.0) (9.0) (5.0)

==
outlook sunny sunny overcast
temperature 73.5714 75.8889 69.4
humidity 81.6429 84.1111 77.2
windy FALSE FALSE TRUE
play yes yes yes

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 9 (64%)
1 5 (36%)

Figure 2.29: Output of SimpleKMeans for the weather data.

70 CHAPTER 2. THE EXPLORER

=== Run information ===

Scheme: weka.clusterers.EM -I 100 -N 2 -X 10 -max -1
-ll-cv 1.0E-6 -ll-iter 1.0E-6 -M 1.0E-6 -K 10
-num-slots 1 -S 100

Relation: weather
Instances: 14
Attributes: 5

outlook
temperature
humidity
windy
play

Test mode: evaluate on training data

=== Clustering model (full training set) ===

EM
==

Number of clusters: 2
Number of iterations performed: 7

Cluster
Attribute 0 1

(0.35) (0.65)
==============================
outlook

sunny 3.8732 3.1268
overcast 1.7746 4.2254
rainy 2.1889 4.8111
[total] 7.8368 12.1632

temperature
mean 76.9173 71.8054
std. dev. 5.8302 5.8566

humidity
mean 90.1132 77.1719
std. dev. 3.8066 9.1962

windy
TRUE 3.14 4.86
FALSE 3.6967 6.3033
[total] 6.8368 11.1632

play
yes 2.1227 8.8773
no 4.7141 2.2859
[total] 6.8368 11.1632

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 4 (29%)
1 10 (71%)

Log likelihood: -9.13037

Figure 2.30: Output of EM for the weather data.

2.7. ATTRIBUTE SELECTION 71

Figure 2.31: Attribute selection: specifying an evaluator and a search method.

72 CHAPTER 2. THE EXPLORER

Chapter 3

The Knowledge Flow Interface

With the Knowledge Flow interface, users select WEKA components from a tool bar, place them
on a layout canvas, and connect them into a directed graph that processes and analyzes data. It
provides an alternative to the Explorer for those who like thinking in terms of how data flows
through the system. It also allows the design and execution of configurations for streamed data
processing, which the Explorer cannot do. You invoke the Knowledge Flow interface by selecting
KnowledgeFlow from the choices on the panel shown in Figure 2.3a.

3.1 Getting started
Here is a step-by-step example that loads an ARFF file and performs a cross-validation using J48.
We describe how to build up the final configuration shown in Figure 3.1. First create a source of
data by expanding the DataSources folder in the Design palette and selecting ARFFLoader. The
mouse cursor changes to crosshairs to signal that you should next place the component. Do this
by clicking anywhere on the canvas, whereupon a copy of the ARFF loader icon appears there.
To connect it to an ARFF file, right-click it to bring up the pop-up menu shown in Figure 3.2a.
Click Configure to get the dialog in Figure 3.2b, from which you can either browse for an ARFF
file by clicking the Browse button, or type the path to one in the Filename field.

Now we specify which attribute is the class using a ClassAssigner object. This is found
under the Evaluation folder in the Design palette, so expand the Evaluation folder, select the
ClassAssigner, and place it on the canvas. To connect the data source to the class assigner,
right-click the data source icon and select dataset from the menu, as shown in Figure 3.2a. A
rubber-band line appears. Move the mouse over the class assigner component and left-click.
A red line labeled dataset appears, joining the two components. Having connected the class
assigner, choose the class by right-clicking it, selecting Configure, and entering the location of
the class attribute.

We will perform cross-validation on the J48 classifier. In the data flow model, we first connect
the CrossValidationFoldMaker to create the folds on which the classifier will run, and then pass
its output to an object representing J48. CrossValidationFoldMaker is in the Evaluation folder.
Select it, place it on the canvas, and connect it to the class assigner by right-clicking the latter
and selecting dataset from the menu (which is similar to that in Figure 3.2a). Next select J48
from the trees folder under the Classifiers folder and place a J48 component on the canvas.
Connect J48 to the cross-validation fold maker in the usual way, but make the connection twice
by first choosing trainingSet and then testSet from the pop-up menu for the cross-validation
fold maker. The next step is to select a ClassifierPerformanceEvaluator from the Evaluation

73

74 CHAPTER 3. THE KNOWLEDGE FLOW INTERFACE

Figure 3.1: The Knowledge Flow interface.

(a) Right-click menu. (b) File browser obtained from the Configure menu.

Figure 3.2: Configuring a data source in the Knowledge Flow.

folder and connect J48 to it by selecting the batchClassifier entry from the pop-up menu for J48.
Finally, from the Visualization folder we place a TextViewer component on the canvas. Connect

3.2. KNOWLEDGE FLOW COMPONENTS 75

the classifier performance evaluator to it by selecting the text entry from the pop-up menu for
the performance evaluator.

At this stage the configuration is as shown in Figure 3.1 except that there is as yet no graph
viewer. Start the flow of execution by clicking one of the two triangular-shaped “play” buttons at
the left side of the main toolbar. The leftmost play button launches all data sources present in the
flow in parallel; the other play button launches the data sources sequentially, where a particular
order of execution can be specified by including a number at the start of the component’s name
(a name can be set via the Set name entry on popup menu). For a small dataset things happen
quickly. Progress information appears in the status area at the bottom of the interface. The
entries in the status area show the progress of each step in the flow, along with their parameter
settings (for learning schemes) and elapsed time. Any errors that occur in a processing step are
shown in the status area by highlighting the corresponding row in red. Choosing Show results
from the text viewer’s pop-up menu brings the results of cross-validation up in a separate window,
in the same form as for the Explorer.

To complete the example, add a GraphViewer and connect it to J48’s graph output to see
a graphical representation of the trees produced for each fold of the cross-validation. Once you
have redone the cross-validation with this extra component in place, selecting Show results from
its pop-up menu produces a list of trees, one for each cross-validation fold. By creating cross-
validation folds and passing them to the classifier, the Knowledge Flow model provides a way to
hook into the results for each fold.

The flow that you’ve just laboriously created is actually available (minus the GraphViewer)
as a built-in template. Example templates can be accessed from the Template button, which is
the third icon from the right in the toolbar at the top of the Knowledge Flow interface. There
are a number of templates that come with WEKA, and certain packages, once installed via the
package manager, add further ones to the menu. The majority of template flows can be executed
without further modification as they have been configured to load datasets that come with the
WEKA distribution.

3.2 Knowledge Flow components
Most of the Knowledge Flow components will be familiar from the Explorer. The Classifiers
folder contains all of WEKA’s classifiers, the Filters folder contains the filters, the Clusterers
folder holds the clusterers, the AttSelection folder contains evaluators and search methods for
attribute selection, and the Associations panel holds the association rule learners. All components
in the Knowledge Flow are run in a separate thread of execution, except in the case where data is
being processed incrementally—in this case a single thread of execution is used because, generally,
the amount of processing done per data point is small, and launching a separate thread to process
each one would incur a significant overhead.

Possible data sources are ARFF files, XML ARFF files, JSON ARFF files, CSV files exported
from spreadsheets, the C4.5 file format, databases, serialized instances, LibSVM and SVMLight
data formats, and a special loader (TextDirectoryLoader) to load a directory of plain text files
into a single set of instances. There is also a data source called DataGrid that allows the user
to define attributes and enter the vaues of instances via a graphical interface. There is a data
sink that corresponds to each data source, with the exception of the TextDirectoryLoader and
DataGrid. In addition, there are data sinks that can save raw text, static image data and WEKA
serialized models.

Under the Visualization folder, the DataVisualizer pops up a panel for visualizing data in a
two-dimensional scatter plot as in Figure 2.6b, in which you can select the attributes you would

76 CHAPTER 3. THE KNOWLEDGE FLOW INTERFACE

like to see. ScatterPlotMatrix pops up a matrix of two-dimensional scatter plots for every pair
of attributes, shown in Figure 2.16a. AttributeSummarizer gives a matrix of histograms, one for
each attribute, like that in the lower right-hand corner of Figure 2.3b. ModelPerformanceChart
draws ROC curves and other threshold curves. CostBenefitAnalysis allows interactive exploration
of the tradeoffs in cost or benefit arising from different cost matrices. GraphViewer, used above,
pops up a panel for visualizing tree-based models, as in Figure 2.6a. As before, you can zoom,
pan, and visualize the instance data at a node (if it has been saved by the learning algorithm).

StripChart is a new visualization component designed for use with incremental learning. In
conjunction with the IncrementalClassifierEvaluator described in the next paragraph it displays
a learning curve that plots accuracy—both the percentage accuracy and the root mean-squared
probability error—against time. It shows a fixed-size time window that scrolls horizontally to
reveal the latest results.

Under the Evaluation folder, TrainingSetMaker and TestSetMaker make a dataset into the
corresponding kind of set. The CrossValidationFoldMaker constructs cross-validation folds from
a dataset; the TrainTestSplitMaker splits it into training and test sets by holding part of the data
out for the test set. The ClassAssigner allows you to decide which attribute is the class. With
ClassValuePicker you choose a value that is treated as the positive class when generating ROC
and other threshold curves. The ClassifierPerformanceEvaluator collects evaluation statistics:
it can send the textual evaluation to a text viewer and the threshold curves to a performance
chart. The IncrementalClassifierEvaluator performs the same function for incremental classifiers:
it computes running squared errors and so on. There is also a ClustererPerformanceEvaluator,
which is similar to the ClassifierPerformanceEvaluator. The PredictionAppender takes a classifier
and a dataset and appends the classifier’s predictions to the dataset.

Components under the Flow folder tend to affect the flow of data in some way. FlowByExpres-
sion enables incoming data to be sent to two downstream components based on the evaluation
of a logical expression. The expression can involve one or more clauses that test the value of an
attribute in the incoming data against a constant or the value of another attribute. Multiple
clauses can be and’ed or or’ed together. Block, when connected between two components, delays
the passing of data to the downstream component until a user-specified component has finished
processing. InstanceStreamToBatchMaker collects instances arriving in a stream from an incom-
ing “instance” connection and produces a batch dataset when the last instance has arrived. This
is particularly useful when placed after a reservoir sampling filter—it allows the instances output
by reservoir sampling to be used to train batch learning schemes. The Join component performs
an inner join on two incoming dataset or instance streams. The user specifies the key fields to
join on for both datasets, and both are expected to arrive in sorted order of their key fields.

Under the Tools folder, Sorter sorts instances within batch datasets or instance streams
according to the values of one or more user-specified attributes. It can handle datasets larger
than can be fit into main memory by using instance connections and specifying an in-memory
buffer size. The component implements a merge sort by writing the sorted in-memory buffer to
a file when full, and then interleaving instances from the disk-based file(s) when the incoming
instance stream has finished. SubstringReplacer replaces occurrences of substring or regular
expression matches in incoming string attributes with user-specified values. SubstringLabeler
matches substrings in a similar fashion, but instead of replacing them it creates a new attribute
in the data that holds the value of a label specified by the user for each match condition.

3.3. CONFIGURING AND CONNECTING THE COMPONENTS 77

3.3 Configuring and connecting the components

You establish the knowledge flow by configuring the individual components and connecting them
up. The menus that are available by right-clicking various component types have up to three
sections: Edit, Connections, and Actions. The Edit operations delete components and open
up their configuration panel. You can give a component a name by choosing Set name from
the pop-up menu. Classifiers and filters are configured just as in the Explorer. Data sources
are configured by opening a file (as we saw previously) or by setting a database connection,
and evaluation components are configured by setting parameters such as the number of folds
for cross-validation. The Connections operations are used to connect components together by
selecting the type of connection from the source component and then clicking on the target
object. Not all targets are suitable; applicable ones are highlighted. Items on the connections
menu are disabled (grayed out) until the component receives other connections that render them
applicable.

There are two kinds of connection from data sources: dataset connections and instance con-
nections. The former are for batch operations such as classifiers like J48 ; the latter are for stream
operations such as NaiveBayesUpdateable. A data source component cannot provide both types
of connection: once one is selected, the other is disabled. When a dataset connection is made to
a batch classifier, the classifier needs to know whether it is intended to serve as a training set or
a test set. To do this, you first make the data source into a test or training set using the Test-
SetMaker or TrainingSetMaker components from the Evaluation panel. On the other hand, an
instance connection to an incremental classifier is made directly: there is no distinction between
training and testing because the instances that flow update the classifier incrementally. In this
case a prediction is made for each incoming instance and incorporated into the test results; then
the classifier is trained on that instance. If you make an instance connection to a batch classifier
it will be used as a test instance because training cannot possibly be incremental whereas testing
always can be. Conversely, it is quite possible to test an incremental classifier in batch mode
using a dataset connection.

Connections from a filter component are enabled when it receives input from a data source,
whereupon follow-on dataset or instance connections can be made. Instance connections cannot
be made to supervised filters or to unsupervised filters that cannot handle data incrementally
(such as Discretize). To get a test or training set out of a filter, you need to put the appropriate
kind in.

The classifier menu has two types of connection. The first type, namely graph and text
connections, provide graphical and textual representations of the classifier’s learned state and is
only activated when it receives a training set input. The other type, namely batchClassifier and
incrementalClassifier connections, makes data available to a performance evaluator and is only
activated when a test set input is present too. Which one is activated depends on the type of
the classifier.

Evaluation components are a mixed bag. TrainingSetMaker and TestSetMaker turn a dataset
into a training or test set. CrossValidationFoldMaker turns a dataset into both a training set
and a test set. ClassifierPerformanceEvaluator generates textual and graphical output for visu-
alization components. Other evaluation components operate like filters: they enable follow-on
dataset, instance, training set, or test set connections depending on the input (e.g., ClassAssigner
assigns a class to a dataset). Visualization components do not have connections, although some
have actions such as Show results and Clear results.

78 CHAPTER 3. THE KNOWLEDGE FLOW INTERFACE

3.4 Incremental learning
In most respects the Knowledge Flow interface is functionally similar to the Explorer: you can
do similar things with both. It does provide some additional flexibility—for example, you can
see the tree that J48 makes for each cross-validation fold. But its real strength is the potential
for incremental operation.

WEKA has several classifiers that can handle data incrementally: SGD, SGDText, Hoeffd-
ingTree, NaiveBayesMultinomialText, a version of Naive Bayes (NaiveBayesUpdateable), instance-
based learners (IBk, KStar, LWL), and NaiveBayesMultinomialUpdateable. All filters that work
instance by instance are incremental: Add, AddExpression, AddValues, ChangeDateFormat, Clas-
sAssigner, Copy, FirstOrder, MakeIndicator, MergeTwoValues, MergeManyValues, NominalTo-
Binary, NonSparseToSparse, NumericToBinary, NumericTransform, NumericCleaner, Obfus-
cate, PartitionedMultiFilter, RandomSubset, Remove, RemoveByName, RemoveType, Remove-
WithValues, RenameAttribute, RenameNominalValues, Reorder, ReplaceMissingWithUserCon-
stant, ReservoirSample, SortLabels, SparseToNonSparse, and SwapValues.

If all components connected up in the Knowledge Flow interface operate incrementally, so
does the resulting learning system. It does not read in the dataset before learning starts, as the
Explorer does. Instead, the data source component reads the input instance by instance and
passes it through the Knowledge Flow chain.

Figure 3.3a shows a configuration that works incrementally. An instance connection is made
from the loader to a class assigner component, which, in turn, is connected to the updatable Naive
Bayes classifier. The classifier’s text output is taken to a viewer that gives a textual description of
the model. Also, an incrementalClassifier connection is made to the corresponding performance
evaluator. This produces an output of type chart, which is piped to a StripChart visualization
component to generate a scrolling data plot.

Figure 3.3b shows the strip chart output. It plots accuracy, Kappa, and the root mean-
squared probability error against time. As time passes, the whole plot (including the axes)
moves leftward to make room for new data at the right. When the vertical axis representing
time 0 can move left no farther, it stops and the time origin starts to increase from 0 to keep
pace with the data coming in at the right. Thus when the chart is full it shows a window of
the most recent time units. The strip chart can be configured to alter the number of instances
shown on the x axis.

This particular Knowledge Flow configuration can process input files of any size, even ones
that do not fit into the computer’s main memory. However, it all depends on how the classifier
operates internally. For example, although they are incremental, many instance-based learners
store the entire dataset internally.

3.4. INCREMENTAL LEARNING 79

(a) The configuration.

(b) StripChart output.

Figure 3.3: A Knowledge Flow that operates incrementally.

80 CHAPTER 3. THE KNOWLEDGE FLOW INTERFACE

Chapter 4

The Experimenter

The Explorer and Knowledge Flow environments help you determine how well machine learn-
ing schemes perform on given datasets. But serious investigative work involves substantial
experiments—typically running several learning schemes on different datasets, often with vari-
ous parameter settings—and these interfaces are not really suitable for this. The Experimenter
enables you to set up large-scale experiments, start them running, leave them, and come back
when they have finished and analyze the performance statistics that have been collected. They
automate the experimental process. The statistics can be stored in ARFF format, and can them-
selves be the subject of further data mining. You invoke this interface by selecting Experimenter
from the choices at the side of the panel in Figure 2.3a.

Whereas the Knowledge Flow transcends limitations of space by allowing machine learning
runs that do not load in the whole dataset at once, the Experimenter transcends limitations of
time. It contains facilities for advanced users to distribute the computing load across multiple
machines using Java RMI. You can set up big experiments and just leave them to run.

4.1 Getting started

As an example, we will compare the J4.8 decision tree method with the baseline methods
OneR and ZeroR on the iris dataset. The Experimenter has three panels: Setup, Run and
Analyze. Figure 4.1a shows the first: you select the others from the tabs at the top. Here, the
experiment has already been set up. To do this, first click New (toward the right at the top)
to start a new experiment (the other two buttons in that row save an experiment and open a
previously saved one). Then, on the line below, select the destination for the results—in this
case the file Experiment1 —and choose CSV file. Underneath, select the datasets—we have only
one, the iris data. To the right of the datasets, select the algorithms to be tested—we have three.
Click Add new to get a standard WEKA object editor from which you can choose and configure
a classifier. Repeat this operation to add the three classifiers. Now the experiment is ready.

The other settings in Figure 4.1a are all default values. If you want to reconfigure a classifier
that is already in the list, you can use the Edit selected button. You can also save the options
for a particular classifier in XML format for later reuse. You can right-click on an entry to copy
the configuration to the clipboard, and add or enter a configuration from the clipboard.

81

82 CHAPTER 4. THE EXPERIMENTER

(a) Setting it up.

Key_Dataset,Key_Run,Key_Fold,Key_Scheme,Key_Scheme_options,Key_Scheme_version_ID,Date_time,
Number_of_training_instances,Number_of_testing_instances,Number_correct,Number_incorrect,
Number_unclassified,Percent_correct,Percent_incorrect,Percent_unclassified,Kappa_statistic,
Mean_absolute_error,Root_mean_squared_error,Relative_absolute_error,Root_relative_squared_error,
SF_prior_entropy,SF_scheme_entropy,SF_entropy_gain,SF_mean_prior_entropy,SF_mean_scheme_entropy,
SF_mean_entropy_gain,KB_information,KB_mean_information,KB_relative_information,True_positive_rate,
Num_true_positives,False_positive_rate,Num_false_positives,True_negative_rate,Num_true_negatives,
False_negative_rate,Num_false_negatives,IR_precision,IR_recall,F_measure,Matthews_correlation,
Area_under_ROC,Area_under_PRC,Weighted_avg_true_positive_rate,Weighted_avg_false_positive_rate,
Weighted_avg_true_negative_rate,Weighted_avg_false_negative_rate,Weighted_avg_IR_precision,
Weighted_avg_IR_recall,Weighted_avg_F_measure,Weighted_avg_matthews_correlation,
Weighted_avg_area_under_ROC,Weighted_avg_area_under_PRC,Unweighted_macro_avg_F_measure,
Unweighted_micro_avg_F_measure,Elapsed_Time_training,Elapsed_Time_testing,UserCPU_Time_training,
UserCPU_Time_testing,UserCPU_Time_millis_training,UserCPU_Time_millis_testing,Serialized_Model_Size,
Serialized_Train_Set_Size,Serialized_Test_Set_Size,Coverage_of_Test_Cases_By_Regions,
Size_of_Predicted_Regions,Summary,measureTreeSize,measureNumLeaves,measureNumRules
iris,1,1,weka.classifiers.trees.J48,’-C 0.25 -M 2’,-217733168393644444,2.01604080413E7,135.0,15.0,
14.0,1.0,0.0,93.33333333333333,6.666666666666667,0.0,0.9,0.0450160137965016,0.1693176548766098,
10.128603104212857,35.917698581356284,23.77443751081735,2.632715099281766,21.141722411535582,
1.5849625007211567,0.17551433995211774,1.4094481607690388,21.615653599867994,1.4410435733245328,
1363.79589990507,1.0,5.0,0.0,0.0,1.0,10.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.9333333333333333,
0.03333333333333333,0.9666666666666667,0.06666666666666667,0.9444444444444445,0.9333333333333333,
0.9326599326599326,0.9062760897356267,1.0,1.0,0.9326599326599326,0.9333333333333333,0.008,0.001,
0.0062889999999999995,5.809999999999999E-4,6.289,0.581,4236.0,10633.0,2353.0,100.0,35.55555555555555,
’Number of leaves: 4\nSize of the tree: 7\n’,7.0,4.0,4.0

(b) The results file.

(c) Spreadsheet with results.

Figure 4.1: A experiment.

4.2. RUNNING AN EXPERIMENT 83

4.2 Running an experiment
To run the experiment, click the Run tab, which brings up a panel that contains a Start button
(and little else); click it. A brief report is displayed when the operation is finished. The file
Experiment1.csv contains the results. The first two lines are shown in Figure 4.1b: they are
in CSV format and can be read directly into a spreadsheet, the first part of which appears in
Figure 4.1c. Each row represents 1 fold of a 10-fold cross-validation (see the Fold column).
The cross-validation is run 10 times (the Run column) for each classifier (the Scheme column).
Thus the file contains 100 rows for each classifier, which makes 300 rows in all (plus the header
row). Each row contains plenty of information, including the options supplied to the machine
learning scheme; the number of training and test instances; the number (and percentage) of
correct, incorrect, and unclassified instances; the mean absolute error, root mean-squared error,
and many more.

There is a great deal of information in the spreadsheet, but it is hard to digest. In particular,
it is not easy to answer the question posed previously: how does J4.8 compare with the baseline
methods OneR and ZeroR on this dataset? For that we need the Analyze panel.

4.3 Analyzing the results
The reason that we generated the output in CSV format was to show the spreadsheet in Fig-
ure 4.1c. The Experimenter normally produces its output in ARFF format. You can also leave
the file name blank, in which case the Experimenter stores the results in a temporary file.

Figure 4.2: Statistical test results for the experiment of Figure 4.1a.

84 CHAPTER 4. THE EXPERIMENTER

The Analyze panel is shown in Figure 4.2. To analyze the experiment that has just been
performed, click the Experiment button at the right near the top; otherwise, supply a file that
contains the results of another experiment. Then click Perform test (near the bottom on the
left). The result of a statistical significance test of the performance of the first learning scheme
(J48) versus the other two (OneR and ZeroR) will be displayed in the large panel on the right.

We are comparing the percent correct statistic: this is selected by default as the comparison
field shown toward the left of Figure 4.2. The three methods are displayed horizontally, numbered
(1), (2), and (3), as the heading of a little table. The labels for the columns are repeated at
the bottom—trees.J48, rules.OneR, and rules.ZeroR—in case there is insufficient space for them
in the heading. The inscrutable integers beside the scheme names identify which version of the
scheme is being used. They are present by default to avoid confusion among results generated
using different versions of the algorithms. The value in brackets at the beginning of the iris row
(100) is the number of experimental runs: 10 times 10-fold cross-validation.

The percentage correct for the three schemes is shown in Figure 4.2 94.73% for method 1,
92.53% for method 2, and 33.33% for method 3. The symbol placed beside a result indicates
that it is statistically better (v) or worse (*) than the baseline scheme—in this case J4.8—at
the specified significance level (0.05, or 5%). The corrected resampled t-test is used here. Here,
method 3 is significantly worse than method 1, because its success rate is followed by an asterisk.
At the bottom of columns 2 and 3 are counts (x/y/z) of the number of times the scheme was
better than (x), the same as (y), or worse than (z) the baseline scheme on the datasets used in
the experiment. In this case there is only one dataset; method 2 was equivalent to method 1
(the baseline) once, and method 3 was worse than it once. (The annotation (v/ /*) is placed at
the bottom of column 1 to help you remember the meanings of the three counts x/y/z.)

The output in the Analyze panel can be saved into a file by clicking the “Save output” button.
It is also possible to open a WEKA Explorer window to further analyze the experimental results
obtained, by clicking on the “Open Explorer” button.

4.4 Simple setup
In the Setup panel of Figure 4.1a we left most options at their default values. The experiment
type is a 10-fold cross-validation repeated 10 times. You can alter the number of folds in the
box at center left and the number of repetitions in the box at center right. The experiment type
is classification; you can specify regression instead. You can choose several datasets, in which
case each algorithm is applied to each dataset, and change the order of iteration using the Data
sets first and Algorithm first buttons. The alternative to cross-validation is the holdout method.
There are two variants, depending on whether the order of the dataset is preserved or the data
is randomized. You can specify the percentage split (the default is two-thirds training set and
one-third test set).

Experimental setups can be saved and reopened. You can make notes about the setup by
pressing the Notes button, which brings up an editor window. Serious WEKA users soon find
the need to open up an experiment and rerun it with some modifications—perhaps with a new
dataset or a new learning algorithm. It would be nice to avoid having to recalculate all the results
that have already been obtained! If the results have been placed in a database rather than an
ARFF or CSV file, this is exactly what happens. You can choose JDBC database in the results
destination selector and connect to any database that has a JDBC driver. You need to specify the
database’s URL and enter a username and password. To make this work with your database you
may need to modify the weka/experiment/DatabaseUtils.props file in the WEKA distribution.
If you alter an experiment that uses a database, WEKA will reuse previously computed results

4.5. ADVANCED SETUP 85

whenever they are available. This greatly simplifies the kind of iterative experimentation that
typically characterizes data mining research.

4.5 Advanced setup

Figure 4.3: Setting up an Experimenter in advanced mode.

The Experimenter has an advanced mode. Select Advanced from the drop down box near the
top of the panel shown in Figure 4.1a to obtain the more formidable version of the panel shown
in Figure 4.3. This enlarges the options available for controlling the experiment—including, for
example, the ability to generate learning curves. However, the advanced mode is hard to use,
and the simple version suffices for most purposes. For example, in advanced mode you can set
up an iteration to test an algorithm with a succession of different parameter values, but the same
effect can be achieved in simple mode by putting the algorithm into the list several times with
different parameter values.

One thing you can do in advanced mode but not in simple mode is run experiments using
clustering algorithms. Here, experiments are limited to those clusterers that can compute prob-
ability or density estimates, and the main evaluation measure for comparison purposes is the
log-likelihood. To set this up quickly, first click the Result generator to bring up an object editor
for the CrossValidationResultProducer. Then click the Choose button for the split evaluator and
select DensityBasedClustererSplitEvaluator from the list. At this point the panel on the lower
right that contained the list of classifiers goes blank and the Generator properties drop-down
box displays Disabled. Re-enable this, and a new window appears with a list of properties (Fig-

86 CHAPTER 4. THE EXPERIMENTER

(a) Generator proper-
ties.

(b) Two clustering schemes.

(c) Analyze panel.

Figure 4.4: An experiment in clustering.

4.6. THE ANALYZE PANEL 87

ure 4.4a). Expand the splitEvaluator entry, select clusterer (as shown in the figure), and click
the Select button. Now the active list will reappear in the bottom right-hand panel, along with
the ability to add clustering schemes, just as we did with classifiers.

Figure 4.4b shows a setup with two clustering schemes configured: EM and the MakeDen-
sityBasedClusterer wrapped around SimpleKMeans. After running this experiment, these two
can be compared in the Analyze panel. The comparison field is not set up with a meaningful de-
fault, so choose Log likelihood from the drop-down box before pressing the Perform test button.
Figure 4.4c shows the results for these clustering algorithms.

Another thing you may need the advanced mode for is to set up distributed experiments,
which we describe in Section 4.7

4.6 The Analyze panel
Our walkthrough used the Analyze panel to perform a statistical significance test of one learning
scheme (J48) versus two others (OneR and ZeroR). The test was on the error rate—the Com-
parison field in Figure 4.2. Other statistics can be selected from the drop-down menu instead:
percentage incorrect, percentage unclassified, root mean-squared error, the remaining error mea-
sures discussed in Chapter 5 of the book, and various entropy figures. Moreover, you can see the
standard deviation of the attribute being evaluated by ticking the Show std deviations checkbox.

Use the Test base menu to change the baseline scheme from J4.8 to one of the other learning
schemes. For example, selecting OneR causes the others to be compared with this scheme. In
fact, that would show that there is a statistically significant difference between OneR and ZeroR
but not between OneR and J48. Apart from the learning schemes, there are two other choices in
the Select base menu: Summary and Ranking. The former compares each learning scheme with
every other scheme and prints a matrix whose cells contain the number of datasets on which
one is significantly better than the other. The latter ranks the schemes according to the total
number of datasets that represent wins (>) and losses (<) and prints a league table. The first
column in the output gives the difference between the number of wins and the number of losses.

The Row and Column fields determine the dimensions of the comparison matrix. Clicking
Select brings up a list of all the features that have been measured in the experiment—in other
words, the column labels of the spreadsheet in Figure 4.1c. You can select which to use as the
rows and columns of the matrix. (The selection does not appear in the Select box because more
than one parameter can be chosen simultaneously.) Figure 4.5 shows which items are selected
for the rows and columns of Figure 4.2. The two lists show the experimental parameters (the
columns of the spreadsheet). Dataset is selected for the rows (and there is only one in this
case, the iris dataset), and Scheme, Scheme options, and Scheme version ID are selected for the
column (the usual convention of shift-clicking selects multiple entries). All three can be seen in
Figure 4.2—in fact, they are more easily legible in the key at the bottom.

If the row and column selections were swapped and the Perform test button pressed again,
the matrix would be transposed, giving the result in Figure 4.5. There are now three rows, one
for each algorithm, and one column, for the single dataset. If instead the row of Dataset were
replaced by Run and the test were performed again, the result would be as in Figure 4.5d. Run
refers to the runs of the cross-validation, of which there are 10, so there are now 10 rows. The
number in parentheses after each row label (100 in Figure 4.5c and 10 in Figure 4.5d) is the
number of results corresponding to that row—in other words, the number of measurements that
participate in the averages displayed by the cells in that row.

There is a button that allows you to select a subset of columns to display (the baseline column
is always included), and another that allows you to select the output format: plain text (default),

88 CHAPTER 4. THE EXPERIMENTER

(a) Row field. (b) Column field.

(c) Result of swapping the row and column selec-
tions.

(d) Substituting Run for Dataset as the rows.

Figure 4.5: Configuring rows and columns.

4.7. DISTRIBUTING PROCESSING OVER SEVERAL MACHINES 89

output for the LaTeX typesetting system, CSV format, HTML, data and script suitable for input
to the GNUPlot graph plotting software, and just the significance symbols in plain text format.
It is also possible to show averages and abbreviate filter class names in the output.

There is an option to choose whether to use the paired corrected t-test or the standard t-test
for computing significance. The way the rows are sorted in the results table can be changed by
choosing the Sorting (asc.) by option from the drop-down box. The default is to use natural
ordering, presenting them in the order that the user entered the dataset names in the Setup
panel. Alternatively the rows can be sorted according to any of the measures that are available
in the Comparison field.

4.7 Distributing processing over several machines
A remarkable feature of the Experimenter is that it can split up an experiment and distribute
it across several processors. This is for advanced WEKA users and is only available from the
advanced version of the Setup panel. Some users avoid working with this panel by setting
the experiment up on the simple version and switching to the advanced version to distribute
it, because the experiment’s structure is preserved when you switch. However, distributing
an experiment is an advanced feature and is often difficult. For example, file and directory
permissions can be tricky to set up.

Distributing an experiment works best when the results are all sent to a central database by
selecting JDBC database as the results destination in Figure 4.1a. It uses the RMI facility, and
works with any database that has a JDBC driver. It has been tested on several freely available
databases. Alternatively, you could instruct each host to save its results to a different ARFF file
and merge the files afterwards.

To distribute an experiment across multiple hosts, each host must (a) have Java installed, (b)
have access to whatever datasets you are using, and (c) be running the weka.experiment.RemoteEngine
experiment server. If results are sent to a central data base, the appropriate JDBC drivers must
be installed on each host. Getting all this right is the difficult part of running distributed exper-
iments.

To initiate a remote engine experiment server on a host machine, first copy remoteExperi-
mentServer.jar from the WEKA distribution to a directory on the host. Unpack it with

jar -xvf remoteExperimentServer.jar

It expands to three files: remoteEngine.jar, an executable jar file that contains the experiment
server, remote.policy, and remote.policy.example.

The remote.policy file grants the remote engine permission to perform certain operations,
such as connecting to ports or accessing a directory. It needs to be edited to specify correct
paths in some of the permissions; this is self-explanatory when you examine the file. By default,
it specifies that code can be downloaded on HTTP port 80 from anywhere on the Web, but the
remote engines can also load code from a file URL instead. To arrange this, either uncomment
the example in remote.policy or tailor remote.policy.example to suit your needs. The latter file
contains a complete example for a fictitious user (johndoe) under a Linux operating system. The
remote engines also need to be able to access the datasets used in an experiment (see the first
entry in remote.policy). The paths to the datasets are specified in the Experimenter (i.e., the
client), and the same paths must be applicable in the context of the remote engines. To facilitate
this it may be necessary to specify relative pathnames by selecting the Use relative paths tick
box shown in the Setup panel of the Experimenter.

90 CHAPTER 4. THE EXPERIMENTER

To start the remote engine server, type

java -classpath remoteEngine.jar:<path_to_any_jdbc_drivers>
-Djava.security.policy=remote.policy weka.experiment.RemoteEngine

from the directory containing remoteEngine.jar. All going well you will see this message (or
something like it):

user@ml:remote_engine>Host name : ml.cs.waikato.ac.nz
Attempting to start RMI registry on port 1099 ...
RemoteEngine bound in RMI registry

This indicates that the remote engine has started the RMI registry on port 1099 and is running
successfully. You can run more than one remote engine on a given machine, and it makes sense
to do so if the machine in question has multiple processors or a multi-core processor. To do so,
start each remote engine as above, but instead of the default port (1099) specify a different one
using a command line option (–p) to the remote engine. Repeat the process for all hosts.

Now start the Experimenter by typing

java -Djava.rmi.server.codebase=<URL_for_weka_code>
weka.gui.experiment.Experimenter

The URL specifies where the remote engines can find the code to be executed. If it denotes
a directory (i.e., one that contains the WEKA directory) rather than a jar file, it must end with
path separator (e.g., /).

The Experimenter’s advanced Setup panel in Figure 4.3 contains a small pane at center left
that determines whether an experiment will be distributed or not. This is normally inactive. To
distribute the experiment click the checkbox to activate the Hosts button; a window will pop up
asking for the machines over which to distribute the experiment. Host names should be fully
qualified (e.g., ml.cs.waikato.ac.nz).

If a host is running more than one remote engine, enter its name into the window multiple
times, along with the port number if it is not the default. For example:

ml.cs.waikato.ac.nz
ml.cs.waikato.ac.nz:5050

tells the Experimenter that the host ml.cs.waikato.ac.nz is running two remote engines, one at
the default port of 1099 and a second at port 5050.

Having entered the hosts, configure the rest of the experiment in the usual way (better still,
configure it before switching to the advanced setup mode). When the experiment is started using
the Run panel, the progress of the subexperiments on the various hosts is displayed, along with
any error messages.

Distributing an experiment involves splitting it into subexperiments that RMI sends to the
hosts for execution. By default, experiments are partitioned by dataset, in which case there can
be no more hosts than there are datasets. Then each subexperiment is self-contained: it applies
all schemes to a single dataset. An experiment with only a few datasets can be partitioned by run
instead. For example, a 10 times 10-fold cross-validation would be split into 10 subexperiments,
1 per run.

Chapter 5

The Command-Line Interface

Lurking behind WEKA’s interactive interfaces—the Explorer, the Knowledge Flow, the Exper-
imenter and the Workbench—lies its basic functionality. This can be accessed more directly
through a command-line interface. Select Simple CLI from the interface choices at the right
of Figure 2.3a to bring up a plain textual panel with a line at the bottom on which you enter
commands. Alternatively, use the operating system’s command-line interface to run the classes
in weka.jar, in which case you must first set the CLASSPATH environment variable as explained
in WEKA’s README file.

5.1 Getting started
At the beginning of Section 2.1.3 we used the Explorer to invoke the J4.8 learner on the weather
data. To do the same thing in the command-line interface, type

java weka.classifiers.trees.J48 -t data/weather.arff

into the line at the bottom of the text panel. This incantation calls the Java virtual machine (in
the Simple CLI, Java is already loaded) and instructs it to execute J4.8. WEKA is organized in
packages (not to be confused with the plugin packages that are managed by WEKA’s package
manager) that correspond to a directory hierarchy. The program to be executed is called J48
and resides in the trees package, which is a subpackage of classifiers, which is part of the overall
weka package. The next section gives more details of the package structure. The –t option
signals that the next argument is the name of the training file: we are assuming that the weather
data resides in a data subdirectory of the directory from which you fired up WEKA. The result
resembles the text shown in Figure 2.5. In the Simple CLI it appears in the panel above the line
where you typed the command.

5.1.1 weka.Run
Typing in fully qualified class names can become a chore after a while, especially if you are using
meta learning schemes that themselves require various base learners to be specified. Using the
weka.Run command line tool allows you to type in shortened versions of scheme names, and
WEKA will attempt to find a match by scanning the names of all the schemes it knows about.
Using weka.Run, the previous J4.8 invocation becomes

java weka.Run .J48 -t data/weather.arff

91

92 CHAPTER 5. THE COMMAND-LINE INTERFACE

A small saving perhaps, but consider the following

java weka.Run .Stacking -M .Logistic -B .J48 -B ".FilteredClassifier -F \".Remove -R 1\"
-W .NaiveBayes" -B .OneR -t data/iris.arff

Without weka.Run’s scheme matching this would look like

java weka.classifiers.meta.Stacking -M weka.classifiers.functions.Logistic
-B weka.classifiers.trees.J48 -B "weka.classifiers.meta.FilteredClassifier
-F \"weka.filters.unsupervised.attribute.Remove -R 1\"
-W weka.classifiers.bayes.NaiveBayes" -B weka.classifiers.rules.OneR
-t data/iris.arff

If you are not using the Simple CLI, but instead are using your operating system’s command-
line interface, then weka.Run provides another benefit—it automatically adds all the classes from
plugin packages into the CLASSPATH. This saves having to modify the CLASSPATH every time
you install a new plugin package.

5.2 The structure of WEKA
We have explained how to invoke filtering and learning schemes with the Explorer and connect
them together with the Knowledge Flow interface. To go further, it is necessary to learn some-
thing about how WEKA is put together. Detailed, up-to-date information can be found in the
online documentation included in the distribution. This is more technical than the descriptions
of the learning and filtering schemes given by the More button in the Explorer and Knowledge
Flow’s object editors. It is generated directly from comments in the source code using the Javadoc
utility. To understand its structure, you need to know how Java programs are organized.

5.2.1 Classes, instances, and packages
Every Java program is implemented as a class or collection of classes. In object-oriented pro-
gramming, a class is a collection of variables along with some methods that operate on them.
Together, they define the behavior of an object belonging to the class. An object is simply an
instantiation of the class that has values assigned to all the class’s variables. In Java, an object
is also called an instance of the class. Unfortunately, this conflicts with the terminology used
in this book, where the terms class and instance appear in the quite different context of ma-
chine learning. From now on, you will have to infer the intended meaning of these terms from
their context. This is not difficult—and sometimes we will use the word object instead of Java’s
instance to make things clear.

In WEKA, the implementation of a particular learning algorithm is encapsulated in a class—
which may depend on other classes for some of its functionality. For example, the J48 class
described previously builds a C4.5 decision tree. Each time the Java virtual machine executes
J48, it creates an instance of this class by allocating memory for building and storing a decision
tree classifier. The algorithm, the classifier it builds, and a procedure for outputting the classifier
are all part of that instantiation of the J48 class.

Larger programs are usually split into more than one class. The J48 class, for example, does
not actually contain any code for building a decision tree. It includes references to instances of
other classes that do most of the work. When there are a lot of classes—as in WEKA—they
become difficult to comprehend and navigate. Java allows classes to be organized into packages.
A package is just a directory containing a collection of related classes: for example, the trees
package mentioned previously contains the classes that implement decision trees. Packages are

5.2. THE STRUCTURE OF WEKA 93

organized in a hierarchy that corresponds to the directory hierarchy: trees is a subpackage of the
classifiers package, which is itself a subpackage of the overall weka package.

When you consult the online documentation generated by Javadoc from your Web browser,
the first thing you see is an alphabetical list of all the packages in WEKA, as shown in Figure 5.1.
(If you view the Javadoc with frames, you will see more than this. Click on NO FRAMES to
remove the extra information.) Here we introduce a few of them in order of importance.

5.2.2 The weka.core package
The core package is central to the WEKA system, and its classes are accessed from almost every
other class. You can determine what they are by clicking on the weka.core hyperlink, which
brings up the web page shown in Figure 5.-2.

This web page is divided into several parts, the main ones being the interface summary
and the class summary. The latter is a list of classes contained within the package, and the
former lists the interfaces it provides. An interface is similar to a class, the only difference
being that it does not actually do anything by itself—it is merely a list of methods without
actual implementations. Other classes can declare that they “implement” a particular interface
and then provide code for its methods. For example, the OptionHandler interface defines those
methods that are implemented by all classes that can process command-line options, including
all classifiers.

The key classes in the core package are Attribute, Instance, and Instances. An object of class
Attribute represents an attribute. It contains the attribute’s name, its type, and, in the case of a
nominal or string attribute, its possible values. An object of class Instance contains the attribute
values of a particular instance; and an object of class Instances holds an ordered set of instances,
in other words, a dataset. You can learn more about these classes by clicking their hyperlinks;
we return to them in Chapter 6 when we show how to invoke machine learning schemes from
other Java code. However, you can use WEKA from the command line without knowing the
details.

Clicking the Overview hyperlink in the upper left corner of any documentation page returns
you to the listing of all the packages in WEKA that is shown in Figure 5.1.

5.2.3 The weka.classifiers package
The classifiers package contains implementations of most of the algorithms for classification and
numeric prediction described in this book. (Numeric prediction is included in classifiers: it
is interpreted as prediction of a continuous class.) The most important class in this package
is AbstractClassifier, which implements the Classifier interface. Classifier defines the general
structure of any scheme for classification or numeric prediction and declares three important
methods, buildClassifier(), classifyInstance(), and distributionForInstance(). In the terminology
of object-oriented programming, the learning algorithms are represented by subclasses of Ab-
stractClassifier and therefore automatically inherit these three methods. Every scheme redefines
them according to how it builds a classifier and how it classifies instances. This gives a uniform
interface for building and using classifiers from other Java code. Hence, for example, the same
evaluation module can be used to evaluate the performance of any classifier in WEKA.

To see an example, click on weka.classifiers.trees and then on DecisionStump, which is a class
for building a simple one-level binary decision tree (with an extra branch for missing values).
Its documentation page, shown in Figure 5.-2, shows the fully qualified name of this class,
weka.classifiers.trees.DecisionStump, near the top. You have to use this rather lengthy name
whenever you build a decision stump from the command line, unless you use weka.Run. The

94 CHAPTER 5. THE COMMAND-LINE INTERFACE

Figure 5.1: Javadoc: the front page.

5.2. THE STRUCTURE OF WEKA 95

Figure 5.2: Javadoc: the weka.core package.

96 CHAPTER 5. THE COMMAND-LINE INTERFACE

Figure 5.1: Javadoc: the weka.core package cont.

5.2. THE STRUCTURE OF WEKA 97

Figure 5.0: Javadoc: the weka.core package cont.

98 CHAPTER 5. THE COMMAND-LINE INTERFACE

Figure 5.-1: Javadoc: the weka.core package cont.

5.2. THE STRUCTURE OF WEKA 99

Figure 5.-2: Javadoc: the weka.core package cont.

class name is sited in a small tree structure showing the relevant part of the class hierarchy. As
you can see, DecisionStump is a subclass of weka.classifiers.AbstractClassifier, which is itself a
subclass of java.lang.Object. The Object class is the most general one in Java: all classes are
automatically subclasses of it.

After some generic information about the class—brief documentation, its version, and the
author—Figure 5.-2 gives an index of the constructors and methods of this class. A constructor
is a special kind of method that is called whenever an object of that class is created, usually
initializing the variables that collectively define its state. The index of methods lists the name
of each one, the type of parameters it takes, and a short description of its functionality. Beneath
those indexes, the web page gives more details about the constructors and methods. We return
to these details later.

As you can see, DecisionStump overwrites distributionForInstance() from AbstractClassifier :
the default implementation of classifyInstance() in AbstractClassifier then uses this method to
produce its classifications. In addition, DecisionStump contains the getCapabilities(), getRevi-
sion(), globalInfo(), toSource(), toString(), and main() methods. We discuss getCapabilities()
shortly. The getRevision() method simply returns the revision number of the classifier. There is
a utility class in the weka.core package that prints it to the screen, which is used by WEKA main-
tainers when diagnosing and debugging problems reported by users. The globalInfo() method
returns a string describing the classifier, which, along with the scheme’s options, is displayed
by the More button in the generic object editor in WEKA’s graphical user interfaces. The
toString() method returns a textual representation of the classifier, used whenever it is printed
on the screen, while the toSource() method is used to obtain a source code representation of the
learned classifier. (This is only implemented if the classifier implements the Sourcable interface.)
The main() method is called when you ask for a decision stump from the command line, in other
words, every time you enter a command beginning with

java weka.classifiers.trees.DecisionStump

The presence of a main() method in a class indicates that it can be run from the command line:
all learning methods and filter algorithms implement it.

The getCapabilities() method is called by the generic object editor to provide information
about the capabilities of a learning scheme (Figure 2.9d). The training data is checked against

100 CHAPTER 5. THE COMMAND-LINE INTERFACE

Figure 5.-1: DecisionStump: a class of the weka.classifiers.trees package.

5.2. THE STRUCTURE OF WEKA 101

Figure 5.-2: DecisionStump: a class of the weka.classifiers.trees package cont.

102 CHAPTER 5. THE COMMAND-LINE INTERFACE

the learning scheme’s capabilities when the buildClassifier() method is called, and an error raised
when the classifier’s stated capabilities do not match the data’s characteristics. The getCapabil-
ities() method is present in the AbstractClassifier class and, by default, enables all capabilities
(i.e., imposes no constraints). This makes it easier for new WEKA programmers to get started
because they need not learn about and specify capabilities initially. Capabilities are covered in
more detail in Chapter 7.

5.2.4 Other packages
Several other packages listed in Figure 5.1 are worth mentioning: weka.associations, weka.clusterers,
weka.datagenerators, weka.estimators, weka.filters, and
weka.attributeSelection. The weka.associations package contains association rule learners. These
have been placed in a separate package because association rules are fundamentally different from
classifiers. The weka.clusterers package contains methods for unsupervised learning. Artificial
data can be generated using the classes in weka.datagenerators. The weka.estimators package
contains subclasses of a generic Estimator class, which computes different types of probability
distributions. These subclasses are used by the naive Bayes algorithm (among others).

In the weka.filters package, the Filter class defines the general structure of classes containing
filter algorithms, which are all implemented as subclasses of Filter. Like classifiers, filters can
be used from the command line: we will see how shortly. The weka.attributeSelection package
contains several classes for attribute selection. These are used by the AttributeSelectionFilter in
weka.filters.supervised.attribute, but can also be invoked separately.

5.2.5 Javadoc indexes
As mentioned previously, all classes are automatically subclasses of Object. To examine the tree
that corresponds to WEKA’s hierarchy of classes, select the Overview link from the top of any
page of the online documentation. Click Tree to display the overview as a tree that shows which
classes are subclasses or superclasses of a particular class—for example, which classes inherit
from AbstractClassifier.

The online documentation contains an index of all classes, packages, publicly accessible vari-
ables (called fields) and methods in WEKA—in other words, all fields and methods that you can
access from your own Java code. To view it, click Overview and then Index.

Suppose you want to check which WEKA classifiers and filters are capable of operating
incrementally. Searching for the word incremental in the index would soon lead you to the
keyword UpdateableClassifier. In fact, this is a Java interface; interfaces are listed after the classes
in the overview tree. You are looking for all classes that implement this interface. Clicking any
occurrence of it in the documentation brings up a page that describes the interface and lists the
classifiers that implement it. To find the filters is a little trickier unless you know the keyword
StreamableFilter, which is the name of the interface that streams data through a filter: again its
page lists the filters that implement it. You would stumble across that keyword if you knew any
example of a filter that could operate incrementally.

5.3 Command-line options
In the preceding example, the –t option was used on the command line to communicate the name
of the training file to the learning algorithm. There are many other options that can be used
with any learning scheme, and also scheme-specific ones that apply only to particular schemes. If
you invoke a learning scheme with the –h or –help option, or without any command-line options

5.3. COMMAND-LINE OPTIONS 103

at all, it displays the applicable options: first the general options, then the scheme-specific ones.
In the command-line interface, type:

java weka.Run .J48 -h

You will see a list of the options common to all learning schemes, shown in Table 5.1, followed
by those that apply only to J48, shown in Table 5.2. A notable one is –info, which outputs a
very brief description of the scheme. We will explain the generic options and then briefly review
the scheme-specific ones.

Option Function
–h or –help Print help information
–synopsis or –info In combination with –h or –help, prints

the information from the “More” button
in a classifier’s generic object editor

–t <training file> Specify training file
–T <test file> Specify test file. If none, a cross-validation

is performed on the training data
–c <class index> Specify index of class attribute
–x <number of folds> Specify number of folds for cross-validation
–s <random number seed> Specify random number seed for cross-validation
–no-cv Don’t perform cross-validation
–split-percentage <training percentage> Specify percentage of the data to use for

the training set in a train-test split
–preserve-order Preserve original order of the data when

performing a train-test split
–m <cost matrix file> Specify file containing cost matrix
–l <input file> Specify input file for model
–d <output file> Specify output file for model
–v Output no statistics for training data
–o Output statistics only, not the classifier
–k Output information-theoretic statistics
–p <attribute range> Output predictions for test instances
–distribution In combination with –p, output the full probability

distribution for discrete class data
instead of just the predicted label

–r Output cumulative margin distribution
–z <class name> Output the source representation of the classifier
–g Output the graph representation of the classifier
–xml <filename> | <xml string> Set scheme-specific options

from XML encoded options stored in a file or
in a supplied string

–threshold-file <file> Save threshold data (for ROC curves, etc.) to a file
–threshold-label <label> Class label for the threshold data
–no-predictions Turns off the collection of predictions in

order to conserve memory
–force-batch-training Always train classifier in batch mode,

never incrementally
–toggle Comma-separated list of metric names to toggle in

the output
–classifications Uses the specified class for generating the

classification output
–do-not-output-per-class-statistics Suppress the output of

information retrieval statistics for each class

Table 5.1: Generic options for learning schemes in WEKA

104 CHAPTER 5. THE COMMAND-LINE INTERFACE

5.3.1 Generic options
The options in Table 5.1 determine which data is used for training and testing, how the classifier
is evaluated, and what kind of statistics are displayed. For example, the –T option is used to
provide the name of the test file when evaluating a learning scheme on an independent test set.
By default the class is the last attribute in an ARFF file, but you can declare another one to
be the class using –c followed by the position of the desired attribute, 1 for the first, 2 for the
second, and so on.

When cross-validation is performed (the default if a test file is not provided), the data is
randomly shuffled first. To repeat the cross-validation several times, each time reshuffling the
data in a different way, set the random number seed with –s (default value 1). With a large
dataset you may want to reduce the number of folds for the cross-validation from the default
value of 10 using –x. If performance on the training data alone is required, –no-cv can be used
to suppress cross-validation; –v suppresses output of performance on the training data. As an
alternative to cross-validation, a train-test split of the data specified with the –t option can be
performed by supplying a percentage to use as the new training set with –split-percentage (the
remaining data is used as the test set). Randomization of the data can be suppressed when
performing a train-test split by specifying –preserve-order.

In the Explorer, cost-sensitive evaluation is invoked as described in Section 2.1.5. To achieve
the same effect from the command line, use the –m option to provide the name of a file containing
the cost matrix. Here is a cost matrix for the weather data:

2 2 % Number of rows and columns in the matrix
0 10 % If true class yes and prediction no, penalty is 10.
1 0 % If true class no and prediction yes, penalty is 1.

The first line gives the number of rows and columns, that is, the number of class values. Then
comes the matrix of penalties. Comments introduced by % can be appended to the end of any
line.

It is also possible to save and load models. If you provide the name of an output file using
–d, WEKA saves the classifier generated from the training data. To evaluate the same classifier
on a new batch of test data, you load it back using –l instead of rebuilding it. If the classifier
can be updated incrementally, you can provide both a training file and an input file, and WEKA
will load the classifier and update it with the given training instances.

If you wish only to assess the performance of a learning scheme, use –o to suppress output
of the model. Use –k to compute information-theoretic measures from the probabilities derived
by a learning scheme.

People often want to know which class values the learning scheme actually predicts for each
test instance. The –p option prints each test instance’s number, the index of its class value and
the actual value, the index of the predicted class value and the predicted value, a “+” if the class
was misclassified, and the probability of the predicted class value. The probability predicted
for each of the possible class labels of an instance can be output by using the –distribution flag
in conjunction with –p. In this case, “*” is placed beside the probability in the distribution
that corresponds to the predicted class value. The –p options also outputs attribute values for
each instance and must be followed by a specification of the range (e.g., 1–2)—use 0 if you do
not want any attribute values. You can also output the cumulative margin distribution for the
training data, which shows the distribution of the margin measure. Finally, you can output
the classifier’s source representation (if the classifier implements the Sourcable interface), and a
graphical representation if the classifier can produce one.

5.3. COMMAND-LINE OPTIONS 105

Data relating to performance graphs such as ROC and recall-precision curves can be sent to
a file using the –threshold-file option. The class label to treat as the positive class for generating
the data can be specified with –threshold-label. The next section discusses how scheme-specific
options are supplied on the command line; they can also be set from an XML file or string using
the –xml option.

Option Function
–U Use unpruned tree
–O Do not collapse tree
–C <pruning confidence> Specify confidence threshold for pruning
–M <number of instances> Specify minimum number of instances in

any leaf
–R Use reduced-error pruning
–N <number of folds> Specify number of folds for reduced-error

pruning; one fold is used as pruning set
–B Use binary splits only
–S Don’t perform subtree raising
–L Retain instance information
–A Smooth the probability estimates

using Laplace smoothing
–J Prevent the use of the MDL correction

for the information gain of numeric splits
–Q Seed for shuffling the data
–doNotMakeSplitPointActualValue Do not find a split point

that is an actual value in the training set

Table 5.2: Scheme-specific options

5.3.2 Scheme-specific options
Table 5.2 shows the options specific to J4.8. You can force the algorithm to use the unpruned tree
instead of the pruned one. You can suppress subtree raising, which increases efficiency. You can
set the confidence threshold for pruning and the minimum number of instances permissible at any
leaf. As well as C4.5’s standard pruning procedure, reduced-error pruning can be performed. The
–N option governs the size of the holdout set: the dataset is divided equally into that number of
parts and the last is held out (default value 3). You can smooth the probability estimates using
the Laplace technique, set the random number seed for shuffling the data when selecting a pruning
set, and store the instance information for future visualization. It is possible to turn off the
MDL-based correction for the information gain on numeric attributes, which sometimes results
in inappropriate pre-pruning. To reduce runtime on large datasets with numeric attributes, we
can also turn off C4.5’s mechanism that refines the initial split point on a numeric attribute to
be a value that actually occurs in the training set. Finally, to build a binary tree instead of one
with multiway branches for nominal attributes, use –B.

106 CHAPTER 5. THE COMMAND-LINE INTERFACE

Chapter 6

Embedded Machine Learning

In most practical applications of data mining the learning component is an integrated part of a
far larger software environment. If the environment is written in Java, you can use WEKA to
solve the learning problem without writing any machine learning code yourself. When invoking
learning schemes from the graphical user interfaces or the command line, there is no need to know
anything about programming in Java. In this section we show how to access these algorithms
from your own Java code. From now on, we assume that you have at least some rudimentary
knowledge of Java.

6.1 A simple data mining application
We present a simple data mining application for learning a model that classifies text files into
two categories, hit and miss. The application works for arbitrary documents: we refer to them as
messages. The implementation uses the StringToWordVector filter mentioned in Section 2.3.1.4
to convert the messages into attribute vectors. We assume that the program is called every time
a new file is to be processed. If the user provides a class label for the file, the system uses it for
training; if not, it classifies it. The decision tree classifier J48 is used to do the work.

Figure 6.-1 shows the source code for the application program, implemented in a class called
MessageClassifier. The command-line arguments that the main() method accepts are the name of
a text file (given by –m), the name of a file holding an object of class MessageClassifier (–t), and,
optionally, the classification of the message in the file (–c). If the user provides a classification,
the message will be converted into an example for training; if not, the MessageClassifier object
will be used to classify it as hit or miss.

6.2 main()
The main() method reads the message into a Java StringBuffer and checks whether the user
has provided a classification for it. Then it reads a MessageClassifier object from the file given
by –t, and creates a new object of class MessageClassifier if this file does not exist. In either
case the resulting object is called messageCl. After checking for illegal command-line options,
the program calls the method updateData() message to update the training data stored in mes-
sageCl if a classification has been provided; otherwise it calls classifyMessage() to classify it.
Finally, the messageCl object is saved back into the file, because it may have changed. In the
following, we first describe how a new MessageClassifier object is created by the constructor

107

108 CHAPTER 6. EMBEDDED MACHINE LEARNING

/**
* Java program for classifying short text messages into two classes.
*/

import weka.classifiers.Classifier;
import weka.classifiers.trees.J48;
import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.SerializationHelper;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.StringToWordVector;

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.Serializable;
import java.util.ArrayList;

public class MessageClassifier implements Serializable {

/** for serialization. */
private static final long serialVersionUID = -123455813150452885L;

/** The training data gathered so far. */
private Instances m_Data = null;

/** The filter used to generate the word counts. */
private StringToWordVector m_Filter = new StringToWordVector();

/** The actual classifier. */
private Classifier m_Classifier = new J48();

/** Whether the model is up to date. */
private boolean m_UpToDate;

/**
* Constructs empty training dataset.
*/

public MessageClassifier() {
String nameOfDataset = "MessageClassificationProblem";

// Create vector of attributes.
ArrayList<Attribute> attributes = new ArrayList<Attribute>(2);

// Add attribute for holding messages.
attributes.add(new Attribute("Message", (ArrayList<String>) null));

// Add class attribute.
ArrayList<String> classValues = new ArrayList<String>(2);
classValues.add("miss");
classValues.add("hit");
attributes.add(new Attribute("Class", classValues));

// Create dataset with initial capacity of 100, and set index of class.
m_Data = new Instances(nameOfDataset, attributes, 100);
m_Data.setClassIndex(m_Data.numAttributes() - 1);

}

Figure 6.1: The message classifier

6.2. MAIN() 109

/**
* Updates model using the given training message.
*
* @param messagethe message content
* @param classValuethe class label
*/

public void updateData(String message, String classValue) {
// Make message into instance.
Instance instance = makeInstance(message, m_Data);

// Set class value for instance.
instance.setClassValue(classValue);

// Add instance to training data.
m_Data.add(instance);

m_UpToDate = false;
}

/**
* Classifies a given message.
*
* @param messagethe message content
* @throws Exception if classification fails
*/

public void classifyMessage(String message) throws Exception {
// Check whether classifier has been built.
if (m_Data.numInstances() == 0)

throw new Exception("No classifier available.");

// Check whether classifier and filter are up to date.
if (!m_UpToDate) {

// Initialize filter and tell it about the input format.
m_Filter.setInputFormat(m_Data);

// Generate word counts from the training data.
Instances filteredData = Filter.useFilter(m_Data, m_Filter);

// Rebuild classifier.
m_Classifier.buildClassifier(filteredData);

m_UpToDate = true;
}

// Make separate little test set so that message
// does not get added to string attribute in m_Data.
Instances testset = m_Data.stringFreeStructure();

// Make message into test instance.
Instance instance = makeInstance(message, testset);

// Filter instance.
m_Filter.input(instance);
Instance filteredInstance = m_Filter.output();

// Get index of predicted class value.
double predicted = m_Classifier.classifyInstance(filteredInstance);

// Output class value.
System.err.println("Message classified as : " +

m_Data.classAttribute().value((int) predicted));
}

Figure 6.0: The message classifier cont.

110 CHAPTER 6. EMBEDDED MACHINE LEARNING

/**
* Method that converts a text message into an instance.
*
* @param textthe message content to convert
* @param datathe header information
* @returnthe generated Instance
*/

private Instance makeInstance(String text, Instances data) {
// Create instance of length two.
Instance instance = new DenseInstance(2);

// Set value for message attribute
Attribute messageAtt = data.attribute("Message");
instance.setValue(messageAtt, messageAtt.addStringValue(text));

// Give instance access to attribute information from the dataset.
instance.setDataset(data);

return instance;
}

/**
* Main method. The following parameters are recognized:
*
* -m messagefile
* Points to the file containing the message to classify or use for
* updating the model.
* -c classlabel
* The class label of the message if model is to be updated. Omit for
* classification of a message.
* -t modelfile
* The file containing the model. If it doesn’t exist, it will be
* created automatically.
*
* @param argsthe commandline options
*/

public static void main(String[] args) {
try {

// Read message file into string.
String messageName = Utils.getOption(’m’, args);
if (messageName.length() == 0)

throw new Exception("Must provide name of message file (’-m <file>’).");
FileReader m = new FileReader(messageName);
StringBuffer message = new StringBuffer();
int l;
while ((l = m.read()) != -1)
message.append((char) l);
m.close();

// Check if class value is given.
String classValue = Utils.getOption(’c’, args);

// If model file exists, read it, otherwise create new one.
String modelName = Utils.getOption(’t’, args);
if (modelName.length() == 0)
throw new Exception("Must provide name of model file (’-t <file>’).");
MessageClassifier messageCl;
try {

messageCl = (MessageClassifier) SerializationHelper.read(modelName);
}
catch (FileNotFoundException e) {

messageCl = new MessageClassifier();
}

// Check if there are any options left
Utils.checkForRemainingOptions(args);

// Process message.
if (classValue.length() != 0)

messageCl.updateData(message.toString(), classValue);
else

messageCl.classifyMessage(message.toString());

// Save message classifier object only if it was updated.
if (classValue.length() != 0)
SerializationHelper.write(modelName, messageCl);

}
catch (Exception e) {

e.printStackTrace();
}

}
}

Figure 6.-1: The message classifier cont.

6.3. MESSAGECLASSIFIER() 111

MessageClassifier() and then explain how the two methods updateData() and classifyMessage()
work.

6.3 messageClassifier()
Each time a new MessageClassifier is created, objects for holding the filter and classifier are
generated automatically. The only nontrivial part of the process is creating a dataset, which
is done by the constructor MessageClassifier(). First the dataset’s name is stored as a string.
Then an Attribute object is created for each attribute, one to hold the string corresponding to
a text message and the other for its class. These objects are stored in a dynamic array of type
ArrayList.

Attributes are created by invoking one of the constructors in the class Attribute. This class has
a constructor that takes one parameter—the attribute’s name—and creates a numeric attribute.
However, the constructor we use here takes two parameters: the attribute’s name and a reference
to an ArrayList. If this reference is null, as in the first application of this constructor in our
program, WEKA creates an attribute of type string. Otherwise, a nominal attribute is created.
This is how we create a class attribute with two values hit and miss: by passing the attribute’s
name (class) and its values—stored in an ArrayList—to Attribute().

To create a dataset from this attribute information, MessageClassifier() must create an object
of the class Instances from the core package. The constructor of Instances used by MessageClas-
sifier() takes three arguments: the dataset’s name, a ArrayList containing the attributes, and an
integer indicating the dataset’s initial capacity. We set the initial capacity to 100; it is expanded
automatically if more instances are added. After constructing the dataset, MessageClassifier()
sets the index of the class attribute to be the index of the last attribute.

6.4 updateData()
Now you know how to create an empty dataset, consider how the MessageClassifier object
actually incorporates a new training message. The method updateData() does this. It first
converts the given message into a training instance by calling makeInstance(), which begins by
creating an object of class Instance that corresponds to an instance with two attributes. The
constructor of the Instance object sets all the instance’s values to be missing and its weight to
1. The next step in makeInstance() is to set the value of the string attribute holding the text of
the message. This is done by applying the setValue() method of the Instance object, providing
it with the attribute whose value needs to be changed, and a second parameter that corresponds
to the new value’s index in the definition of the string attribute. This index is returned by the
addStringValue() method, which adds the message text as a new value to the string attribute
and returns the position of this new value in the definition of the string attribute.

Internally, an Instance stores all attribute values as double-precision floating-point numbers
regardless of the type of the corresponding attribute. In the case of nominal and string attributes
this is done by storing the index of the corresponding attribute value in the definition of the
attribute. For example, the first value of a nominal attribute is represented by 0.0, the second
by 1.0, and so on. The same method is used for string attributes: addStringValue() returns the
index corresponding to the value that is added to the definition of the attribute.

Once the value for the string attribute has been set, makeInstance() gives the newly created
instance access to the data’s attribute information by passing it a reference to the dataset. In
WEKA, an Instance object does not store the type of each attribute explicitly; instead, it stores
a reference to a dataset with the corresponding attribute information.

112 CHAPTER 6. EMBEDDED MACHINE LEARNING

Returning to updateData(), once the new instance has been returned from makeInstance()
its class value is set and it is added to the training data. We also initialize m UpToDate, a flag
indicating that the training data has changed and the predictive model is hence not up to date.

6.5 classifyMessage()
Now let’s examine how MessageClassifier processes a message whose class label is unknown.
The classifyMessage() method first checks whether a classifier has been built by determining
whether any training instances are available. It then checks whether the classifier is up to date.
If not (because the training data has changed) it must be rebuilt. However, before doing so the
data must be converted into a format appropriate for learning using the StringToWordVector
filter. First, we tell the filter the format of the input data by passing it a reference to the input
dataset using setInputFormat(). Every time this method is called, the filter is initialized—that
is, all its internal settings are reset. In the next step, the data is transformed by useFilter().
This generic method from the Filter class applies a filter to a dataset. In this case, because
StringToWordVector has just been initialized, it computes a dictionary from the training dataset
and then uses it to form a word vector. After returning from useFilter(), all the filter’s internal
settings are fixed until it is initialized by another call of setInputFormat(). This makes it possible
to filter a test instance without updating the filter’s internal settings (in this case, the dictionary).

Once the data has been filtered, the program rebuilds the classifier—in our case a J48 decision
tree—by passing the training data to its buildClassifier() method. Then it sets m UpToDate to
true. It is an important convention in WEKA that the buildClassifier() method completely
initializes the model’s internal settings before generating a new classifier. Hence we do not need
to construct a new J48 object before we call buildClassifier().

Having ensured that the model stored in m Classifier is current, we proceed to classify the
message. Before makeInstance() is called to create an Instance object from it, a new Instances
object is created to hold the new instance and passed as an argument to makeInstance(). This
is done so that makeInstance() does not add the text of the message to the definition of the
string attribute in m Data. Otherwise, the size of the m Data object would grow every time a
new message was classified, which is clearly not desirable—it should only grow when training
instances are added. Hence a temporary Instances object is created and discarded once the
instance has been processed. This object is obtained using the method stringFreeStructure(),
which returns a copy of m Data with an empty string attribute. Only then is makeInstance()
called to create the new instance.

The test instance must also be processed by the StringToWordVector filter before being
classified. This is easy: the input() method enters the instance into the filter object, and the
transformed instance is obtained by calling output(). Then a prediction is produced by passing
the instance to the classifier’s classifyInstance() method. As you can see, the prediction is coded
as a double value. This allows WEKA’s evaluation module to treat models for categorical and
numeric prediction similarly. In the case of categorical prediction, as in this example, the double
variable holds the index of the predicted class value. To output the string corresponding to this
class value, the program calls the value() method of the dataset’s class attribute.

There is at least one way in which our implementation could be improved. The classifier
and the StringToWordVector filter could be combined using the FilteredClassifier metalearner
described in Section 2.3.3. This classifier would then be able to deal with string attributes
directly, without explicitly calling the filter to transform the data. We have not done this here
because we wanted to demonstrate how filters can be used programmatically.

Chapter 7

Writing New Learning Schemes

Suppose you need to implement a special-purpose learning algorithm that is not included in
WEKA. Or suppose you are engaged in machine learning research and want to investigate a
new learning scheme. Or suppose you just want to learn more about the inner workings of an
induction algorithm by actually programming it yourself. This section uses a simple example to
show how to make full use of WEKA’s class hierarchy when writing classifiers.

Scheme Description Book section
weka.classifiers.bayes.NaiveBayesSimple Probabilistic learner 4.2
weka.classifiers.trees.Id3 Decision tree learner 4.3
weka.cassifiers.rules.Prism Rule learner 4.4
weka.classifiers.lazy.IB1 Instance-based learner 4.7

Table 7.1: Simple learning schemes in WEKA

The plugin package called simpleEducationalLearningSchemes includes the elementary learn-
ing schemes listed in Table 7.1. None take any scheme-specific command-line options. They
are all useful for understanding the inner workings of a classifier. As an example, we describe
the weka.classifiers.trees.Id3 scheme, which implements the ID3 decision tree learner. Other
schemes, such as clustering algorithms and association rule learners, are organized in a similar
manner.

7.1 An example classifier
Figure 7.-4 gives the source code of weka.classifiers.trees.Id3, which, as you can see from the

code, extends the AbstractClassifier class. Every classifier in WEKA does so, whether it predicts
a nominal class or a numeric one. It also implements two interfaces, TechnicalInformationHan-
dler and Sourcable, which allow the implementing class to provide bibliographical references for
display in WEKA’s graphical user interface and a source code representation of its learned model
respectively.

The first method in weka.classifiers.trees.Id3 is globalInfo(): we mention it here before mov-
ing on to the more interesting parts. It simply returns a string that is displayed in WEKA’s
graphical user interface when this scheme is selected. Part of the string includes information
generated by the second method, getTechnicalInformation(), which formats a bibliographic ref-
erence for the ID3 algorithm. The third method, getCapabilities(), returns information on the
data characteristics that ID3 can handle, namely nominal attributes and a nominal class—and

113

114 CHAPTER 7. WRITING NEW LEARNING SCHEMES

import weka.classifiers.*;
import weka.core.*
import java.util.Enumeration;

/**
* Class implementing an Id3 decision tree learner
*/

public class Id3 extends AbstractClassifier implements TechnicalInformationHandler, Sourcable {

/** for serialization */
static final long serialVersionUID = -2693678647096322561L;

/** The node’s successors. */
private Id3[] m_Successors;

/** Attribute used for splitting. */
private Attribute m_Attribute;

/** Class value if node is leaf. */
private double m_ClassValue;

/** Class distribution if node is leaf. */
private double[] m_Distribution;

/** Class attribute of dataset. */
private Attribute m_ClassAttribute;

/**
* Returns a string describing the classifier.
*
* @return a description suitable for the GUI.
*/

public String globalInfo() {
return "Class for constructing an unpruned decision tree based on the ID3 "

+ "algorithm. Can only deal with nominal attributes. No missing values "
+ "allowed. Empty leaves may result in unclassified instances. For more "
+ "information see: \n\n" + getTechnicalInformation().toString();

}

/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/

@Override
public TechnicalInformation getTechnicalInformation() {

TechnicalInformation result = new TechnicalInformation(Type.ARTICLE);
result.setValue(Field.AUTHOR, "R. Quinlan");
result.setValue(Field.YEAR, "1986");
result.setValue(Field.TITLE, "Induction of decision trees");
result.setValue(Field.JOURNAL, "Machine Learning");
result.setValue(Field.VOLUME, "1");
result.setValue(Field.NUMBER, "1");
result.setValue(Field.PAGES, "81-106");
return result;

}

/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/

@Override
public Capabilities getCapabilities() {

Capabilities result = super.getCapabilities();
result.disableAll();

// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);

// class
result.enable(Capability.NOMINAL_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);

// instances
result.setMinimumNumberInstances(0);

return result;
}

Figure 7.1: The source code for the ID3 decision tree learner.

7.1. AN EXAMPLE CLASSIFIER 115

/**
* Builds Id3 decision tree classifier.
*
* @param data the training data
* @exception Exception if classifier can’t be built successfully
*/

@Override
public void buildClassifier(Instances data) throws Exception {

// can classifier handle the data?
getCapabilities().testWithFail(data);

// remove instances with missing class
data = new Instances(data);
data.deleteWithMissingClass();

makeTree(data);
}

/**
* Method for building an Id3 tree.
*
* @param data the training data
* @exception Exception if decision tree can’t be built successfully
*/

private void makeTree(Instances data) throws Exception {

// Check if no instances have reached this node.
if (data.numInstances() == 0) {

m_Attribute = null;
m_ClassValue = Utils.missingValue();
m_Distribution = new double[data.numClasses()];
return;

}

// Compute attribute with maximum information gain.
double[] infoGains = new double[data.numAttributes()];
Enumeration<Attribute> attEnum = data.enumerateAttributes();
while (attEnum.hasMoreElements()) {

Attribute att = attEnum.nextElement();
infoGains[att.index()] = computeInfoGain(data, att);

}
m_Attribute = data.attribute(Utils.maxIndex(infoGains));

// Make leaf if information gain is zero.
// Otherwise create successors.
if (Utils.eq(infoGains[m_Attribute.index()], 0)) {

m_Attribute = null;
m_Distribution = new double[data.numClasses()];
Enumeration<Instance> instEnum = data.enumerateInstances();
while (instEnum.hasMoreElements()) {

Instance inst = instEnum.nextElement();
m_Distribution[(int) inst.classValue()]++;

}
Utils.normalize(m_Distribution);
m_ClassValue = Utils.maxIndex(m_Distribution);
m_ClassAttribute = data.classAttribute();

} else {
Instances[] splitData = splitData(data, m_Attribute);
m_Successors = new Id3[m_Attribute.numValues()];
for (int j = 0; j < m_Attribute.numValues(); j++) {

m_Successors[j] = new Id3();
m_Successors[j].makeTree(splitData[j]);

}
}

}

Figure 7.0: The source code for the ID3 decision tree learner cont.

116 CHAPTER 7. WRITING NEW LEARNING SCHEMES

/**
* Classifies a given test instance using the decision tree.
*
* @param instance the instance to be classified
* @return the classification
* @throws NoSupportForMissingValuesException if instance has missing values
*/

@Override
public double classifyInstance(Instance instance)

throws NoSupportForMissingValuesException {

if (instance.hasMissingValue()) {
throw new NoSupportForMissingValuesException("Id3: no missing values, "

+ "please.");
}
if (m_Attribute == null) {

return m_ClassValue;
} else {

return m_Successors[(int) instance.value(m_Attribute)]
.classifyInstance(instance);

}
}

/**
* Computes class distribution for instance using decision tree.
*
* @param instance the instance for which distribution is to be computed
* @return the class distribution for the given instance
* @throws NoSupportForMissingValuesException if instance has missing values
*/

@Override
public double[] distributionForInstance(Instance instance)

throws NoSupportForMissingValuesException {

if (instance.hasMissingValue()) {
throw new NoSupportForMissingValuesException("Id3: no missing values, "

+ "please.");
}
if (m_Attribute == null) {

return m_Distribution;
} else {

return m_Successors[(int) instance.value(m_Attribute)]
.distributionForInstance(instance);

}
}

/**
* Prints the decision tree using the private toString method from below.
*
* @return a textual description of the classifier
*/

@Override
public String toString() {

if ((m_Distribution == null) && (m_Successors == null)) {
return "Id3: No model built yet.";

}
return "Id3\n\n" + toString(0);

}

/**
* Computes information gain for an attribute.
*
* @param data the data for which info gain is to be computed
* @param att the attribute
* @return the information gain for the given attribute and data
* @throws Exception if computation fails
*/

private double computeInfoGain(Instances data, Attribute att)
throws Exception {

double infoGain = computeEntropy(data);
Instances[] splitData = splitData(data, att);
for (int j = 0; j < att.numValues(); j++) {

if (splitData[j].numInstances() > 0) {
infoGain -= ((double) splitData[j].numInstances() / (double) data

.numInstances()) * computeEntropy(splitData[j]);
}

}
return infoGain;

}

Figure 7.-1: The source code for the ID3 decision tree learner cont.

7.1. AN EXAMPLE CLASSIFIER 117

/**
* Computes the entropy of a dataset.
*
* @param data the data for which entropy is to be computed
* @return the entropy of the data’s class distribution
* @throws Exception if computation fails
*/

private double computeEntropy(Instances data) throws Exception {

double[] classCounts = new double[data.numClasses()];
Enumeration<Instance> instEnum = data.enumerateInstances();
while (instEnum.hasMoreElements()) {

Instance inst = instEnum.nextElement();
classCounts[(int) inst.classValue()]++;

}
double entropy = 0;
for (int j = 0; j < data.numClasses(); j++) {

if (classCounts[j] > 0) {
entropy -= classCounts[j] * Utils.log2(classCounts[j]);

}
}
entropy /= data.numInstances();
return entropy + Utils.log2(data.numInstances());

}

/**
* Splits a dataset according to the values of a nominal attribute.
*
* @param data the data which is to be split
* @param att the attribute to be used for splitting
* @return the sets of instances produced by the split
*/

private Instances[] splitData(Instances data, Attribute att) {

Instances[] splitData = new Instances[att.numValues()];
for (int j = 0; j < att.numValues(); j++) {

splitData[j] = new Instances(data, data.numInstances());
}
Enumeration<Instance> instEnum = data.enumerateInstances();
while (instEnum.hasMoreElements()) {

Instance inst = instEnum.nextElement();
splitData[(int) inst.value(att)].add(inst);

}
for (Instances element : splitData) {

element.compactify();
}
return splitData;

}

/**
* Outputs a tree at a certain level.
*
* @param level the level at which the tree is to be printed
* @return the tree as string at the given level
*/

private String toString(int level) {

StringBuffer text = new StringBuffer();

if (m_Attribute == null) {
if (Utils.isMissingValue(m_ClassValue)) {

text.append(": null");
} else {

text.append(": " + m_ClassAttribute.value((int) m_ClassValue));
}

} else {
for (int j = 0; j < m_Attribute.numValues(); j++) {

text.append("\n");
for (int i = 0; i < level; i++) {

text.append("| ");
}
text.append(m_Attribute.name() + " = " + m_Attribute.value(j));
text.append(m_Successors[j].toString(level + 1));

}
}
return text.toString();

}

Figure 7.-2: The source code for the ID3 decision tree learner cont.

118 CHAPTER 7. WRITING NEW LEARNING SCHEMES

/**
* Adds this tree recursively to the buffer.
*
* @param id the unqiue id for the method
* @param buffer the buffer to add the source code to
* @return the last ID being used
* @throws Exception if something goes wrong
*/

protected int toSource(int id, StringBuffer buffer) throws Exception {
int result;
int i;
int newID;
StringBuffer[] subBuffers;

buffer.append("\n");
buffer.append(" protected static double node" + id + "(Object[] i) {\n");

// leaf?
if (m_Attribute == null) {

result = id;
if (Double.isNaN(m_ClassValue)) {

buffer.append(" return Double.NaN;");
} else {

buffer.append(" return " + m_ClassValue + ";");
}
if (m_ClassAttribute != null) {

buffer.append(" // " + m_ClassAttribute.value((int) m_ClassValue));
}
buffer.append("\n");
buffer.append(" }\n");

} else {
buffer.append(" checkMissing(i, " + m_Attribute.index() + ");\n\n");
buffer.append(" // " + m_Attribute.name() + "\n");

// subtree calls
subBuffers = new StringBuffer[m_Attribute.numValues()];
newID = id;
for (i = 0; i < m_Attribute.numValues(); i++) {

newID++;

buffer.append(" ");
if (i > 0) {

buffer.append("else ");
}
buffer.append("if (((String) i[" + m_Attribute.index() + "]).equals(\""

+ m_Attribute.value(i) + "\"))\n");
buffer.append(" return node" + newID + "(i);\n");

subBuffers[i] = new StringBuffer();
newID = m_Successors[i].toSource(newID, subBuffers[i]);

}
buffer.append(" else\n");
buffer.append(" throw new IllegalArgumentException(\"Value ’\" + i["

+ m_Attribute.index() + "] + \"’ is not allowed!\");\n");
buffer.append(" }\n");

// output subtree code
for (i = 0; i < m_Attribute.numValues(); i++) {

buffer.append(subBuffers[i].toString());
}
subBuffers = null;

result = newID;
}

return result;
}

Figure 7.-3: The source code for the ID3 decision tree learner cont.

7.1. AN EXAMPLE CLASSIFIER 119

/**
* Returns a string that describes the classifier as source. The classifier
* will be contained in a class with the given name (there may be auxiliary
* classes), and will contain a method with the signature:
*
* <pre>
* <code>
* public static double classify(Object[] i);
* </code>
* </pre>
*
* where the array <code>i</code> contains elements that are either Double,
* String, with missing values represented as null. The generated code is
* public domain and comes with no warranty.

* Note: works only if class attribute is the last attribute in the dataset.
*
* @param className the name that should be given to the source class.
* @return the object source described by a string
* @throws Exception if the source can’t be computed
*/

@Override
public String toSource(String className) throws Exception {

StringBuffer result;
int id;

result = new StringBuffer();

result.append("class " + className + " {\n");
result

.append(" private static void checkMissing(Object[] i, int index) {\n");
result.append(" if (i[index] == null)\n");
result.append(" throw new IllegalArgumentException(\"Null values "

+ "are not allowed!\");\n");
result.append(" }\n\n");
result.append(" public static double classify(Object[] i) {\n");
id = 0;
result.append(" return node" + id + "(i);\n");
result.append(" }\n");
toSource(id, result);
result.append("}\n");

return result.toString();
}

/**
* Returns the revision string.
*
* @return the revision
*/

@Override
public String getRevision() {

return RevisionUtils.extract("$Revision: 10390 $");
}

/**
* Main method.
*
* @param args the options for the classifier
*/

public static void main(String[] args) {
runClassifier(new Id3(), args);

}
}

Figure 7.-4: The source code for the ID3 decision tree learner cont.

120 CHAPTER 7. WRITING NEW LEARNING SCHEMES

the fact that it can deal with missing class values and data that contains no instances (although
the latter does not produce a useful model!). Capabilities are described in Section 7.2.

7.1.1 buildClassifier()
The buildClassifier() method constructs a classifier from a training dataset. In this case it first
checks the data’s characteristics against ID3’s capabilities. Characteristics of the training data,
such as numeric attributes or missing attribute values, will cause the Capabilities class to raise an
exception, because the ID3 algorithm cannot handle these. It then makes a copy of the training
set (to avoid changing the original data) and calls a method from weka.core.Instances to delete
all instances with missing class values, because these instances are useless in the training process.
Finally, it calls makeTree(), which actually builds the decision tree by recursively generating all
subtrees attached to the root node.

7.1.2 makeTree()
The first step in makeTree() is to check whether the dataset is empty. If it is, a leaf is created
by setting m Attribute to null. The class value m ClassValue assigned to this leaf is set to
be missing, and the estimated probability for each of the dataset’s classes in m Distribution is
initialized to 0. If training instances are present, makeTree() finds the attribute that yields the
greatest information gain for them. It first creates a Java enumeration of the dataset’s attributes.
If the index of the class attribute is set—as it will be for this dataset—the class is automatically
excluded from the enumeration.

Inside the enumeration, each attribute’s information gain is computed by computeInfoGain()
and stored in an array. We will return to this method later. The index() method from weka.core.Attribute
returns the attribute’s index in the dataset, which is used to index the array. Once the enumer-
ation is complete, the attribute with the greatest information gain is stored in the instance
variable m Attribute. The maxIndex() method from weka.core.Utils returns the index of the
greatest value in an array of integers or doubles. (If there is more than one element with maxi-
mum value, the first is returned.) The index of this attribute is passed to the attribute() method
from weka.core.Instances, which returns the corresponding attribute.

You might wonder what happens to the array field corresponding to the class attribute.
We need not worry about this because Java automatically initializes all elements in an array of
numbers to zero, and the information gain is always greater than or equal to zero. If the maximum
information gain is zero, makeTree() creates a leaf. In that case m Attribute is set to null, and
makeTree() computes both the distribution of class probabilities and the class with greatest
probability. (The normalize() method from weka.core.Utils normalizes an array of nonnegative
doubles to sum to one.)

When it makes a leaf with a class value assigned to it, makeTree() stores the class attribute
in m ClassAttribute. This is because the method that outputs the decision tree needs to access
this to print the class label.

If an attribute with nonzero information gain is found, makeTree() splits the dataset according
to the attribute’s values and recursively builds subtrees for each of the new datasets. To make
the split it calls the method splitData(). This creates as many empty datasets as there are
attribute values, stores them in an array (setting the initial capacity of each dataset to the
number of instances in the original dataset), and then iterates through all instances in the original
dataset and allocates them to the new dataset that corresponds to the attribute’s value. It then
reduces memory requirements by compacting the Instances objects. Returning to makeTree(),
the resulting array of datasets is used for building subtrees. The method creates an array of

7.1. AN EXAMPLE CLASSIFIER 121

Id3 objects, one for each attribute value, and calls makeTree() on each one by passing it the
corresponding dataset.

7.1.3 computeInfoGain()
Returning to computeInfoGain(), the information gain associated with an attribute and a dataset
is calculated using a straightforward implementation of the formula from Chapter 4 in the book.
First, the entropy of the dataset is computed. Then, splitData() is used to divide it into subsets,
and computeEntropy() is called on each one. Finally, the difference between the former entropy
and the weighted sum of the latter ones—the information gain—is returned. The method com-
puteEntropy() uses the log2() method from weka.core.Utils to obtain the logarithm (to base 2)
of a number.

7.1.4 classifyInstance()
Having seen how ID3 constructs a decision tree, we now examine how it uses the tree structure
to predict class values and probabilities. Every classifier must implement the classifyInstance()
method or the distributionForInstance() method (or both). The AbstractClassifier superclass
contains default implementations for both methods. The default implementation of classifyIn-
stance() calls distributionForInstance(). If the class is nominal, it predicts the class with max-
imum probability, or a missing value if all probabilities returned by distributionForInstance()
are zero. If the class is numeric, distributionForInstance() must return a single-element array
that holds the numeric prediction, and this is what classifyInstance() extracts and returns. Con-
versely, the default implementation of distributionForInstance() wraps the prediction obtained
from classifyInstance() into a single-element array. If the class is nominal, distributionForIn-
stance() assigns a probability of one to the class predicted by classifyInstance() and a probability
of zero to the others. If classifyInstance() returns a missing value, all probabilities are set to
zero. To give you a better feeling for just what these methods do, the weka.classifiers.trees.Id3
class overrides them both.

Let’s look first at classifyInstance(), which predicts a class value for a given instance. As
mentioned in the previous section, nominal class values, like nominal attribute values, are coded
and stored in double variables, representing the index of the value’s name in the attribute dec-
laration. This is used in favor of a more elegant object-oriented approach to increase speed of
execution. In the implementation of ID3, classifyInstance() first checks whether there are missing
attribute values in the instance to be classified; if so, it throws an exception. The class attribute
is skipped in this check, otherwise the classifier could not to make predictions for new data,
where the class is unknown. Otherwise, it descends the tree recursively, guided by the instance’s
attribute values, until a leaf is reached. Then it returns the class value m ClassValue stored at
the leaf. Note that this might be a missing value, in which case the instance is left unclassified.
The method distributionForInstance() works in exactly the same way, returning the probability
distribution stored in m Distribution.

Most machine learning models, and in particular decision trees, serve as a more or less
comprehensible explanation of the structure found in the data. Accordingly, each of WEKA’s
classifiers, like many other Java objects, implements a toString() method that produces a textual
representation of itself in the form of a String variable. ID3’s toString() method outputs a decision
tree in roughly the same format as J4.8 (Figure 2.5). It recursively prints the tree structure into
a String variable by accessing the attribute information stored at the nodes. To obtain each
attribute’s name and values, it uses the name() and value() methods from weka.core.Attribute.
Empty leaves without a class value are indicated by the string null.

122 CHAPTER 7. WRITING NEW LEARNING SCHEMES

7.1.5 toSource()
weka.classifiers.trees.Id3 implements the Sourcable interface. Classifiers that implement this
interface can produce a source code representation of the learned model, which can be output
on the command line by using the –z option (Section 5.3). WEKA produces a Java class (whose
name is provided by the –z option) that can be used to make predictions independently of the
WEKA libraries. Also output is a class called WekaWrapper that extends AbstractClassifier and
uses the named class to make predictions. This class can be used for testing the source code
representation of the model within the WEKA framework—i.e., it can be run from the command
line or used in the Explorer. Because the actual classifier is hard-coded, the buildClassifier()
method of the WekaWrapper does nothing more than check the data against the capabilities.

Figures 7.-3 and 7.-3 show the code produced by weka.classifiers.trees.Id3 when run on the
nominal-attribute version of the weather data. The name Id3Weather was provided with the –z
option, and a class of this name is shown in Figure 7.-3. All its methods are static, meaning
that they can be used without having to instantiate an Id3Weather object. The first method is
called classify and takes as argument an array of objects that give the attribute values for the
instance to be classified. Each node in the ID3 tree that has been learned is represented in the
source code by a static method. The classify() method passes the instance to be classified to
the method corresponding to the root of the tree-node0(). The node0() method corresponds to
a test on the outlook attribute. Because it is not a leaf, it calls a node representing one of the
subtrees—which one depends on the value of outlook in the instance being classified. Processing
of a test instance continues in this fashion until a method corresponding to a leaf node is called,
at which point a classification is returned.

Figure 7.-3 shows the WekaWrapper class that uses Id3Weather. Its classifyInstance() method
constructs an array of objects to pass to the classify() method in Id3Weather. The attribute
values of the test instance are copied into the array and mapped to either String objects (for
nominal values) or Double objects (for numeric values). If an attribute value is missing in the
test instance, its corresponding entry in the array of objects is set to null.

7.1.6 main()
Apart from getRevision(), which is optional and simply returns a version identifier, the only
method in Id3 that has not been described yet is main(), which is called whenever the class is
executed from the command line. As you can see, it is simple: it calls the method runClassifier()
from its superclass (AbstractClassifier) with a new instance of Id3 and the given command-line
options. runClassifier() tells WEKA’s Evaluation class to evaluate the supplied classifier with
the given command-line options and prints the resulting string. The one-line expression in
runClassifier() that does this calls the evaluation() method in WEKA’s evaluation class and is
enclosed in a try-catch statement, which catches the various exceptions that can be thrown by
WEKA’s routines or other Java methods.

The evaluation() method in weka.classifiers.Evaluation interprets the generic scheme-independent
command-line options described in Section 5.3 and acts appropriately. For example, it takes the
–t option, which gives the name of the training file, and loads the corresponding dataset. If
there is no test file it performs a cross-validation by creating a classifier object and repeatedly
calling buildClassifier() and classifyInstance() or distributionForInstance() on different subsets of
the training data. Unless the user suppresses output of the model by setting the corresponding
command-line option, it also calls the toString() method to output the model built from the full
training dataset.

What happens if the scheme needs to interpret a specific option such as a pruning parameter?
This is accomplished using the OptionHandler interface in weka.core. A classifier that implements

7.1. AN EXAMPLE CLASSIFIER 123

class Id3Weather {
private static void checkMissing(Object[] i, int index) {

if (i[index] == null)
throw new IllegalArgumentException("Null values are not allowed!");

}

public static double classify(Object[] i) {
return node0(i);

}

protected static double node0(Object[] i) {
checkMissing(i, 0);

// outlook
if (((String) i[0]).equals("sunny"))

return node1(i);
else if (((String) i[0]).equals("overcast"))

return node4(i);
else if (((String) i[0]).equals("rainy"))

return node5(i);
else

throw new IllegalArgumentException("Value ’" + i[0] + "’ is not allowed!");
}

protected static double node1(Object[] i) {
checkMissing(i, 2);

// humidity
if (((String) i[2]).equals("high"))

return node2(i);
else if (((String) i[2]).equals("normal"))

return node3(i);
else

throw new IllegalArgumentException("Value ’" + i[2] + "’ is not allowed!");
}

protected static double node2(Object[] i) {
return 1.0; // no

}

protected static double node3(Object[] i) {
return 0.0; // yes

}

protected static double node4(Object[] i) {
return 0.0; // yes

}

protected static double node5(Object[] i) {
checkMissing(i, 3);

// windy
if (((String) i[3]).equals("TRUE"))

return node6(i);
else if (((String) i[3]).equals("FALSE"))

return node7(i);
else

throw new IllegalArgumentException("Value ’" + i[3] + "’ is not allowed!");
}

protected static double node6(Object[] i) {
return 1.0; // no

}

protected static double node7(Object[] i) {
return 0.0; // yes

}
}

Figure 7.-3: Source code (Id3Weather class) produced by weka.classifiers.trees.Id3 for the
weather data.

124 CHAPTER 7. WRITING NEW LEARNING SCHEMES

import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;

public class WekaWrapper
extends AbstractClassifier {

/**
* Returns only the toString() method.
*
* @return a string describing the classifier
*/

public String globalInfo() {
return toString();

}

/**
* Returns the capabilities of this classifier.
*
* @return the capabilities
*/

public Capabilities getCapabilities() {
weka.core.Capabilities result = new weka.core.Capabilities(this);

result.enable(weka.core.Capabilities.Capability.NOMINAL_ATTRIBUTES);
result.enable(weka.core.Capabilities.Capability.NOMINAL_CLASS);
result.enable(weka.core.Capabilities.Capability.MISSING_CLASS_VALUES);

result.setMinimumNumberInstances(0);

return result;
}

/**
* only checks the data against its capabilities.
*
* @param i the training data
*/

public void buildClassifier(Instances i) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(i);

}

/**
* Classifies the given instance.
*
* @param i the instance to classify
* @return the classification result
*/

public double classifyInstance(Instance i) throws Exception {
Object[] s = new Object[i.numAttributes()];

for (int j = 0; j < s.length; j++) {
if (!i.isMissing(j)) {

if (i.attribute(j).isNominal())
s[j] = new String(i.stringValue(j));

else if (i.attribute(j).isNumeric())
s[j] = new Double(i.value(j));

}
}

// set class value to missing
s[i.classIndex()] = null;

return Id3Weather.classify(s);
}

Figure 7.-2: Source code (WekaWrapper class) produced by weka.classifiers.trees.Id3 for the
weather data.

7.1. AN EXAMPLE CLASSIFIER 125

/**
* Returns the revision string.
*
* @return the revision
*/

public String getRevision() {
return RevisionUtils.extract("1.0");

}

/**
* Returns only the classnames and what classifier it is based on.
*
* @return a short description
*/

public String toString() {
return "Auto-generated classifier wrapper, based on weka.classifiers.trees.Id3"

+ "(generated with WEKA 3.8.0).\n" + this.getClass().getName() + "/Id3Weather";
}

/**
* Runs the classfier from commandline.
*
* @param args the commandline arguments
*/

public static void main(String args[]) {
runClassifier(new WekaWrapper(), args);

}
}

Figure 7.-3: Source code (WekaWrapper class) produced by weka.classifiers.trees.Id3 for the
weather data.

this interface contains three methods, listOptions(), setOptions(), and getOptions(), which can
be used to list all the classifier’s scheme-specific options, to set some of them, and to get the
options that are currently set. The evaluation() method in Evaluation automatically calls these
methods if the classifier implements the OptionHandler interface. Once the scheme-independent
options have been processed, it calls setOptions() to process the remaining options before using
buildClassifier() to generate a new classifier. When it outputs the classifier, it uses getOptions()
to output a list of the options that are currently set. For a simple example of how to implement
these methods, look at the source code for weka.classifiers.rules.OneR.

OptionHandler makes it possible to set options from the command line. To set them from
within the graphical user interfaces, WEKA uses the Java beans framework. All that is required
are set...() and get...() methods for every parameter used by the class. For example, the methods
setPruningParameter() and getPruningParameter() would be needed for a pruning parameter.
There should also be a pruningParameterTipText() method that returns a description of the
parameter for the graphical user interface. Again, see weka.classifiers.rules.OneR for an example.

In recent versions of WEKA, explicit implementation of listOptions(), setOptions(), and
getOptions() is no longer necessary. Instead, each set...() and get...() pair can be annotated with
the information for the corresponding command-line option using the Java annotation mecha-
nism. AbstractClassifier, etc., take care of implementing appropriate OptionHandler methods.

Some classifiers can be incrementally updated as new training instances arrive; they do not
have to process all the data in one batch. In WEKA, incremental classifiers implement the Up-
dateableClassifier interface in weka.classifiers. This interface declares only one method, namely
updateClassifier(), which takes a single training instance as its argument. For an example of how
to use this interface, look at the source code for weka.classifiers.lazy.IBk.

If a classifier is able to make use of instance weights, it should implement the WeightedIn-

126 CHAPTER 7. WRITING NEW LEARNING SCHEMES

stancesHandler interface from weka.core. Then other algorithms, such as those for boosting, can
make use of this property.

In weka.core are many other useful interfaces for classifiers—for example, interfaces for clas-
sifiers that are randomizable, summarizable, drawable, and graphable. For more information on
these and other interfaces, look at the Javadoc for the classes in weka.core.

7.2 Conventions for implementing classifiers
There are some conventions that you must obey when implementing classifiers in WEKA. If you
do not, things will go awry. For example, WEKA’s evaluation module might not compute the
classifier’s statistics properly when evaluating it. The CheckClassifier class can be used to check
the basic behaviour of a classifier, although it cannot catch all problems.

The first convention has already been mentioned: each time a classifier’s buildClassifier()
method is called, it must reset the model. The CheckClassifier class performs tests to ensure
that this is the case. When buildClassifier() is called on a dataset, the same result must always be
obtained, regardless of how often the classifier has previously been applied to the same or other
datasets. However, buildClassifier() must not reset instance variables that correspond to scheme-
specific options, because these settings must persist through multiple calls of buildClassifier().
Also, calling buildClassifier() must never change the input data.

Two other conventions have also been mentioned. One is that when a classifier cannot make
a prediction, its classifyInstance() method must return Utils.missingValue() and its distribution-
ForInstance() method must return probabilities of zero for all classes. The ID3 implementation
in Figure 7.-4 does this. Another convention is that with classifiers for numeric prediction,
classifyInstance() returns the numeric value that the classifier predicts. Some classifiers, how-
ever, are able to predict nominal classes and their class probabilities, as well as numeric class
values—weka.classifiers.lazy.IBk is an example. These implement the distributionForInstance()
method, and if the class is numeric they return an array of size 1 whose only element contains
the predicted numeric value.

Another convention—not absolutely essential, but useful nonetheless—is that every classifier
implements a toString() method that outputs a textual description of itself.

7.2.1 Capabilities
We close this chapter with a closer look at the idea of “capabilities.” As mentioned earlier, these
allow a learning scheme to indicate what data characteristics it can handle. This information
is displayed in the object editor when the user presses the Capabilities button; it also serves to
disable the application of a scheme in the Explorer when the current data does not match its
stated capabilities.

To ease the programming burden for those new to developing with WEKA, the superclasses of
the major types of learning scheme (AbstractClassifier, AbstractClusterer and AbstractAssociator)
disable all capabilities constraints by default. This allows programmers to focus on the main
task of implementing the learning functionality, without having to bother with capabilities.
However, once satisfied that the scheme is working correctly, the programmer should specify
capabilities that reflect the scheme’s ability to handle various data characteristics by overriding
the superclass’s getCapabilities() method. This method returns a weka.core.Capabilities object
that encapsulates the characteristics that the scheme can handle.

In Figure 7.-4, Id3’s getCapabilities() method first obtains a Capabilities object by calling
super.getCapabilities(). This returns a Capabilities object without any constraints. The best
way to proceed is to call the disableAll() method on the Capabilities object and then enable

7.2. CONVENTIONS FOR IMPLEMENTING CLASSIFIERS 127

the relevant characteristics—those that the scheme can handle. Id3 does just this, enabling the
ability to handle nominal attributes, a nominal class attribute and missing class values. It also
specifies that a minimum of zero training instances are required. For the most part, individual
capabilities are turned on or off by calling the enable() or disable() method of the Capabilities
object. These methods take constants that are defined in the enumeration shown in Figure 7.-2,
which is part of the Capabilities class.

128 CHAPTER 7. WRITING NEW LEARNING SCHEMES

Figure 7.-2: Javadoc for the Capability enumeration.

	Introduction to Weka
	What's in WEKA?
	How do you use it?
	What else can you do?
	How do you get it?
	The package management system

	The Explorer
	Getting started
	Preparing the data
	Loading the data into the Explorer
	Building a decision tree
	Examining the output
	Doing it again
	Working with models
	When things go wrong

	Exploring the Explorer
	Loading and filtering files
	Converting files to ARFF
	Using filters
	Training and testing learning schemes
	Using a metalearner
	Clustering and association rules
	Attribute selection
	Visualization

	Filtering algorithms
	Unsupervised attribute filters
	Adding and removing attributes
	Changing values
	Conversions
	String conversion
	Time series
	Randomizing the attributes

	Unsupervised instance filters
	Randomizing and subsampling
	Sparse instances

	Supervised filters
	Supervised attribute filters
	Supervised instance filters

	Learning algorithms
	Bayesian classifiers
	Trees
	Rules
	Functions
	Neural networks
	Lazy classifiers
	Miscellaneous classifiers
	Metalearning algorithms
	Bagging and randomization
	Boosting
	Combining classifiers
	Cost-sensitive learning
	Optimizing performance
	Retargeting classifiers for different tasks

	Clustering algorithms
	Association rule learners
	Attribute selection
	Attribute subset evaluators
	Single-attribute evaluators
	Search methods

	The Knowledge Flow Interface
	Getting started
	Knowledge Flow components
	Configuring and connecting the components
	Incremental learning

	The Experimenter
	Getting started
	Running an experiment
	Analyzing the results
	Simple setup
	Advanced setup
	The Analyze panel
	Distributing processing over several machines

	The Command-Line Interface
	Getting started
	weka.Run

	The structure of WEKA
	Classes, instances, and packages
	The weka.core package
	The weka.classifiers package
	Other packages
	Javadoc indexes

	Command-line options
	Generic options
	Scheme-specific options

	Embedded Machine Learning
	A simple data mining application
	main()
	messageClassifier()
	updateData()
	classifyMessage()

	Writing New Learning Schemes
	An example classifier
	buildClassifier()
	makeTree()
	computeInfoGain()
	classifyInstance()
	toSource()
	main()

	Conventions for implementing classifiers
	Capabilities

