Data Mining with Weka

Class 2 – Lesson 1

Be a classifier!

Ian H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 2.1: Be a classifier!

Class 1
Getting started with Weka

Class 2
Evaluation

Class 3
Simple classifiers

Class 4
More classifiers

Class 5
Putting it all together

Lesson 2.1 Be a classifier!

Lesson 2.2 Training and testing

Lesson 2.3 More training/testing

Lesson 2.4 Baseline accuracy

Lesson 2.5 Cross-validation

Lesson 2.6 Cross-validation results
Lesson 2.1: Be a classifier!

Interactive decision tree construction

- Load `segmentchallenge.arff`; look at dataset
- Select `UserClassifier` (tree classifier)
- Use the test set `segmenttest.arff`
- Examine data visualizer and tree visualizer
- Plot `regioncentroidrow vs intensitymean`
- Rectangle, Polygon and Polyline selection tools
- ... several selections ...
- Rightclick in Tree visualizer and Accept the tree

Over to you: how well can you do?
Lesson 2.1: Be a classifier!

- Build a tree: what strategy did you use?
- Given enough time, you could produce a “perfect” tree for the dataset
 - but would it perform well on the test data?

Course text
- Section 11.2 Do it yourself: the User Classifier
Data Mining with Weka

Class 2 – Lesson 2

Training and testing

Ian H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 2.2: Training and testing

Class 1
Getting started with Weka

Class 2
Evaluation

Class 3
Simple classifiers

Class 4
More classifiers

Class 5
Putting it all together

Lesson 2.1 Be a classifier!

Lesson 2.2 Training and testing

Lesson 2.3 More training/testing

Lesson 2.4 Baseline accuracy

Lesson 2.5 Cross-validation

Lesson 2.6 Cross-validation results
Lesson 2.2: Training and testing

- Training data
- Test data
- ML algorithm
- Classifier
- Evaluation results
- Deploy!
Lesson 2.2: Training and testing

Basic assumption: training and test sets produced by independent sampling from an infinite population
Lesson 2.2: Training and testing

Use J48 to analyze the segment dataset

- Open file segment-challenge.arff
- Choose J48 decision tree learner (trees>J48)
- Supplied test set segment-test.arff
- Run it: 96% accuracy
- Evaluate on training set: 99% accuracy
- Evaluate on percentage split: 95% accuracy
- Do it again: get exactly the same result!
Lesson 2.2: Training and testing

- Basic assumption: training and test sets sampled independently from an infinite population
- Just one dataset? — hold some out for testing
- Expect slight variation in results
- ... but Weka produces same results each time
- J48 on segment-challenge dataset

Course text
- Section 5.1 Training and testing
Data Mining with Weka

Class 2 – Lesson 3

Repeated training and testing

Ian H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 2.3: Repeated training and testing

Class 1
Getting started with Weka

Class 2
Evaluation

Class 3
Simple classifiers

Class 4
More classifiers

Class 5
Putting it all together

Lesson 2.1 Be a classifier!

Lesson 2.2 Training and testing

Lesson 2.3 More training/testing

Lesson 2.4 Baseline accuracy

Lesson 2.5 Cross-validation

Lesson 2.6 Cross-validation results
Lesson 2.3: Repeated training and testing

Evaluate J48 on segment-challenge

- With segment-challenge.arff ...
- and J48 (trees>J48)
- Set percentage split to 90%
- Run it: 96.7% accuracy
- Repeat
- [More options] Repeat with seed 2, 3, 4, 5, 6, 7, 8, 9, 10

Accuracy:
- 0.967
- 0.960
- 0.960
- 0.960
- 0.967
- 0.953
- 0.967
- 0.920
- 0.947
- 0.933
- 0.947
Lesson 2.3: Repeated training and testing

Evaluate J48 on segment-challenge

Sample mean \(\bar{x} = \frac{\sum x_i}{n} \)

Variance \(\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1} \)

Standard deviation \(\sigma \)

\begin{align*}
\bar{x} &= 0.949, \quad \sigma = 0.018
\end{align*}
Lesson 2.3: Repeated training and testing

- Basic assumption: training and test sets sampled independently from an infinite population
- Expect slight variation in results ...
- ... get it by setting the random-number seed
- Can calculate mean and standard deviation experimentally
Data Mining with Weka

Class 2 – Lesson 4

Baseline accuracy

Ian H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 2.4: Baseline accuracy

Class 1
Getting started with Weka

Lesson 2.1 Be a classifier!

Class 2
Evaluation

Lesson 2.2 Training and testing

Lesson 2.3 More training/testing

Lesson 2.4 Baseline accuracy

Class 3
Simple classifiers

Lesson 2.5 Cross-validation

Class 4
More classifiers

Lesson 2.6 Cross-validation results

Class 5
Putting it all together
Lesson 2.4: Baseline accuracy

Use diabetes dataset and default holdout

- Open file diabetes.arff
- Test option: Percentage split
- Try these classifiers:
 - trees > J48 76%
 - bayes > NaiveBayes 77%
 - lazy > IBk 73%
 - rules > PART 74%

(we’ll learn about them later)
- 768 instances (500 negative, 268 positive)
- Always guess “negative”: 500/768 65%
- rules > ZeroR: most likely class!
Lesson 2.4: Baseline accuracy

Sometimes baseline is best!

- Open `supermarket.arff` and blindly apply

 `rules > ZeroR` 64%
 `trees > J48` 63%
 `bayes > NaiveBayes` 63%
 `lazy > IBk` 38% (!!)
 `rules > PART` 63%

- Attributes are not informative

- Don’t just apply Weka to a dataset: you need to understand what’s going on!
Lesson 2.4: Baseline accuracy

- Consider whether differences are likely to be significant
- Always try a simple baseline, e.g. rules > ZeroR
- Look at the dataset
- Don’t blindly apply Weka: try to understand what’s going on!
Data Mining with Weka

Class 2 – Lesson 5

Cross-validation

Ian H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 2.5: Cross-validation

- Lesson 2.1 Be a classifier!
- Lesson 2.2 Training and testing
- Lesson 2.3 More training/testing
- Lesson 2.4 Baseline accuracy
- Lesson 2.5 Cross-validation
- Lesson 2.6 Cross-validation results
Lesson 2.5: Cross-validation

- Can we improve upon repeated holdout? (i.e. reduce variance)
- Cross-validation
- Stratified cross-validation
Lesson 2.5: Cross-validation

- Repeated holdout
 (in Lesson 2.3, hold out 10% for testing, repeat 10 times)

(repeat 10 times)
Lesson 2.5: Cross-validation

10-fold cross-validation

- Divide dataset into 10 parts (folds)
- Hold out each part in turn
- Average the results
- Each data point used once for testing, 9 times for training

Stratified cross-validation

- Ensure that each fold has the right proportion of each class value
Lesson 2.5: Cross-validation

After cross-validation, Weka outputs an extra model built on the entire dataset.
Lesson 2.5: Cross-validation

- Cross-validation better than repeated holdout
- Stratified is even better
- With 10-fold cross-validation, Weka invokes the learning algorithm 11 times

- Practical rule of thumb:
 - Lots of data? – use percentage split
 - Else stratified 10-fold cross-validation

Course text
- Section 5.3 Cross-validation
Data Mining with Weka

Class 2 – Lesson 6

Cross-validation results

Ian H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz
Lesson 2.6: Cross-validation results

Class 1
Getting started with Weka

Class 2
Evaluation

Class 3
Simple classifiers

Class 4
More classifiers

Class 5
Putting it all together

Lesson 2.1 Be a classifier!

Lesson 2.2 Training and testing

Lesson 2.3 More training/testing

Lesson 2.4 Baseline accuracy

Lesson 2.5 Cross-validation

Lesson 2.6 Cross-validation results
Lesson 2.6: Cross-validation results

Is cross-validation really better than repeated holdout?

- **Diabetes** dataset
- Baseline accuracy (rules > ZeroR): 65.1%
- trees > J48
- 10-fold cross-validation 73.8%
- ... with different random number seed

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73.8</td>
<td>75.0</td>
<td>75.5</td>
<td>75.5</td>
<td>74.4</td>
<td>75.6</td>
<td>73.6</td>
<td>74.0</td>
<td>74.5</td>
<td>73.0</td>
</tr>
</tbody>
</table>
Lesson 2.6: Cross-validation results

Sample mean

\[\bar{x} = \frac{\sum x_i}{n} \]

<table>
<thead>
<tr>
<th>holdout (10%)</th>
<th>cross-validation (10-fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.3</td>
<td>73.8</td>
</tr>
<tr>
<td>77.9</td>
<td>75.0</td>
</tr>
</tbody>
</table>

Variance

\[\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1} \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70.1</td>
<td>75.5</td>
</tr>
<tr>
<td>79.2</td>
<td>73.6</td>
</tr>
</tbody>
</table>

Standard deviation

\[\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>80.5</td>
<td>74.5</td>
</tr>
<tr>
<td>67.5</td>
<td>73.0</td>
</tr>
</tbody>
</table>

\[\bar{x} = 74.8 \]
\[\bar{x} = 74.5 \]
\[\sigma = 4.6 \]
\[\sigma = 0.9 \]
Lesson 2.6: Cross-validation results

- Why 10-fold? E.g. 20-fold: 75.1%

- Cross-validation really is better than repeated holdout

- It reduces the variance of the estimate
Data Mining with Weka

Department of Computer Science
University of Waikato
New Zealand

Creative Commons Attribution 3.0 Unported License
creativecommons.org/licenses/by/3.0/

weka.waikato.ac.nz