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Data Streams

Big Data & Real Time



Ensemble Learning: The Wisdom of Crowds

Diversity of opinion, Independence
Decentralization, Aggregation



Bagging

Example
Dataset of 4 Instances : A, B, C, D

Classifier 1: B, A, C, B
Classifier 2: D, B, A, D
Classifier 3: B, A, C, B
Classifier 4: B, C, B, B
Classifier 5: D, C, A, C

Bagging builds a set of M base models, with a bootstrap
sample created by drawing random samples with
replacement.



Bagging

Example
Dataset of 4 Instances : A, B, C, D

Classifier 1: A, B, B, C
Classifier 2: A, B, D, D
Classifier 3: A, B, B, C
Classifier 4: B, B, B, C
Classifier 5: A, C, C, D

Bagging builds a set of M base models, with a bootstrap
sample created by drawing random samples with
replacement.



Bagging

Example
Dataset of 4 Instances : A, B, C, D

Classifier 1: A, B, B, C: A(1) B(2) C(1) D(0)
Classifier 2: A, B, D, D: A(1) B(1) C(0) D(2)
Classifier 3: A, B, B, C: A(1) B(2) C(1) D(0)
Classifier 4: B, B, B, C: A(0) B(3) C(1) D(0)
Classifier 5: A, C, C, D: A(1) B(0) C(2) D(1)

Each base model’s training set contains each of the original
training example K times where P(K = k) follows a binomial
distribution.



Bagging

Figure: Poisson(1) Distribution.

Each base model’s training set contains each of the original
training example K times where P(K = k) follows a binomial
distribution.



Oza and Russell’s Online Bagging for M models

1: Initialize base models hm for all m ∈ {1,2, ...,M}
2: for all training examples do
3: for m = 1,2, ...,M do
4: Set w = Poisson(1)
5: Update hm with the current example with weight w

6: anytime output:
7: return hypothesis: hfin(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = y)



Hoeffding Option Tree
Hoeffding Option Trees
Regular Hoeffding tree containing additional option nodes that
allow several tests to be applied, leading to multiple Hoeffding
trees as separate paths.



Random Forests (Breiman, 2001)

Adding randomization to decision trees

I the input training set is obtained by sampling with
replacement, like Bagging

I the nodes of the tree only may use a fixed number of
random attributes to split

I the trees are grown without pruning



Accuracy Weighted Ensemble
Mining concept-drifting data streams using ensemble
classifiers. Wang et al. 2003

I Process chunks of instances of size W
I Builds a new classifier for each chunk
I Removes old classifier
I Weight each classifier using error

wi = MSEr −MSEi

where
MSEr =

∑
c

p(c)(1− p(c))2

and
MSEi =

1
|Sn|

∑
(x ,c)∈Sn

(1− f i
c(x))

2



ADWIN Bagging

ADWIN
An adaptive sliding window whose size is recomputed online
according to the rate of change observed.

ADWIN has rigorous guarantees (theorems)

I On ratio of false positives and negatives
I On the relation of the size of the current window and

change rates

ADWIN Bagging
When a change is detected, the worst classifier is removed and
a new classifier is added.



ADWIN Bagging for M models

1: Initialize base models hm for all m ∈ {1,2, ...,M}
2: for all training examples do
3: for m = 1,2, ...,M do
4: Set w = Poisson(1)
5: Update hm with the current example with weight w
6: if ADWIN detects change in error of one of the

classifiers then
7: Replace classifier with higher error with a new one

8: anytime output:
9: return hypothesis: hfin(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = y)



Leveraging Bagging for Evolving
Data Streams

Randomization as a powerful tool to increase accuracy and
diversity

There are three ways of using randomization:
I Manipulating the input data
I Manipulating the classifier algorithms
I Manipulating the output targets



Input Randomization
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Figure: Poisson Distribution.



ECOC Output Randomization

Table: Example matrix of random output codes for 3 classes and 6
classifiers

Class 1 Class 2 Class 3
Classifier 1 0 0 1
Classifier 2 0 1 1
Classifier 3 1 0 0
Classifier 4 1 1 0
Classifier 5 1 0 1
Classifier 6 0 1 0



Leveraging Bagging for Evolving Data Streams

Leveraging Bagging

I Using Poisson(λ)

Leveraging Bagging MC

I Using Poisson(λ) and Random Output Codes

Fast Leveraging Bagging ME

I if an instance is misclassified: weight = 1
I if not: weight = eT/(1− eT ),



Empirical evaluation

Accuracy RAM-Hours
Hoeffding Tree 74.03% 0.01
Online Bagging 77.15% 2.98
ADWIN Bagging 79.24% 1.48
Leveraging Bagging 85.54% 20.17
Leveraging Bagging MC 85.37% 22.04
Leveraging Bagging ME 80.77% 0.87

Leveraging Bagging

I Leveraging Bagging
I Using Poisson(λ)

I Leveraging Bagging MC
I Using Poisson(λ) and Random Output Codes

I Leveraging Bagging ME
I Using weight 1 if misclassified, otherwise eT/(1− eT )



Boosting

The strength of Weak Learnability, Schapire 90

A boosting algorithm transforms a weak learner
into a strong one



Boosting

A formal description of Boosting (Schapire)

I given a training set (x1, y1), . . . , (xm, ym)

I yi ∈ {−1,+1} correct label of instance xi ∈ X
I for t = 1, . . . ,T

I construct distribution Dt
I find weak classifier

ht : X =⇒ {−1,+1}

with small error εt = PrDt [ht(xi) 6= yi ] on Dt

I output final classifier



Boosting

Oza and Russell’s Online Boosting
1: Initialize base models hm for all m ∈ {1, 2, ...,M}, λsc

m = 0, λsw
m = 0

2: for all training examples do
3: Set “weight” of example λd = 1
4: for m = 1, 2, ...,M do
5: Set k = Poisson(λd )
6: for n = 1, 2, ..., k do
7: Update hm with the current example
8: if hm correctly classifies the example then
9: λsc

m ← λsc
m + λd

10: εm =
λsw

m
λsw

m +λsc
m

11: λd ← λd

(
1

2(1−εm)

)
Decrease λd

12: else
13: λsw

m ← λsw
m + λd

14: εm =
λsw

m
λsw

m +λsc
m

15: λd ← λd

(
1

2εm

)
Increase λd

16: anytime output:
17: return hypothesis: hfin(x) = arg maxy∈Y

∑
m:hm(x)=y − log εm/(1− εm)



Stacking

Use a classifier to combine predictions of base classifiers

I Example: use a perceptron to do stacking

Restricted Hoeffding Trees
Trees for all possible attribute subsets of size k

I
(m

k

)
subsets

I
(m

k

)
= m!

k!(m−k)! =
( m

m−k

)
Example for 10 attributes(

10
1

)
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(
10
2

)
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(
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3

)
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4

)
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(
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5

)
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