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Data Streams

Big Data & Real Time




Ensemble Learning: The Wisdom of Crowds

THE WISDOM
OF CROWDS

JAMES
SUROWIECKI

Diversity of opinion, Independence
Decentralization, Aggregation



Bagging

Example
Dataset of 4 Instances : A, B, C, D

Classifier 1: B, A, C, B
Classifier 2: D, B, A, D
Classifier 3: B, A, C, B
Classifier 4: B, C, B, B
Classifier 5: D, C, A, C

Bagging builds a set of M base models, with a bootstrap
sample created by drawing random samples with
replacement.



Bagging

Example
Dataset of 4 Instances : A, B, C, D

Classifier 1: A, B, B, C
Classifier 2: A, B, D, D
Classifier 3: A, B, B, C
Classifier 4: B, B, B, C
Classifier 5: A, C, C, D
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Bagging builds a set of M base models, with a bootstrap
sample created by drawing random samples with
replacement.



Bagging

Example
Dataset of 4 Instances : A, B, C, D
Classifier 1: A, B, B, C: A(1) B(2) C(1) D(0)
Classifier 2: A, B, D, D: A(1) B(1) C(0) D(2)
Classifier 3: A, B, B, C: A(1) B(2) C(1) D(0)
Classifier 4: B, B, B, C: A(0) B(3) C(1) D(0)
Classifier 5: A, C, C, D: A(1) B(0) C(2) D(1)

Each base model’s training set contains each of the original
training example K times where P(K = k) follows a binomial
distribution.



Bagging

Poisson(1) distribution
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Figure: Poisson(1) Distribution.

Each base model’s training set contains each of the original
training example K times where P(K = k) follows a binomial
distribution.



Oza and Russell's Online Bagging for M models

1: Initialize base models hp, forall me {1,2,..., M}

2: for all training examples do

3: form=1,2,.. Mdo

4 Set w = Poisson(1)

5 Update hy, with the current example with weight w

o]

: anytime output:
return hypothesis: hyn(x) = argmax,cy S/ I(hi(x) = y)
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Hoeffding Option Tree

Hoeffding Option Trees

Regular Hoeffding tree containing additional option nodes that
allow several tests to be applied, leading to multiple Hoeffding
trees as separate paths.
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Random Forests (Breiman, 2001)

Adding randomization to decision trees
» the input training set is obtained by sampling with
replacement, like Bagging

» the nodes of the tree only may use a fixed number of
random attributes to split

» the trees are grown without pruning



Accuracy Weighted Ensemble

Mining concept-drifting data streams using ensemble
classifiers. Wang et al. 2003
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Process chunks of instances of size W
Builds a new classifier for each chunk
Removes old classifier

Weight each classifier using error

v
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w; = MSE, — MSE;

where
MSE,; = p(c)(1 — p(c))?

and

MSE; = ! 2: (1 — fi(x))?
| Shl
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ADWIN Bagging

ADWIN
An adaptive sliding window whose size is recomputed online
according to the rate of change observed.

ADWIN has rigorous guarantees (theorems)

» On ratio of false positives and negatives

» On the relation of the size of the current window and
change rates

ADWIN Bagging

When a change is detected, the worst classifier is removed and
a new classifier is added.



ADWIN Bagging for M models

1: Initialize base models hy forall me {1,2,..., M}
2: for all training examples do
3: form=1,2,...Mdo
4: Set w = Poisson(1)
5: Update h, with the current example with weight w
6 if ADWIN detects change in error of one of the
classifiers then
Replace classifier with higher error with a new one

N
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: anytime output:
return hypothesis: hyn(Xx) = arg max,cy ZL I(hi(x) = y)
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Leveraging Bagging for Evolving
Data Streams

Randomization as a powerful tool to increase accuracy and
diversity

There are three ways of using randomization:
» Manipulating the input data
» Manipulating the classifier algorithms
» Manipulating the output targets



Input Randomization
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Figure: Poisson Distribution.



ECOC Output Randomization

Table: Example matrix of random output codes for 3 classes and 6

classifiers
Class 1 | Class 2 | Class 3
Classifier 1 0 0 1
Classifier 2 0 1 1
Classifier 3 1 0 0
Classifier 4 1 1 0
Classifier 5 1 0 1
Classifier 6 0 1 0




Leveraging Bagging for Evolving Data Streams

Leveraging Bagging

» Using Poisson(\)

Leveraging Bagging MC
» Using Poisson(\) and Random Output Codes

Fast Leveraging Bagging ME

» if an instance is misclassified: weight = 1
» if not: weight = er/(1 — er),



Empirical evaluation

Accuracy | RAM-Hours
Hoeffding Tree 74.03% 0.01
Online Bagging 77.15% 2.98
ADWIN Bagging 79.24% 1.48
Leveraging Bagging 85.54% 20.17
Leveraging Bagging MC | 85.37% 22.04
Leveraging Bagging ME | 80.77% 0.87

Leveraging Bagging

» Leveraging Bagging
» Using Poisson(\)
» Leveraging Bagging MC
» Using Poisson(\) and Random Output Codes
» Leveraging Bagging ME
» Using weight 1 if misclassified, otherwise er/(1 — er)



Boosting

The strength of Weak Learnability, Schapire 90

A boosting algorithm transforms a weak learner
into a strong one



Boosting

A formal description of Boosting (Schapire)

» given a training set (x1, 1), .., (Xm, Ym)
» y; € {—1,+1} correct label of instance x; € X
» fort=1,..., T
» construct distribution D;
» find weak classifier
h: X = {-1,4+1}

with small error ¢; = Prp,[h:(x;) # yi] on D;
» output final classifier



Boosting

Oza and Russell’s Online Boosting

1: Initialize base models hy forall m e {1,2,..., M}, A5¢ = 0,\5% =0
2: for all training examples do

3:  Set “weight” of example Ay = 1
4: form=1,2,..,Mdo
5: Set k = Poisson(\y)
6: forn=1,2,...,kdo
7: Update hm with the current example
8: if hy correctly classifies the example then
9: ASE = X384+ Ay

. A
10: m = xwise

. 1
11: Ad & Mg <m> Decrease \y
12: else
13: AW = A 4+ Ay

)\SW

14: €Em = W
15: Ay Mg (ﬁ) Increase Ay

16: anytime output:
17: return hypothesis: hgp(x) = argmaxycy > mbm(x)=y — 09 €m/(1 — €m)



Stacking

Use a classifier to combine predictions of base classifiers

» Example: use a perceptron to do stacking

Restricted Hoeffding Trees
Trees for all possible attribute subsets of size k
» (¥) subsets

> (%) = rmern = (mok)

Example for 10 attributes
10 10 10
(910 (9)-as (1) 120
10 10
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