MOA 12.03
Real Time Analytics for Data Streams
moa.classifiers.trees.HoeffdingAdaptiveTree Class Reference

Hoeffding Adaptive Tree for evolving data streams. More...

Inheritance diagram for moa.classifiers.trees.HoeffdingAdaptiveTree:
Collaboration diagram for moa.classifiers.trees.HoeffdingAdaptiveTree:

List of all members.

Classes

class  AdaLearningNode
class  AdaSplitNode
interface  NewNode

Public Member Functions

String getPurposeString ()
 Gets the purpose of this object.
void trainOnInstanceImpl (Instance inst)
 Trains this classifier incrementally using the given instance.
FoundNode[] filterInstanceToLeaves (Instance inst, SplitNode parent, int parentBranch, boolean updateSplitterCounts)
double[] getVotesForInstance (Instance inst)
 Predicts the class memberships for a given instance.

Protected Member Functions

LearningNode newLearningNode (double[] initialClassObservations)
SplitNode newSplitNode (InstanceConditionalTest splitTest, double[] classObservations)

Protected Attributes

int activeLeafNodeCount
int inactiveLeafNodeCount
int alternateTrees
int prunedAlternateTrees
int switchedAlternateTrees

Detailed Description

Hoeffding Adaptive Tree for evolving data streams.

This adaptive Hoeffding Tree uses ADWIN to monitor performance of branches on the tree and to replace them with new branches when their accuracy decreases if the new branches are more accurate. See details in:

Adaptive Learning from Evolving Data Streams. Albert Bifet, Ricard Gavaldà. IDA 2009

  • Same parameters as HoeffdingTreeNBAdaptive
  • -l : Leaf prediction to use: MajorityClass (MC), Naive Bayes (NB) or NaiveBayes adaptive (NBAdaptive).
Author:
Albert Bifet (abifet at cs dot waikato dot ac dot nz)
Version:
Revision:
7

Definition at line 53 of file HoeffdingAdaptiveTree.java.


Member Function Documentation

FoundNode [] moa.classifiers.trees.HoeffdingAdaptiveTree.filterInstanceToLeaves ( Instance  inst,
SplitNode  parent,
int  parentBranch,
boolean  updateSplitterCounts 
)

Definition at line 464 of file HoeffdingAdaptiveTree.java.

Referenced by moa.classifiers.trees.HoeffdingAdaptiveTree.getVotesForInstance().

Here is the caller graph for this function:

String moa.classifiers.trees.HoeffdingAdaptiveTree.getPurposeString ( )

Gets the purpose of this object.

Returns:
the string with the purpose of this object

Reimplemented from moa.classifiers.trees.HoeffdingTree.

Definition at line 58 of file HoeffdingAdaptiveTree.java.

double [] moa.classifiers.trees.HoeffdingAdaptiveTree.getVotesForInstance ( Instance  inst)

Predicts the class memberships for a given instance.

If an instance is unclassified, the returned array elements must be all zero.

Parameters:
instthe instance to be classified
Returns:
an array containing the estimated membership probabilities of the test instance in each class

Reimplemented from moa.classifiers.trees.HoeffdingTree.

Definition at line 473 of file HoeffdingAdaptiveTree.java.

Here is the call graph for this function:

LearningNode moa.classifiers.trees.HoeffdingAdaptiveTree.newLearningNode ( double[]  initialClassObservations) [protected]

Reimplemented from moa.classifiers.trees.HoeffdingTree.

Definition at line 442 of file HoeffdingAdaptiveTree.java.

SplitNode moa.classifiers.trees.HoeffdingAdaptiveTree.newSplitNode ( InstanceConditionalTest  splitTest,
double[]  classObservations 
) [protected]

Reimplemented from moa.classifiers.trees.HoeffdingTree.

Definition at line 449 of file HoeffdingAdaptiveTree.java.

void moa.classifiers.trees.HoeffdingAdaptiveTree.trainOnInstanceImpl ( Instance  inst) [virtual]

Trains this classifier incrementally using the given instance.



The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. Note that this will produce compiler errors if not overridden.

Parameters:
instthe instance to be used for training

Reimplemented from moa.classifiers.trees.HoeffdingTree.

Definition at line 455 of file HoeffdingAdaptiveTree.java.

Here is the call graph for this function:


Member Data Documentation


The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Enumerations