
Leveraging Bagging for Evolving Data Streams

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer

University of Waikato, Hamilton, New Zealand
{abifet,geoff,bernhard}@cs.waikato.ac.nz

Abstract. Bagging, boosting and Random Forests are classical ensem-
ble methods used to improve the performance of single classifiers. They
obtain superior performance by increasing the accuracy and diversity
of the single classifiers. Attempts have been made to reproduce these
methods in the more challenging context of evolving data streams. In
this paper, we propose a new variant of bagging, called leveraging bag-
ging. This method combines the simplicity of bagging with adding more
randomization to the input, and output of the classifiers. We test our
method by performing an evaluation study on synthetic and real-world
datasets comprising up to ten million examples.

1 Introduction

Data Stream real time analytics are needed to manage data generated at an
increasing rate from sensor applications, measurements in network monitoring
and traffic management, log records or click-streams in web exploring, manufac-
turing processes, call detail records, email, blogging, twitter posts and others. In
fact, all data generated can be considered as streaming data or as a snapshot of
streaming data, since it is obtained from an interval of time.

In the data stream model, data arrive at high speed, and algorithms that
process them must do so under very strict constraints of space and time. Conse-
quently, data streams pose several challenges for data mining algorithm design.
First, algorithms must make use of limited resources (time and memory). Second,
they must deal with data whose nature or distribution changes over time.

Bagging and Boosting are ensemble methods used to improve the accuracy
of classifier methods. Non-streaming bagging [7] builds a set of M base mod-
els, training each model with a bootstrap sample of size N created by draw-
ing random samples with replacement from the original training set. Each base
model’s training set contains each of the original training example K times where
P (K = k) follows a binomial distribution. This binomial distribution for large
values of N tends to a Poisson(1) distribution, where Poisson(1)= exp(−1)/k!.
Using this fact, Oza and Russell [25, 24] proposed Online Bagging, an online
method that instead of sampling with replacement, gives each example a weight
according to Poisson(1).

Boosting algorithms combine multiple base models to obtain a small gener-
alization error. Non-streaming boosting builds a set of models sequentially, with



the construction of each new model depending on the performance of the previ-
ously constructed models. The intuitive idea of boosting is to give more weight to
misclassified examples, and reducing the weight of the correctly classified ones.

From studies appearing in the literature [25, 24, 6], Online Bagging seems to
perform better than online boosting methods. Why bagging outperforms boost-
ing in the data stream setting is still an open question. Adding more random
weight to all instances seems to improve accuracy more than adding weight to
misclassified instances. In this paper we focus on randomization as a power-
ful tool to increase accuracy and diversity when constructing an ensemble of
classifiers. There are three ways of using randomization:

– Manipulating the input data
– Manipulating the classifier algorithms
– Manipulating the output targets

In this paper we focus on randomizing the input data and the output pre-
diction of online bagging. The paper is structured as follows: related work is
presented in Section 2. Leveraging bagging is discussed in Section 3. An experi-
mental evaluation is conducted in Section 4. Finally, conclusions and suggested
items for future work are presented in Section 5.

2 Related work

Breiman [7] introduced bagging classification using the notion of an order-correct
learner. An order-correct learner φ at the input x is a predictor that if input x
results in a class more often than any other class, then φ will also predict this class
at x more often than any other class. An order-correct learner is not necessarily
an accurate predictor but its aggregated predictor is optimal. If a predictor is
good because it is order-correct for most inputs x then aggregation can transform
it into a nearly optimal predictor. The vital element to gain accuracy is the
instability of the prediction method. A learner is unstable if a small change in
the input data leads to large changes in the output.

Friedman [16] explained that bagging works by reducing variance without
changing the bias. There are several definitions of bias and variance for classi-
fication, but the common idea is that bias measures average error over many
different training sets, and variance measures the additional error due to the
variation in the model produced by using different training sets.

Domingos [13] claimed that Breiman’s line of reasoning is limited, since we
may never know a priori whether a learner is order-correct for a given example
or not, and what regions of the instance space will be order-correct or not. He
explained bagging’s success showing that bagging works by effectively changing
a single-model learner to another single-model learner, with a different implicit
prior distribution over models, one that is less biased in favor of simple models.

Some work in the literature shows that bagging asymptotically performs some
smoothing on the estimate. Friedman and Hall [15] used an asymptotic truncated



Taylor series of the estimate to show that in the limit of infinite samples, bagging
reduces the variance of non-linear components.

Bühlmann and Yu [10], analyzed bagging using also asymptotic limiting dis-
tributions, and they proposed subagging as a less expensive alternative to bag-
ging. Subagging uses subsampling as an alternative aggregation scheme. They
claimed that subagging is as accurate as bagging but uses less computation.

Grandvalet[19] explained the performance of bagging by the goodness and
badness of highly influential examples, in situations where the usual variance
reduction argument is questionable. He presented an experiment showing that
bagging increases the variance of decision trees, and claimed that bagging does
not simply reduce variance in its averaging process.

In [6] two new state-of-the-art bagging methods were presented: ASHT Bag-
ging using trees of different sizes, and ADWIN Bagging using a change detector
to decide when to discard underperforming ensemble members.

Algorithm 1 Oza and Russell’s Online Bagging for M models

1: Initialize base models hm for all m ∈ {1, 2, ...,M}
2: for all training examples do
3: for m = 1, 2, ...,M do
4: Set w = Poisson(1)
5: Update hm with the current example with weight w
6: anytime output:
7: return hypothesis: hfin(x) = arg maxy∈Y

∑T

t=1
I(ht(x) = y)

Breiman [8] proposed Random Forests as a method to use randomization on
the input and on the internal construction of the decision trees. Random Forests
are ensembles of trees with the following characteristics: the input training set
is obtained by sampling with replacement, the nodes of the tree only may use
a fixed number of random attributes to split, and the trees are grown without
pruning. Abdulsalam et al. [1] presented a streaming version of random forests
and Saffari et al. [26] presented an online version.

3 Leveraging Bagging

In this section, we present a new online leveraging bagging algorithm, improving
Online Bagging of Oza and Russell. The pseudo-code of Online Bagging of Oza
and Russell is listed in Algorithm 1.

We leverage the performance of bagging, with two randomization improve-
ments: increasing resampling and using output detection codes.

Resampling with replacement is done in Online Bagging using Poisson(1).
There are other sampling mechanisms:

– Lee and Clyde [23] uses the Gamma distribution (Gamma(1,1)) to obtain a
Bayesian version of Bagging. Note that Gamma(1,1) is equal to Exp(1).



Algorithm 2 Leveraging Bagging for M models

1: Initialize base models hm for all m ∈ {1, 2, ...,M}
2: Compute coloring µm(y)
3: for all training examples (x, y) do
4: for m = 1, 2, ...,M do
5: Set w = Poisson(λ)
6: Update hm with the current example with weight w and class µm(y)
7: if ADWIN detects change in error of one of the classifiers then
8: Replace classifier with higher error with a new one
9: anytime output:

10: return hypothesis: hfin(x) = arg maxy∈Y

∑T

t=1
I(ht(x) = µt(y))

– Bulhman and Yu [10] proposes subagging, using resampling without replace-
ment.

Our proposal is to increase the weights of this resampling using a larger value
λ to compute the value of the Poisson distribution. The Poisson distribution is
used to model the number of events occurring within a given time interval.

Figure 1 shows the probability function mass of the distribution of Poisson
for several values of λ. The mean and variance of a Poisson distribution is λ. For
λ = 1 we see that 37% of the values are zero, 37% are one, and 26% are values
greater than one. Using a weight of Poisson(1) we are taking out 37% of the
examples, and repeating 26% of the examples, in a similar way to non streaming
bagging. For λ = 6 we see that 0.25% of the values are zero, 45% are lower than
six, 16% are six, and 39% are values greater than six. Using a value of λ > 1
for Poisson(λ) we are increasing the diversity of the weights and modifying the
input space of the classifiers inside the ensemble. However, the optimal value of
λ may be different for each dataset.

Our second improvement is to add randomization at the output of the en-
semble using output codes. Dietterich and Bakiri [12] introduced a method based
on error-correcting output codes, which handles multiclass problems using only
a binary classifier. The classes assigned to each example are modified to create
a new binary classification of the data induced by a mapping from the set of
classes to {0,1}. A variation of this method by Schapire [27] presented a form of
boosting using output codes.

We assign to each class a binary string of length n and then build an ensemble
of n binary classifiers. Each of the classifiers learns one bit for each position in
this binary string. When a new instance arrives, we assign x to the class whose
binary code is closest. We can view an error-correcting code as a form of voting
in which a number of incorrect votes can be corrected.

We use random output codes instead of deterministic codes. In standard
ensemble methods, all classifiers try to predict the same function. However, using
output codes each classifier will predict a different function. This may reduce
the effects of correlations between the classifiers, and increase diversity of the
ensemble.



0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

P
(X

=
k

) λ=1

λ=6

λ=10

Fig. 1. Poisson Distribution.

We implement random output codes in the following way: we choose for each
classifier m and class c a binary value µm(c) in a uniform, independent, and
random way. We ensure that exactly half of the classes are mapped to 0. The
output of the classifier for an example is the class which has more votes of its
binary mapping classes. Table 1 shows an example for an ensemble of 6 classifiers
in a classification task of 3 classes.

Table 1. Example matrix of random output codes for 3 classes and 6 classifiers

Class 1 Class 2 Class 3

Classifier 1 0 0 1
Classifier 2 0 1 1
Classifier 3 1 0 0
Classifier 4 1 1 0
Classifier 5 1 0 1
Classifier 6 0 1 0

We use the strategy of [6] to deal with concept drift. ADWIN [3] is a change
detector and estimator that solves in a well-specified way the problem of tracking
the average of a stream of bits or real-valued numbers. ADWIN keeps a variable-



length window of recently seen items, with the property that the window has
the maximal length statistically consistent with the hypothesis “there has been
no change in the average value inside the window”.

ADWIN is parameter- and assumption-free in the sense that it automatically
detects and adapts to the current rate of change. Its only parameter is a confi-
dence bound δ, indicating how confident we want to be in the algorithm’s output,
inherent to all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not maintain the window ex-
plicitly, but compresses it using a variant of the exponential histogram technique.
This means that it keeps a window of length W using only O(logW ) memory
and O(logW ) processing time per item.

Algorithm 2 shows the pseudo-code of our Leveraging Bagging. First we build
a matrix with the values of µ for each classifier and class. For each new instance
that arrives, we give it a random weight of Poisson(k). We train the classifier
with this weight, and when a change is detected, the worst classifier of the
ensemble of classifiers is removed and a new classifier is added to the ensemble.
To predict the class of an example, we compute for each class c the sum of the
votes for µ(c) of all the ensemble classifiers, and we output as a prediction the
class with the most votes.

4 Comparative Experimental Evaluation

Massive Online Analysis (MOA) [4] is a software environment for implementing
algorithms and running experiments for online learning from data streams. All
algorithms evaluated in this paper were implemented in the Java programming
language by extending the MOA software.

We use the experimental framework for concept drift presented in [6]. Con-
sidering data streams as data generated from pure distributions, we can model
a concept drift event as a weighted combination of two pure distributions that
characterizes the target concepts before and after the drift. This framework de-
fines the probability that a new instance of the stream belongs to the new concept
after the drift based on the sigmoid function.

Definition 1. Given two data streams a, b, we define c = a ⊕W
t0 b as the data

stream built by joining the two data streams a and b, where t0 is the point of
change, W is the length of change, Pr[c(t) = b(t)] = 1/(1 + e−4(t−t0)/W ) and
Pr[c(t) = a(t)] = 1− Pr[c(t) = b(t)].

In order to create a data stream with multiple concept changes, we can build
new data streams joining different concept drifts, i. e. (((a⊕W0

t0 b)⊕W1
t1 c)⊕W2

t2 d) . . ..

4.1 Datasets for concept drift

Synthetic data has several advantages – it is easier to reproduce and there is
little cost in terms of storage and transmission. For this paper we use the data
generators most commonly found in the literature.



SEA Concepts Generator This artificial dataset contains abrupt concept drift,
first introduced in [28]. It is generated using three attributes, where only the
two first attributes are relevant. All the attributes have values between 0
and 10. The points of the dataset are divided into 4 blocks with different
concepts. In each block, the classification is done using f1 +f2 ≤ θ, where f1

and f2 represent the first two attributes and θ is a threshold value. The most
frequent values are 9, 8, 7 and 9.5 for the data blocks. In our framework,
SEA concepts are defined as follows:

(((SEA9 ⊕W
t0 SEA8)⊕W

2t0 SEA7)⊕W
3t0 SEA9.5)

Rotating Hyperplane This data was used as a testbed for CVFDT versus
VFDT in [22]. Examples for which

∑d
i=1 wixi ≥ w0 are labeled positive,

and examples for which
∑d

i=1 wixi < w0 are labeled negative. Hyperplanes
are useful for simulating time-changing concepts, because we can change the
orientation and position of the hyperplane in a smooth manner by changing
the relative size of the weights.

Random RBF Generator This generator was devised to offer an alternate
complex concept type that is not straightforward to approximate with a
decision tree model. The RBF (Radial Basis Function) generator works as
follows: A fixed number of random centroids are generated. Each center has
a random position, a single standard deviation, class label and weight. New
examples are generated by selecting a center at random, taking weights into
consideration so that centers with higher weight are more likely to be chosen.
A random direction is chosen to offset the attribute values from the central
point. Drift is introduced by moving the centroids with constant speed.

LED Generator This data source originates from the CART book [9]. An im-
plementation in C was donated to the UCI [2] machine learning repository
by David Aha. The goal is to predict the digit displayed on a seven-segment
LED display, where each attribute has a 10% chance of being inverted. The
particular configuration of the generator used for the experiments (led) pro-
duces 24 binary attributes, 17 of which are irrelevant.

4.2 Real-World Data

The UCI machine learning repository [2] contains some real-world benchmark
data for evaluating machine learning techniques. We consider three of the largest:
Forest Covertype, Poker-Hand, and Electricity.

Forest Covertype Contains the forest cover type for 30 x 30 meter cells ob-
tained from US Forest Service (USFS) Region 2 Resource Information Sys-
tem (RIS) data. It contains 581, 012 instances and 54 attributes, and it has
been used in several papers on data stream classification [18, 25].

Poker-Hand Consists of 1, 000, 000 instances and 11 attributes. Each record of
the Poker-Hand dataset is an example of a hand consisting of five playing
cards drawn from a standard deck of 52. Each card is described using two



Accuracy

75

77

79

81

83

85

87

89

91

93

95

10
00

0

80
00

0

15
00

00

22
00

00

29
00

00

36
00

00

43
00

00

50
00

00

57
00

00

64
00

00

71
00

00

78
00

00

85
00

00

92
00

00

99
00

00

Instances

A
c

c
u

ra
c

y
 (

%
)

Leveraging Bagging

Leveraging Bagging MC

ADWIN Bagging

Online Bagging

Accuracy

75

77

79

81

83

85

87

89

91

93

95

10
00

0

80
00

0

15
00

00

22
00

00

29
00

00

36
00

00

43
00

00

50
00

00

57
00

00

64
00

00

71
00

00

78
00

00

85
00

00

92
00

00

99
00

00

Instances

A
c

c
u

ra
c

y
 (

%
)

RF Leveraging Bagging

RF Leveraging Bagging MC

RF ADWIN Bagging

Fig. 2. Accuracy on the SEA data with three concept drifts.



Hoeffding Tree Online Bagging ADWIN Bagging
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 0.97 88.10 ± 0.34 141.37 27.35 91.59 ± 0.11 2656.28 27.16 91.58 ± 0.11 3311.22
RBF(50,0.001) 0.97 30.93 ± 0.03 178.30 25.48 32.89 ± 0.04 2894.04 0.25 41.64 ± 0.04 5481.12
RBF(10,0.001) 0.97 80.23 ± 0.15 137.30 26.90 83.39 ± 0.10 2759.74 26.07 83.41 ± 0.08 3579.72
RBF(50,0.0001) 0.98 35.25 ± 0.09 166.22 27.85 44.48 ± 0.07 3245.18 0.73 60.54 ± 0.07 5519.06
RBF(10,0.0001) 0.97 80.95 ± 0.14 132.80 27.86 84.59 ± 0.12 2682.15 26.83 84.78 ± 0.11 3481.96
LED(50000) 1.94 68.50 ± 0.29 22.99 50.93 69.00 ± 0.16 544.15 5.10 73.08 ± 0.08 541.42
SEA(50) 0.49 86.48 ± 0.06 5.32 12.13 86.83 ± 0.06 86.66 10.23 87.59 ± 0.29 107.13
SEA(50000) 0.49 86.45 ± 0.07 5.55 12.12 86.79 ± 0.06 91.43 6.32 88.32 ± 0.14 99.49
HYP(10,0.001) 1.45 80.70 ± 1.44 85.62 57.85 83.05 ± 1.49 2017.98 28.08 90.74 ± 0.21 2822.05
HYP(10,0.0001) 1.26 84.12 ± 0.75 85.43 48.91 85.88 ± 0.80 1913.85 36.05 91.23 ± 0.12 3145.88
CovType 2.65 80.70 27.46 59.83 83.93 345.62 4.80 84.91 486.00
Electricity 0.09 79.20 0.98 3.12 82.66 5.88 1.16 84.51 7.13
Poker 0.59 77.10 11.62 13.85 82.29 171.13 0.39 70.68 202.99
CovPokElec 5.69 77.65 62.63 138.09 82.67 1247.47 7.74 76.40 1367.09

74.03 Acc. 77.15 Acc. 79.24 Acc.
0.01 RAM-Hours 2.98 RAM-Hours 1.48 RAM-Hours

2.86 avg. rank 1.79 avg. rank 1.36 avg. rank

Nemenyi significance: Online Bagging� Hoeffding Tree; ADWIN Bagging � Hoeffding Tree;

Table 2. Comparison of Hoeffding Tree, Online bagging and ADWIN bagging. Accuracy
is measured as the final percentage of examples correctly classified over the 1 or 10
million test/train interleaved evaluation. Time is measured in seconds, and memory in
MB. The best individual accuracies are indicated in boldface.

attributes (suit and rank), for a total of 10 predictive attributes. There is
one class attribute that describes the “Poker Hand”.

Electricity is another widely used dataset described by M. Harries [20] and
analysed by Gama [17]. This data was collected from the Australian New
South Wales Electricity Market. In this market, prices are not fixed and are
affected by demand and supply of the market. They are set every five min-
utes. The ELEC dataset contains 45, 312 instances. The class label identifies
the change of the price relative to a moving average of the last 24 hours.

We use normalized versions of these datasets, so that the numerical values
are between 0 and 1. With the Poker-Hand dataset, the cards are not ordered,
i.e. a hand can be represented by any permutation, which makes it very hard
for propositional learners, especially for linear ones. We use a modified version,
where cards are sorted by rank and suit, and have removed duplicates. This
dataset loses about 171, 799 examples, and comes down to 829, 201 examples.

These datasets are small compared to synthetic datasets we consider. Another
important fact is that we do not know when drift occurs or indeed if there is
any drift. We may simulate concept drift, joining the three datasets, merging
attributes, and supposing that each dataset corresponds to a different concept

CovPokElec = (CoverType⊕5,000
581,012 Poker)⊕5,000

1,000,000 ELEC

As all examples need to have the same number of attributes, we simply
concatenate all the attributes, and set the number of classes to the maximum
number of classes of all the datasets.



0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,82 0,84 0,86 0,88 0,9 0,92 0,94 0,96

Kappa Statistic

E
rr

o
r

Leveraging Bagging

Online Bagging

Fig. 3. Kappa-Error diagrams for Leveraging Bagging and Online bagging (bottom)
on on the SEA data with three concept drifts, plotting 576 pairs of classifiers.

4.3 Results

We ran three experimental evaluations to test our new leveraging method using
25 classifiers. In the first, in order to understand why online bagging works, we
compare the original Online Bagging, with the ADWIN Bagging presented in [6],
and with two different resampling stategies

– half subagging
– without replacement or subagging
– without taking out all instances (WT)

The second experiment measures accuracy improvement of leveraging bagging.
And finally, the third experiment compares our method against online Random
Forests.

We use the datasets explained in the previous sections for evaluation. The
experiments were performed on 2.66 GHz Core 2 Duo E6750 machines with 4 GB
of memory. The evaluation methodology used was Interleaved Test-Then-Train
on 10 runs and 25 classifiers: every example was used for testing the model before
using it to train. This interleaved test followed by train procedure was carried
out on 10 million examples from the hyperplane and RandomRBF datasets, and
one million examples from the SEA dataset. The parameters of these streams
are the following:



Memory

0

20

40

60

80

100

120

10
00

0

80
00

0

15
00

00

22
00

00

29
00

00

36
00

00

43
00

00

50
00

00

57
00

00

64
00

00

71
00

00

78
00

00

85
00

00

92
00

00

99
00

00

Instances

M
e

m
o

ry
º 

(M
b

)

Online Bagging

ADWIN Bagging

Leveraging Bagging MC

Leveraging Bagging

RunTime

0

50

100

150

200

250

300

350

10
00

0

80
00

0

15
00

00

22
00

00

29
00

00

36
00

00

43
00

00

50
00

00

57
00

00

64
00

00

71
00

00

78
00

00

85
00

00

92
00

00

99
00

00

Instances

T
im

e
 (

s
e

c
.) Online Bagging

ADWIN Bagging

Leveraging Bagging MC

Leveraging Bagging

Fig. 4. Runtime and memory on the SEA data with three concept drifts.



ADWIN Half subagging ADWIN Subagging ADWIN Bagging WT
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 23.99 91.22 ± 0.09 3986.69 24.07 91.43 ± 0.11 3896.28 31.50 91.36 ± 0.16 3198.21
RBF(50,0.001) 0.16 43.81 ± 0.03 4887.80 0.16 43.93 ± 0.02 5244.13 0.45 43.66 ± 0.03 6627.15
RBF(10,0.001) 23.28 83.14 ± 0.09 4133.80 23.26 83.29 ± 0.08 4132.29 30.11 83.04 ± 0.16 3353.40
RBF(50,0.0001) 0.37 56.61 ± 0.05 4927.20 0.41 57.07 ± 0.06 5296.05 2.55 72.31 ± 0.08 6682.20
RBF(10,0.0001) 23.14 85.07 ± 0.16 4090.61 23.18 85.12 ± 0.12 4091.19 32.88 84.57 ± 0.11 3272.87
LED(50000) 1.50 73.05 ± 0.07 478.39 1.83 73.11 ± 0.08 515.13 12.28 73.06 ± 0.07 616.17
SEA(50) 4.83 87.43 ± 0.27 82.08 6.13 87.51 ± 0.28 98.79 19.95 87.88 ± 0.36 153.28
SEA(50000) 2.91 87.98 ± 0.17 75.05 3.60 88.17 ± 0.18 92.18 12.46 88.55 ± 0.24 136.75
HYP(10,0.001) 17.81 90.27 ± 0.17 2510.85 20.50 90.35 ± 0.17 2739.65 50.60 90.59 ± 0.20 3786.17
HYP(10,0.0001) 22.51 90.65 ± 0.09 2605.25 23.49 90.73 ± 0.11 2886.55 59.75 91.10 ± 0.12 4075.18
CovType 1.82 82.03 507.03 2.18 82.55 525.32 17.74 88.47 505.22
Electricity 0.57 82.45 6.91 0.62 83.38 7.42 1.99 86.67 8.82
Poker 0.38 69.24 215.07 0.38 69.99 230.15 1.61 77.35 213.41
CovPokElec 3.27 74.16 1647.06 3.37 74.94 1411.78 22.30 82.18 1527.23

78.36 Acc. 78.68 Acc. 81.49 Acc.
1.04 RAM-Hours 1.13 RAM-Hours 2.74 RAM-Hours

2.79 avg. rank 1.64 avg. rank 1.57 avg. rank

Nemenyi significance: ADWIN Subagging�ADWIN Half subagging; ADWIN Bagging WT�ADWIN Half

subagging;

Table 3. Comparison of ADWIN Half subagging, ADWIN subagging, and ADWIN bagging
using all instances. Accuracy is measured as the final percentage of examples correctly
classified over the 1 or 10 million test/train interleaved evaluation. Time is measured in
seconds, and memory in MB. The best individual accuracies are indicated in boldface.

– RBF(x,v): RandomRBF data stream of 5 classes with x centroids moving
at speed v.

– HYP(x,v): Hyperplane data stream of 5 classes with x attributes changing
at speed v.

– SEA(v): SEA dataset, with length of change v.

– LED(v): LED dataset, with length of change v.

The Nemenyi test [11] is used for computing significance: it is an appropriate
test for comparing multiple algorithms over multiple datasets, being based on
the average ranks of the algorithms across all datasets. We use a p-value of
0.05. Under the Nemenyi test, {x,y}�{z} indicates that algorithms x and y are
statistically significantly more likely to be more favourable than z.

In [5] we introduced the use of RAM-Hours as an evaluation measure of the
resources used by streaming algorithms. Every GB of RAM deployed for 1 hour
equals one RAM-Hour.

Tables 2, 3 and 4 report the final accuracy, and speed of the classification
models induced on the synthetic data and the real datasets: Forest Cover-
Type, Poker Hand, Electricity and CovPokElec. Accuracy is measured
as the final percentage of examples correctly classified over the test/train inter-
leaved evaluation. Time is measured in seconds, and memory in MB. All experi-
ments are performed using leveraging bagging with Poisson(6), since empirically
this was determined to be the best value. We implemented Online Bayesian Bag-
ging, but we don’t report the results as they are similar to those using Poisson(1).



Leveraging Bagging Leveraging Bagging MC Leveraging Bagging ME
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 56.51 91.05 ± 0.06 2862.03 133.63 91.07 ± 0.03 3980.25 23.22 90.11 ± 0.38 5492.83
RBF(50,0.001) 3.31 58.21 ± 0.05 7333.89 181.04 56.64 ± 0.07 6511.17 0.17 44.67 ± 0.02 7674.30
RBF(10,0.001) 61.77 82.45 ± 0.07 2997.72 212.74 82.62 ± 0.06 6518.94 22.89 83.77 ± 0.15 5153.45
RBF(50,0.0001) 21.55 80.48 ± 0.02 7421.81 73.84 78.42 ± 0.04 5155.42 0.38 58.58 ± 0.07 7375.62
RBF(10,0.0001) 64.86 83.94 ± 0.07 2899.91 249.36 86.00 ± 0.17 7847.99 22.30 86.35 ± 0.24 5180.18
LED(50000) 27.64 73.10 ± 0.09 714.17 121.15 71.67 ± 0.16 491.14 1.56 73.11 ± 0.08 647.63
SEA(50) 92.88 88.65 ± 0.15 354.51 96.59 88.50 ± 0.18 362.56 1.27 87.64 ± 0.16 58.92
SEA(50000) 75.12 88.69 ± 0.11 324.51 80.78 88.51 ± 0.10 336.27 1.02 87.31 ± 0.13 59.10
HYP(10,0.001) 409.89 88.66 ± 0.38 11307.98 189.75 88.01 ± 0.43 5537.68 3.89 91.02 ± 0.07 2047.55
HYP(10,0.0001) 405.58 89.36 ± 0.13 11838.65 207.66 88.63 ± 0.27 5873.24 4.28 91.19 ± 0.05 2014.43
CovType 49.45 91.29 559.57 43.88 92.53 368.29 1.62 90.96 479.49
Electricity 6.23 88.41 11.11 6.85 87.98 11.56 0.16 88.41 5.88
Poker 32.42 98.03 194.48 47.25 98.76 194.62 0.27 75.87 208.08
CovPokElec 167.47 95.23 1610.18 185.44 95.83 1204.34 2.25 81.80 1360.60

85.54 Acc. 85.37 Acc. 80.77 Acc.
20.17 RAM-Hours 22.04 RAM-Hours 0.87 RAM-Hours

1.79 avg. rank 2.00 avg. rank 2.14 avg. rank

Table 4. Comparison of Leveraging Bagging without using Random Output Codes,
Leveraging Bagging using Random Output Codes, and Leveraging Bagging giving more
weight to missclassified examples. The best individual accuracies are indicated in bold-
face.

We use as a base learner for our experiments the Hoeffding Naive Bayes Tree
(hnbt). Hoeffding trees [14] are state-of-the-art in classification for data streams
and they perform prediction by choosing the majority class at each leaf. Their
predictive accuracy can be increased by adding naive Bayes models at the leaves
of the trees. A Hoeffding Naive Bayes Tree [21] works by performing a naive
Bayes prediction per training instance, and comparing its prediction with the
majority class. Counts are stored to measure how many times the naive Bayes
prediction gets the true class correct as compared to the majority class. When
performing a prediction on a test instance, the leaf will only return a naive Bayes
prediction if it has been more accurate overall than the majority class, otherwise
it resorts to a majority class prediction.

Table 2 reports the accuracy, speed and memory of a Hoeffding Naive Bayes
Tree(hnbt), compared with online bagging of Hoeffding Naive Bayes Tree and
ADWIN bagging of Hoeffding Naive Bayes Trees. We observe that online bagging
improves the accuracy of a single Hoeffding Naive Bayes Tree from 74.03% to
77.15%. ADWIN bagging improves this result getting 79.24%. In terms of memory
and speed, the single Hoeffding Naive Bayes Tree is much faster and needs less
memory.

We ran experiments to test three different bagging strategies: subagging (
resampling without replacement), half subagging (resampling without replace-
ment half of the instances), and bagging without taking out any instance. We
implement this third strategy using 1+Poisson(1) instead of Poisson. We tested
the three strategies on ADWIN bagging. Table 3 shows, for these bagging strate-
gies, their accuracy, speed and memory. We observe that using subagging we
get faster methods but less accurate. If we use all instances, it seems that we
improve accuracy but not speed or the memory used.



RF Leveraging Bagging RF Online Bagging RF ADWIN Bagging
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 45.75 90.70 ± 0.05 2193.41 24.99 90.33 ± 0.11 1624.37 24.59 90.31 ± 0.10 1939.25
RBF(50,0.001) 3.54 55.56 ± 0.06 1835.02 24.32 31.31 ± 0.03 1453.76 0.11 34.18 ± 0.02 1177.31
RBF(10,0.001) 49.21 82.13 ± 0.06 2152.77 24.84 81.84 ± 0.09 1691.17 23.93 81.81 ± 0.08 2020.98
RBF(50,0.0001) 23.92 77.77 ± 0.03 2478.19 24.64 39.72 ± 0.08 1783.48 0.39 48.53 ± 0.11 1497.54
RBF(10,0.0001) 51.93 83.45 ± 0.07 2181.24 24.92 82.74 ± 0.05 1702.03 23.95 82.73 ± 0.05 2065.70
LED(50000) 20.90 67.83 ± 0.74 286.48 11.46 60.22 ± 0.71 148.12 3.02 66.12 ± 0.66 166.40
SEA(50) 189.36 87.86 ± 0.13 760.45 63.31 86.86 ± 0.06 176.44 60.39 86.98 ± 0.06 190.24
SEA(50000) 186.40 87.74 ± 0.09 728.12 63.30 86.78 ± 0.06 168.49 59.96 86.88 ± 0.06 185.48
HYP(10,0.001) 143.84 86.09 ± 0.36 5059.25 27.86 80.45 ± 1.47 1484.37 25.39 83.18 ± 0.68 1562.69
HYP(10,0.0001) 132.58 86.73 ± 0.37 4826.40 27.73 83.43 ± 0.89 1460.90 26.30 84.08 ± 0.57 1607.33
CovType 6.98 87.81 162.88 16.05 74.71 130.50 1.07 76.47 140.29
Electricity 2.55 86.85 5.52 1.36 80.08 2.94 0.60 82.44 4.32
Poker 7.38 75.72 92.94 22.69 74.07 88.94 0.44 65.96 81.23
CovPokElec 11.12 73.43 448.82 32.28 68.22 383.78 2.11 69.73 429.11

80.69 Acc. 72.91 Acc. 74.24 Acc.
5.51 RAM-Hours 1.30 RAM-Hours 0.89 RAM-Hours

1.00 avg. rank 2.71 avg. rank 2.29 avg. rank

Nemenyi significance: RF Leveraging Bagging�RF Online Bagging; RF Leveraging Bagging�RF
ADWIN Bagging;

Table 5. Comparison of methods using Random Forests: Leveraging Bagging without
using Random Output Codes, Online Bagging, and ADWIN bagging. Accuracy is mea-
sured as the final percentage of examples correctly classified over the 1 or 10 million
test/train interleaved evaluation. Time is measured in seconds, and memory in MB.
The best individual accuracies are indicated in boldface.

The learning curves and model growth curves for the Sea dataset are plotted
in Figures 2 and 4. We observe that for this data stream the new leveraging
bagging methods need more time and memory than the other methods, but
they are more accurate.

We use the Kappa statistic κ [6] to show how using Leveraging Bagging with
λ = 6, we increase the diversity of the ensemble. When two classifiers agree on
every example then κ = 1, and when their predictions coincide purely by chance,
then κ = 0.

The Kappa-Error diagram is a scatterplot where each point corresponds to a
pair of classifiers. The x coordinate of the pair is the κ value for the two classifiers.
The y coordinate is the average of the error rates of the two classifiers.

Figure 3 shows the Kappa-Error diagram for the SEA dataset with three
concept drifts and 25 classifiers. We observe that for this dataset the Kappa
statistic for Leveraging Bagging is lower than for Online Bagging, showing the
higher diversity of the output of the classifiers of the Leveraging Bagging method.

Table 4 reports the accuracy, speed and memory of the new Levering Bagging
methods using hnbt. We compare Levering Bagging with Levering Bagging MC
without using Random Ouput Codes, and Levering Bagging ME giving more
weight to missclassified examples. In this last method, if an instance is misclas-
sified it is accepted with a weight of one. If not, it is accepted with probability
eT /(1− eT ), where the error estimate eT is computed as a smoothed version of
the proportion of misclassified examples using the estimation of ADWIN that is
monitoring the error. We observe that the accuracy of the two Leveraging bag-



ging methods are similar and that they are 6% more accurate than the ADWIN

bagging. When leveraging bagging is used to give more weight to missclassified
examples, it does not seem to increase accuracy. However it improves the need
for RAM-Hours, so the Leveraging Bagging ME is a very good classifier when
resources are scarce.

Finally, we compare our methods with Random Forests. We build Random
Forests using Hoeffding Naive Bayes Trees in the following way: let n be the
number of attributes, we select for each node,

√
(n) attributes randomly, and

we only keep statistics of these attributes. The splits of the node are made using
the best of these attributes, and the predictions at the leaves are made using
only the statistics of these attributes.

We compare using the three bagging methods: online bagging, ADWIN bag-
ging, and leveraging bagging using 25 classifiers. The results are shown in Table 5.
We see that RandomForests are, for many datasets, twice as fast and use half
of the memory. However their accuracy is 5% below that of using standard Ho-
effding Naive Bayes trees. To obtain the same accuracy as the Hoeffding Naive
Bayes trees, we only need to increase the number of classifiers of the ensemble.
We can observe that using our new leveraging bagging we increase the accuracy
of Random Forests.

5 Conclusions

We have presented a new leveraging bagging method, that uses randomization on
the weights of the instances of the input stream, to improve the accuracy of the
ensemble classifier. Using random output codes, we may use a binary classifier
without losing accuracy. We tested subagging, half subagging, and bagging with-
out replacement, and these methods performed faster but they are marginally
less accurate. Finally, we have compared our method with Random Forests with
improved results.

References

1. H. Abdulsalam, D. B. Skillicorn, and P. Martin. Streaming random forests. In
IDEAS ’07: Proceedings of the 11th International Database Engineering and Appli-
cations Symposium, pages 225–232, Washington, DC, USA, 2007. IEEE Computer
Society.

2. A. Asuncion and D. Newman. UCI machine learning repository, 2007.
3. A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-

dowing. In SDM, 2007.
4. A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online Analysis

http://moa.cs.waikato.ac.nz/. Journal of Machine Learning Research (JMLR),
2010.

5. A. Bifet, G. Holmes, B. Pfahringer, and E. Frank. Fast perceptron decision tree
learning from evolving data streams. In PAKDD, 2010.

6. A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensemble
methods for evolving data streams. In KDD, pages 139–148, 2009.



7. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
8. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
9. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Wadsworth, 1984.
10. P. Bühlmann and B. Yu. Analyzing bagging. Annals of Statistics, 2003.
11. J. Demšar. Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine Learning Research, 7:1–30, 2006.
12. T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-

correcting output codes. J. Artif. Intell. Res. (JAIR), 2:263–286, 1995.
13. P. Domingos. Why does bagging work? A bayesian account and its implications.

In KDD, pages 155–158, 1997.
14. P. Domingos and G. Hulten. Mining high-speed data streams. In KDD, pages

71–80, 2000.
15. J. Friedman and P. Hall. On bagging and nonlinear estimation. Technical report,

Stanford University, 1999.
16. J. H. Friedman. On bias, variance, 0/1—loss, and the curse-of-dimensionality. Data

Min. Knowl. Discov., 1(1):55–77, 1997.
17. J. Gama, P. Medas, G. Castillo, and P. P. Rodrigues. Learning with drift detection.

In SBIA, pages 286–295, 2004.
18. J. Gama, R. Rocha, and P. Medas. Accurate decision trees for mining high-speed

data streams. In KDD, pages 523–528, 2003.
19. Y. Grandvalet. Bagging equalizes influence. Machine Learning, 55(3):251–270,

2004.
20. M. Harries. Splice-2 comparative evaluation: Electricity pricing. Technical report,

The University of South Wales, 1999.
21. G. Holmes, R. Kirkby, and B. Pfahringer. Stress-testing Hoeffding trees. In PKDD,

pages 495–502, 2005.
22. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In

KDD, pages 97–106, 2001.
23. H. K. H. Lee and M. A. Clyde. Lossless online bayesian bagging. J. Mach. Learn.

Res., 5:143–151, 2004.
24. N. Oza and S. Russell. Online bagging and boosting. In Artificial Intelligence and

Statistics 2001, pages 105–112. Morgan Kaufmann, 2001.
25. N. C. Oza and S. J. Russell. Experimental comparisons of online and batch versions

of bagging and boosting. In KDD, pages 359–364, 2001.
26. A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random

forests. In 3rd IEEE - ICCV Workshop on On-line Learning for Computer Vision,
2009.

27. R. E. Schapire. Using output codes to boost multiclass learning problems. In ICML
’97: Proceedings of the Fourteenth International Conference on Machine Learning,
pages 313–321, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

28. W. N. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-scale
classification. In KDD, pages 377–382, 2001.


