Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 7 of Data Mining by I. H. Witten and E. Frank
Engineering the input and output

- **Attribute selection**
 - Scheme-independent, scheme-specific

- **Attribute discretization**
 - Unsupervised, supervised, error- vs entropy-based, converse of discretization

- **Data transformations**
 - Principal component analysis, random projections, text, time series

- **Dirty data**
 - Data cleansing, robust regression, anomaly detection

- **Meta-learning**
 - Bagging (with costs), randomization, boosting, additive (logistic) regression, option trees, logistic model trees, stacking, ECOCs

- **Using unlabeled data**
 - Clustering for classification, co-training, EM and co-training
Just apply a learner? NO!

- Scheme/parameter selection

 \textit{treat selection process as part of the learning process}

- Modifying the input:
 - Data engineering to make learning possible or easier

- Modifying the output
 - Combining models to improve performance
Attribute selection

- Adding a random (i.e., irrelevant) attribute can significantly degrade C4.5’s performance
 - Problem: attribute selection based on smaller and smaller amounts of data
- IBL very susceptible to irrelevant attributes
 - Number of training instances required increases exponentially with number of irrelevant attributes
- Naïve Bayes doesn’t have this problem
- Relevant attributes can also be harmful
Scheme-independent attribute selection

- **Filter approach:** assess based on general characteristics of the data
- **One method:** find smallest subset of attributes that separates data
- **Another method:** use different learning scheme
 - e.g. use attributes selected by C4.5 and 1R, or coefficients of linear model, possibly applied recursively (*recursive feature elimination*)
- **IBL-based attribute weighting techniques:**
 - can’t find redundant attributes (but fix has been suggested)
- **Correlation-based Feature Selection (CFS):**
 - correlation between attributes measured by *symmetric uncertainty*:
 \[
 U(A, B) = 2 \frac{H(A) + H(B) - H(A, B)}{H(A) + H(B)} \in [0, 1]
 \]
 - goodness of subset of attributes measured by (breaking ties in favor of smaller subsets):
 \[
 \sum_j U(A_j, C) / \sqrt{\left(\sum_i \sum_j U(A_i, A_j) \right)}
 \]
Attribute subsets for weather data

- outlook
- temperature
- humidity
- windy

Subsets:
- outlook
- temperature
- humidity
- windy

- outlook, temperature
- outlook, humidity
- temperature, humidity
- outlook, windy
- temperature, windy
- humidity, windy

- outlook, temperature, humidity
- outlook, temperature, windy
- outlook, humidity, windy
- temperature, humidity, windy
- outlook, temperature, humidity, windy
Searching attribute space

- Number of attribute subsets is exponential in number of attributes
- Common greedy approaches:
 - forward selection
 - backward elimination
- More sophisticated strategies:
 - Bidirectional search
 - Best-first search: can find optimum solution
 - Beam search: approximation to best-first search
 - Genetic algorithms
Scheme-specific selection

- **Wrapper** approach to attribute selection
- Implement “wrapper” around learning scheme
- Evaluation criterion: cross-validation performance
- Time consuming
 - greedy approach, k attributes $\Rightarrow k^2 \times$ time
 - prior ranking of attributes \Rightarrow linear in k
- Can use significance test to stop cross-validation for subset early if it is unlikely to “win” (*race search*)
 - can be used with forward, backward selection, prior ranking, or special-purpose *schemata search*
- Learning decision tables: scheme-specific attribute selection essential
- Efficient for decision tables and Naïve Bayes
Attribute discretization

- Avoids normality assumption in Naïve Bayes and clustering
- 1R: uses simple discretization scheme
- C4.5 performs *local* discretization
- *Global* discretization can be advantageous because it’s based on more data
- Apply learner to
 - k-valued discretized attribute *or* to
 - $k-1$ binary attributes that code the cut points
Discretization: unsupervised

- Determine intervals without knowing class labels
- When clustering, the only possible way!
- Two strategies:
 - *Equal-interval binning*
 - *Equal-frequency binning* (also called *histogram equalization*)
- Normally inferior to supervised schemes in classification tasks
- But equal-frequency binning works well with naïve Bayes if number of intervals is set to square root of size of dataset (*proportional k-interval discretization*).
Discretization: supervised

- *Entropy-based* method
 - Build a decision tree with pre-pruning on the attribute being discretized
 - Use entropy as splitting criterion
 - Use minimum description length principle as stopping criterion
 - Works well: the state of the art
- To apply min description length principle:
 - The “theory” is
 - the splitting point ($\log_2[N – 1]$ bits)
 - plus class distribution in each subset
 - Compare description lengths before/after adding splitting point
Example: temperature attribute

<table>
<thead>
<tr>
<th>Temperature</th>
<th>64</th>
<th>65</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>72</th>
<th>75</th>
<th>75</th>
<th>80</th>
<th>81</th>
<th>83</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

![Graph showing temperature attribute values](graph.png)
Formula for MDLP

• \(N \) instances
 - Original set: \(k \) classes, entropy \(E \n\)
 - First subset: \(k_1 \) classes, entropy \(E_1 \)
 - Second subset: \(k_2 \) classes, entropy \(E_2 \)

\[
\text{gain} > \frac{\log_2(N-1)}{N} + \frac{\log_2(3^k-2)-kE+k_1E_1+k_2E_2}{N}
\]

• Results in no discretization intervals for temperature attribute
Supervised discretization: other methods

- Can replace top-down procedure by bottom-up method
- Can replace MDLP by chi-squared test
- Can use dynamic programming to find optimum k-way split for given additive criterion
 - Requires time quadratic in the number of instances
 - But can be done in linear time if error rate is used instead of entropy
Error-based vs. entropy-based

• Question: could the best discretization ever have two adjacent intervals with the same class?
• Wrong answer: No. For if so,
 • Collapse the two
 • Free up an interval
 • Use it somewhere else
 • *(This is what error-based discretization will do)*
• Right answer: Surprisingly, yes.
 • *(and entropy-based discretization can do it)*
Error-based vs. entropy-based

A 2-class, 2-attribute problem

Entropy-based discretization can detect change of class distribution
The converse of discretization

- Make nominal values into “numeric” ones
 1. Indicator attributes (used by IB1)
 - Makes no use of potential ordering information
 2. Code an ordered nominal attribute into binary ones (used by M5’)
 - Can be used for any ordered attribute
 - Better than coding ordering into an integer (which implies a metric)
- In general: code subset of attributes as binary
Data transformations

• Simple transformations can often make a large difference in performance
• Example transformations (not necessarily for performance improvement):
 ♦ Difference of two date attributes
 ♦ Ratio of two numeric (ratio-scale) attributes
 ♦ Concatenating the values of nominal attributes
 ♦ Encoding cluster membership
 ♦ Adding noise to data
 ♦ Removing data randomly or selectively
 ♦ Obfuscating the data
Principal component analysis

- Method for identifying the important “directions” in the data
- Can rotate data into (reduced) coordinate system that is given by those directions
- Algorithm:
 1. Find direction (axis) of greatest variance
 2. Find direction of greatest variance that is perpendicular to previous direction and repeat
- Implementation: find eigenvectors of covariance matrix by diagonalization
 - Eigenvectors (sorted by eigenvalues) are the directions
Example: 10-dimensional data

<table>
<thead>
<tr>
<th>Axis</th>
<th>Variance</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.2%</td>
<td>61.2%</td>
</tr>
<tr>
<td>2</td>
<td>18.0%</td>
<td>79.2%</td>
</tr>
<tr>
<td>3</td>
<td>4.7%</td>
<td>83.9%</td>
</tr>
<tr>
<td>4</td>
<td>4.0%</td>
<td>87.9%</td>
</tr>
<tr>
<td>5</td>
<td>3.2%</td>
<td>91.1%</td>
</tr>
<tr>
<td>6</td>
<td>2.9%</td>
<td>94.0%</td>
</tr>
<tr>
<td>7</td>
<td>2.0%</td>
<td>96.0%</td>
</tr>
<tr>
<td>8</td>
<td>1.7%</td>
<td>97.7%</td>
</tr>
<tr>
<td>9</td>
<td>1.4%</td>
<td>99.1%</td>
</tr>
<tr>
<td>10</td>
<td>0.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

- Can transform data into space given by components
- Data is normally standardized for PCA
- Could also apply this recursively in tree learner
Random projections

- PCA is nice but expensive: cubic in number of attributes
- Alternative: use random directions (projections) instead of principle components
- Surprising: random projections preserve distance relationships quite well (on average)
 - Can use them to apply kD-trees to high-dimensional data
 - Can improve stability by using ensemble of models based on different projections
Text to attribute vectors

- Many data mining applications involve textual data (e.g. string attributes in ARFF)
- Standard transformation: convert string into bag of words by *tokenization*
 - Attribute values are binary, word frequencies (f_{ij}), $\log(1+f_{ij})$, or TF × IDF: $f_{ij} \log \frac{\# documents}{\# documents that include word i}$
- Only retain alphabetic sequences?
- What should be used as delimiters?
- Should words be converted to lowercase?
- Should *stopwords* be ignored?
- Should *hapax legomena* be included? Or even just the k most frequent words?
Time series

- In time series data, each instance represents a different time step
- Some simple transformations:
 - Shift values from the past/future
 - Compute difference \((delta)\) between instances (ie. “derivative”)
- In some datasets, samples are not regular but time is given by timestamp attribute
 - Need to normalize by step size when transforming
- Transformations need to be adapted if attributes represent different time steps
Automatic data cleansing

• To improve a decision tree:
 ♦ Remove misclassified instances, then re-learn!
• Better (of course!):
 ♦ Human expert checks misclassified instances
• Attribute noise vs class noise
 ♦ Attribute noise should be left in training set
 (don’t train on clean set and test on dirty one)
 ♦ Systematic class noise (e.g. one class substituted for another): leave in training set
 ♦ Unsystematic class noise: eliminate from training set, if possible
Robust regression

- "Robust" statistical method \Rightarrow one that addresses problem of outliers
- To make regression more robust:
 - Minimize absolute error, not squared error
 - Remove outliers (e.g. 10% of points farthest from the regression plane)
 - Minimize median instead of mean of squares (copes with outliers in x and y direction)
 - Finds narrowest strip covering half the observations
Example: least median of squares

Number of international phone calls from Belgium, 1950–1973
Detecting anomalies

- Visualization can help to detect anomalies
- Automatic approach: committee of different learning schemes
 ✿ E.g.
 - decision tree
 - nearest-neighbor learner
 - linear discriminant function
 ✿ Conservative approach: delete instances incorrectly classified by them all
 ✿ Problem: might sacrifice instances of small classes
Combining multiple models

- **Basic idea:**
 build different “experts”, let them vote

- **Advantage:**
 - often improves predictive performance

- **Disadvantage:**
 - usually produces output that is very hard to analyze
 - but: there are approaches that aim to produce a single comprehensible structure
Bagging

- Combining predictions by voting/averaging
 - Simplest way
 - Each model receives equal weight
- “Idealized” version:
 - Sample several training sets of size n
 (instead of just having one training set of size n)
 - Build a classifier for each training set
 - Combine the classifiers’ predictions
- Learning scheme is unstable \Rightarrow almost always improves performance
- Small change in training data can make big change in model (e.g. decision trees)
Bias-variance decomposition

- Used to analyze how much selection of any specific training set affects performance
- Assume infinitely many classifiers, built from different training sets of size n
- For any learning scheme,
 - $\text{Bias} = \text{expected error of the combined classifier on new data}$
 - $\text{Variance} = \text{expected error due to the particular training set used}$
- Total expected error $\approx \text{bias} + \text{variance}$
More on bagging

- Bagging works because it reduces \textit{variance} by voting/averaging
 - Note: in some pathological hypothetical situations the overall error might increase
 - Usually, the more classifiers the better
- Problem: we only have one dataset!
- Solution: generate new ones of size \(n \) by sampling from it \textit{with replacement}
- Can help a lot if data is noisy
- Can also be applied to numeric prediction
 - Aside: bias-variance decomposition originally only known for numeric prediction
Model generation

Let \(n \) be the number of instances in the training data

For each of \(t \) iterations:
- Sample \(n \) instances from training set (with replacement)
- Apply learning algorithm to the sample
- Store resulting model

Classification

For each of the \(t \) models:
- Predict class of instance using model
- Return class that is predicted most often
Bagging with costs

- Bagging unpruned decision trees known to produce good probability estimates
 - Where, instead of voting, the individual classifiers' probability estimates are averaged
 - Note: this can also improve the success rate
- Can use this with minimum-expected cost approach for learning problems with costs
- Problem: not interpretable
 - *MetaCost* re-labels training data using bagging with costs and then builds single tree
Randomization

- Can randomize learning algorithm instead of input
- Some algorithms already have a random component: eg. initial weights in neural net
- Most algorithms can be randomized, eg. greedy algorithms:
 - Pick from the N best options at random instead of always picking the best options
 - Eg.: attribute selection in decision trees
- More generally applicable than bagging: e.g. random subsets in nearest-neighbor scheme
- Can be combined with bagging
Boosting

- Also uses voting/averaging
- Weights models according to performance
- Iterative: new models are influenced by performance of previously built ones
 - Encourage new model to become an “expert” for instances misclassified by earlier models
 - Intuitive justification: models should be experts that complement each other
- Several variants
Model generation

Assign equal weight to each training instance

For \(t \) iterations:
- Apply learning algorithm to weighted dataset, store resulting model
- Compute model’s error \(e \) on weighted dataset
- If \(e = 0 \) or \(e \geq 0.5 \):
 - Terminate model generation
- For each instance in dataset:
 - If classified correctly by model:
 - Multiply instance’s weight by \(\frac{e}{1-e} \)
 - Normalize weight of all instances

Classification

Assign weight = 0 to all classes

For each of the \(t \) models (or fewer):
- For the class this model predicts:
 - add \(-\log\frac{e}{1-e}\) to this class’s weight
Return class with highest weight
More on boosting I

- Boosting needs weights … but
- Can adapt learning algorithm ... or
- Can apply boosting *without* weights
 - resample with probability determined by weights
 - disadvantage: not all instances are used
 - advantage: if error > 0.5, can resample again
- Stems from *computational learning theory*
- Theoretical result:
 - training error decreases exponentially
- Also:
 - works if base classifiers are not too complex, and
 - their error doesn’t become too large too quickly
More on boosting II

- Continue boosting after training error = 0?
- Puzzling fact: generalization error continues to decrease!
 - Seems to contradict Occam’s Razor
- Explanation: consider *margin* (confidence), not error
 - Difference between estimated probability for true class and nearest other class (between –1 and 1)
- Boosting works with *weak* learners only condition: error doesn’t exceed 0.5
- In practice, boosting sometimes overfits (in contrast to bagging)
Additive regression I

• Turns out that boosting is a greedy algorithm for fitting additive models
• More specifically, implements *forward stagewise additive modeling*
• Same kind of algorithm for numeric prediction:
 1. Build standard regression model (eg. tree)
 2. Gather residuals, learn model predicting residuals (eg. tree), and repeat
• To predict, simply sum up individual predictions from all models
Additive regression II

- Minimizes squared error of ensemble if base learner minimizes squared error
- Doesn't make sense to use it with (multiple) linear regression, why?
- Can use it with simple linear regression to build multiple linear regression model
- Use cross-validation to decide when to stop
- Another trick: shrink predictions of the base models by multiplying with pos. constant < 1
 - Caveat: need to start with model 0 that predicts the mean
Additive logistic regression

- Can use the logit transformation to get algorithm for classification
 - More precisely, class probability estimation
 - Probability estimation problem is transformed into regression problem
 - Regression scheme is used as base learner (e.g., regression tree learner)
- Can use forward stagewise algorithm: at each stage, add model that maximizes probability of data
- If f_j is the jth regression model, the ensemble predicts probability
 \[p(1 | \vec{a}) = \frac{1}{1 + \exp(- \sum f_j(\vec{a}))} \] for the first class
LogitBoost

Model generation

For \(j = 1 \) to \(t \) iterations:
 For each instance \(a[i] \):
 Set the target value for the regression to
 \[z[i] = \frac{y[i] - p(1|a[i])}{p(1|a[i]) \times (1-p(1|a[i]))} \]
 Set the weight of instance \(a[i] \) to \(p(1|a[i]) \times (1-p(1|a[i])) \)
 Fit a regression model \(f[j] \) to the data with class values \(z[i] \) and weights \(w[i] \)

Classification

Predict 1st class if \(p(1 \mid a) > 0.5 \), otherwise predict 2nd class

- Maximizes probability if base learner minimizes squared error
- Difference to AdaBoost: optimizes probability/likelihood instead of exponential loss
- Can be adapted to multi-class problems
- Shrinking and cross-validation-based selection apply
Option trees

- Ensembles are not interpretable
- Can we generate a single model?
 - One possibility: “cloning” the ensemble by using lots of artificial data that is labeled by ensemble
 - Another possibility: generating a single structure that represents ensemble in compact fashion
- **Option tree**: decision tree with option nodes
 - Idea: follow all possible branches at option node
 - Predictions from different branches are merged using voting or by averaging probability estimates
Example

- Can be learned by modifying tree learner:
 - Create option node if there are several equally promising splits (within user-specified interval)
 - When pruning, error at option node is average error of options
Alternating decision trees

• Can also grow option tree by incrementally adding nodes to it

• Structure called *alternating decision tree*, with *splitter nodes* and *prediction nodes*
 - Prediction nodes are leaves if no splitter nodes have been added to them yet
 - Standard alternating tree applies to 2-class problems
 - To obtain prediction, filter instance down all applicable branches and sum predictions
 • Predict one class or the other depending on whether the sum is positive or negative
Example
Growing alternating trees

- Tree is grown using a boosting algorithm
 - Eg. LogitBoost described earlier
 - Assume that base learner produces single conjunctive rule in each boosting iteration (note: rule for regression)
 - Each rule could simply be added into the tree, including the numeric prediction obtained from the rule
 - Problem: tree would grow very large very quickly
 - Solution: base learner should only consider candidate rules that extend existing branches
 - Extension adds splitter node and two prediction nodes (assuming binary splits)
 - Standard algorithm chooses best extension among all possible extensions applicable to tree
 - More efficient heuristics can be employed instead
Logistic model trees

- Option trees may still be difficult to interpret
- Can also use boosting to build decision trees with linear models at the leaves (i.e., trees without options)
- Algorithm for building logistic model trees:
 - Run LogitBoost with simple linear regression as base learner (choosing the best attribute in each iteration)
 - Interrupt boosting when cross-validated performance of additive model no longer increases
 - Split data (e.g., as in C4.5) and resume boosting in subsets of data
 - Prune tree using cross-validation-based pruning strategy (from CART tree learner)
Stacking

- To combine predictions of base learners, don’t vote, use *meta learner*
 - Base learners: *level-0 models*
 - Meta learner: *level-1 model*
 - Predictions of base learners are input to meta learner
- Base learners are usually different schemes
- Can’t use predictions on training data to generate data for level-1 model!
 - Instead use cross-validation-like scheme
- Hard to analyze theoretically: “black magic”
More on stacking

- If base learners can output probabilities, use those as input to meta learner instead
- Which algorithm to use for meta learner?
 - In principle, any learning scheme
 - Prefer “relatively global, smooth” model
 - Base learners do most of the work
 - Reduces risk of overfitting
- Stacking can be applied to numeric prediction too
Error-correcting output codes

- Multiclass problem \Rightarrow binary problems
 - Simple scheme: One-per-class coding
 - Idea: use *error-correcting codes* instead
 - base classifiers predict 1011111, true class = ??
 - Use code words that have large *Hamming distance* between any pair
 - Can correct up to $(d - 1)/2$ single-bit errors

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>b</td>
<td>0100</td>
</tr>
<tr>
<td>c</td>
<td>0010</td>
</tr>
<tr>
<td>d</td>
<td>0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11111111</td>
</tr>
<tr>
<td>b</td>
<td>00001111</td>
</tr>
<tr>
<td>c</td>
<td>0011001</td>
</tr>
<tr>
<td>d</td>
<td>0101010</td>
</tr>
</tbody>
</table>
More on ECOCs

• Two criteria:
 • *Row separation:* minimum distance between rows
 • *Column separation:* minimum distance between columns
 • (and columns’ complements)
 • Why? Because if columns are identical, base classifiers will likely make the same errors
 • Error-correction is weakened if errors are correlated

• 3 classes \Rightarrow only 2^3 possible columns
 • (and 4 out of the 8 are complements)
 • Cannot achieve row and column separation
 • Only works for problems with > 3 classes
Exhaustive ECOCs

- **Exhaustive code for** k **classes:**
 - Columns comprise every possible k-string ...
 - ... except for complements and all-zero/one strings
 - Each code word contains $2^{k-1} - 1$ bits
 - Class 1: code word is all ones
 - Class 2: 2^{k-2} zeroes followed by $2^{k-2} - 1$ ones
 - Class i: alternating runs of 2^{k-i} 0s and 1s
 - last run is one short

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11111111</td>
</tr>
<tr>
<td>b</td>
<td>00001111</td>
</tr>
<tr>
<td>c</td>
<td>00110011</td>
</tr>
<tr>
<td>d</td>
<td>01010101</td>
</tr>
</tbody>
</table>
More on ECOCs

- More classes ⇒ exhaustive codes infeasible
- Number of columns increases exponentially
- Random code words have good error-correcting properties on average!
- There are sophisticated methods for generating ECOCs with just a few columns
- ECOCs don’t work with NN classifier
- But: works if different attribute subsets are used to predict each output bit
Using unlabeled data

- **Semisupervised learning**: attempts to use unlabeled data as well as labeled data
 - The aim is to improve classification performance
- Why try to do this? Unlabeled data is often plentiful and labeling data can be expensive
 - Web mining: classifying web pages
 - Text mining: identifying names in text
 - Video mining: classifying people in the news
- Leveraging the large pool of unlabeled examples would be very attractive
Clustering for classification

- Idea: use naïve Bayes on labeled examples and then apply EM
 - First, build naïve Bayes model on labeled data
 - Second, label unlabeled data based on class probabilities ("expectation" step)
 - Third, train new naïve Bayes model based on all the data ("maximization" step)
 - Fourth, repeat 2nd and 3rd step until convergence
- Essentially the same as EM for clustering with fixed cluster membership probabilities for labeled data and \#clusters = \#classes
Comments

• Has been applied successfully to document classification
 ♦ Certain phrases are indicative of classes
 ♦ Some of these phrases occur only in the unlabeled data, some in both sets
 ♦ EM can generalize the model by taking advantage of co-occurrence of these phrases
• Refinement 1: reduce weight of unlabeled data
• Refinement 2: allow multiple clusters per class
Co-training

• Method for learning from *multiple views* (multiple sets of attributes), eg:
 ♦ First set of attributes describes content of web page
 ♦ Second set of attributes describes links that link to the web page

• Step 1: build model from each view
• Step 2: use models to assign labels to unlabeled data
• Step 3: select those unlabeled examples that were most confidently predicted (ideally, preserving ratio of classes)
• Step 4: add those examples to the training set
• Step 5: go to Step 1 until data exhausted
• Assumption: views are independent
EM and co-training

• Like EM for semisupervised learning, but view is switched in each iteration of EM
 ♦ Uses all the unlabeled data (probabilistically labeled) for training

• Has also been used successfully with support vector machines
 ♦ Using logistic models fit to output of SVMs

• Co-training also seems to work when views are chosen randomly!
 ♦ Why? Possibly because co-trained classifier is more robust