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ABSTRACT

State-of-the-art cross-domain few-shot learning methods for image classification apply knowledge
transfer by fine-tuning deep feature extractors obtained from source domains on the small labelled
dataset available for the target domain, generally in conjunction with a simple centroid-based clas-
sification head. Semi-supervised learning during the meta-test phase is an obvious approach to
incorporating unlabelled data into cross-domain few-shot learning, but semi-supervised methods
designed for larger sets of labelled data than those available in few-shot learning appear to easily
go astray when applied in this setting. We propose an efficient semi-supervised learning method
that applies self-training to the classification head only and show that it can yield very consistent
improvements in average performance in the Meta-Dataset benchmark for cross-domain few-shot
learning when applied with contemporary methods utilising centroid-based classification.

1 INTRODUCTION

Supervised machine learning methods for cross-domain few-shot learning (CDFSL) are designed to be applicable
in target domains for which only small amounts of labelled training data are available. Training a complex machine
learning model such as a deep neural network from scratch on such “few-shot” data runs the risk of overfitting. CDFSL
methods address this by transferring knowledge learned from other domains, so-called “source domains”, into the few-
shot target domain. This is challenging because the source domains may differ substantially from the target domain. In
particular, this cross-domain setting is more challenging than the setting that is traditionally considered in the few-shot
learning literature. Contemporary CDFSL methods (Wang et al., 2022; Li et al., 2022; Triantafillou et al., 2021; Li
et al., 2021) generally apply knowledge transfer by fine-tuning pretrained deep feature extractors, used in conjunction
with a simple nearest-centroid classifier (Mensink et al., 2013; Snell et al., 2017), on the target dataset. However, they
do not attempt to exploit unlabelled data during learning. In scenarios where additional target domain instances are
available but lack labels, semi-supervised learning offers the prospect of improved performance. However, common
semi-supervised methods are designed for relatively large sets of labelled data (Laine & Aila, 2017; Tarvainen &
Valpola, 2017; Chen et al., 2020) and can easily go astray using small labelled sets. There exist a number of semi-
supervised few-shot learning methods that apply semi-supervised learning to meta-training (Ren et al., 2018; Bateni
et al., 2022; Xu et al., 2022; Islam et al., 2021), but literature is lacking on semi-supervised learning applied to CDFSL
at meta-test time, based on any given pretrained feature extractors, whether obtained with meta-training or not.

We propose an efficient semi-supervised learning method applicable to any pretrained feature extractors, that keeps the
feature extractor fixed after fine-tuning it on the labelled data and applies a classic semi-supervised learning method
known as self-training to the classification head—the nearest-centroid classifier—only. Full self-training is a semi-
supervised learning method that leverages unlabelled instances through an iterative process (Rosenberg et al., 2005):
1) train a model using the labelled dataset, 2) pseudo-label unlabelled instances with the trained model, and 3) update
the labelled dataset with the unlabelled instances and their pseudo-labels. The labelled dataset consists of only labelled
instances during the first iteration of training and additionally includes unlabelled instances with their pseudo-labels
in all following iterations. The train-label loop iterates until a stopping criterion is met.

The training step in this full self-training loop involves optimising all trainable parameters in the model and can
become time-consuming if the feature extractor is heavily parameterised. More importantly, in few-shot learning, the
small labelled dataset may provide insufficient guidance to reliably update such a large number of parameters in self-
training. We address both issues by applying self-training to the centroid classifier only, yielding self-trained centroids
(STC) for cross-domain few-shot learning. In this approach, feature vectors of labelled and unlabelled instances are
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Figure 1: Visualisation of STC. In the left diagram, labelled centroids (solid vectors, CL
0 and CL

1 ) are used to soft-label
unlabelled feature vectors (dashed vectors, U0 - U3) with cosine similarity distance. The black dashed line represents
the decision boundary. In the right diagram, “labelled” and “unlabelled” centroids are averaged to produce combined
centroids (dotted lines, CC

0 and CC
1 ). This results in a shift in the decision boundary.

extracted using the fine-tuned feature extractor, and the labelled feature vectors are used to compute initial centroids.
Subsequently, these centroids are used in the nearest-centroid classifier to assign soft labels to the unlabelled feature
vectors. Once these soft labels have been obtained, another set of centroids can be computed from the pseudo-labelled
feature vectors. The two sets of centroids are averaged on a per-class basis to produce combined centroids, as shown
in Figure 1. To form an iterative process, the new centroids can be used to soft-label the unlabelled instances again,
for “labelled” and “unlabelled” centroids to again be averaged. To predict test instances, the combined centroids are
used in the nearest-centroid classifier.

We apply STC to contemporary CDFSL methods, including URL (Li et al., 2021), FLUTE (Triantafillou et al., 2021),
TSA (Li et al., 2022), as well as their counterparts in the recently proposed ConFES framework (Wang et al., 2022)
that applies an ensemble of feature extractors. We evaluate them using an extended form of the Meta-Dataset bench-
mark (Triantafillou et al., 2020; Requeima et al., 2019; Wang et al., 2022) and show that STC used with 1,000 unla-
belled instances improves average performance very consistently. We also demonstrate that STC is more efficient than
full self-training based on updating all model parameters and performs better in cross-domain scenarios.

2 SEMI-SUPERVISED CDFSL WITH STC

A semi-supervised few-shot learning episode contains, as its training data, a labelled set L and an unlabelled set U .
L is of size N , containing instances X ∈ RI×N with I input dimensions and their labels Y ∈ [0, C)N belonging to
classes C. U ∈ RI×M contains M instances also belonging to C but their labels are unknown. The learning task is to
fit a model, pretrained on source domains, using L and U , and evaluate it using a separate test/query set Q. The goal of
a semi-supervised CDFSL method is to learn from L and U and outperform its supervised counterpart learning from
only L. We first formulate the STC learning algorithm for cases where it is applied with a single feature extractor and
then explain how it can be used in ConFES ensembles.

Given a feature extractor Φ, we fine-tune it on L by using a nearest-centroid classifier as the classification head. In
CDFSL, common pretraining methods for obtaining the feature extractor include vanilla pretraining on a single source
domain (Wang et al., 2022), knowledge distillation (Li et al., 2021), and universal template training (Triantafillou
et al., 2021). Common fine-tuning methods include feature projection (Li et al., 2021), batch normalisation fine-
tuning (Triantafillou et al., 2021), and task-specific adaptors (Li et al., 2022). All these methods can be used in
conjunction with STC. To this end, we use the fine-tuned Φ′ to extract feature vectors XF ∈ RJ×N with J feature
dimensions from X , and UF ∈ RJ×M from U . We compute class centroids XC ∈ RJ×C for the labelled set using
XF and Y , with Sj representing the set of indices of labelled instances belonging to a particular class j:

XC
j =

1

|Sj |
∑
i∈Sj

XF
i , Sj = {k : Yk = j}, j = 1, ..., C. (1)

Once we have the set of centroid vectors, XC , we can use them to assign soft labels to UF by applying a similarity
measure s and the softmax function. For each unlabelled feature vector UF

i , its soft labels PU
i are computed as:
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PU
i (Y U

i = j|UF
i ) =

es(U
F
i ,XC

j )
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i=1

es(U
F
i ,XC

i )

. (2)

Here, we use the same s as the one applied in the nearest-centroid classifier during fine-tuning, i.e., the exact formula-
tion depends on the fine-tuning method that is applied. Li et al. (2021) and Li et al. (2022) use cosine similarity scaled
by a factor of 10, while Triantafillou et al. (2021) use cosine similarity without scaling.

Once soft labels have been obtained, we can compute class centroids UC ∈ RJ×C for the unlabelled set based on UF

and the corresponding soft labels PU by using these soft labels to calculate weighted averages:

UC
j =

|UF |∑
i=1

PU
i (Y U

i = j|UF
i ) · UF

i

|UF |∑
i=1

PU
i (Y U

i = j|UF
i )

. (3)

The final set of centroids CC ∈ RJ×C is subsequently obtained as a simple arithmetic average of XC and UC , giving
equal weight to the centroids from the data with ground-truth labels and the centroids from the pseudo-labelled data:

CC
j =

XC
j + UC

j

2
. (4)

An iterative self-training process can be formed to further refine the soft labels by then using CC instead of XC to
soft-label UF , i.e., replacing XC with CC in Equation 2, and repeating Equations 2 - 4. However, interestingly, in line
with the findings of Ren et al. (2018), whose method we discuss in the next section, we found that simply performing
Equations 1 - 4 once is often sufficient: iterating the process leads to relatively little benefit overall and may even harm
in some cases, despite it being common procedure in full self-training with larger datasets (Rosenberg et al., 2005).

After training, predictions for a query instance Qi are made with its feature vector QF
i and the final centroids CC :

PQ
i (Y Q

i = j|QF
i ) =

es(Q
F
i ,CC

j )

C∑
i=1

es(Q
F
i ,CC

i )

. (5)

The above description of STC is based on a single feature extractor. However, recent work has shown that the classic
stacking approach to ensemble learning, in the form of feature extractor stacking (Wang et al., 2022), can be used to
obtain state-of-the-art accuracy on CDFSL problems: a meta-classifier, e.g., a very simple convolutional neural net-
work, is trained using cross-validated predictions obtained from a set of source domain backbones (i.e., “base models”)
during fine-tuning and learns to appropriately combine predictions from all the snapshots available. Fortunately, it is
straightforward to apply STC in conjunction with this stacking approach. Given a meta-classifier that takes fine-tuned
base model logits as input, in order to re-purpose it with STC for semi-supervised learning, we simply apply STC to
each fine-tuned base model and replace the logits normally obtained from the centroid classifier based on supervised
training with logits obtained from STC.

3 RELATED WORK

There appears to be comparatively little work on semi-supervised cross-domain few-shot learning. Ren et al. (2018)
do not consider cross-domain learning but do investigate semi-supervised learning with prototypical networks (Snell
et al., 2017) by soft-labelling unlabelled instances and adjusting the prototypes/centroids with them. As a prototypical
network is pretrained using few-shot episodes sampled from source domains—a process also called “meta-training”
in this context—these episodes are modified to contain unlabelled instances , but evaluation (also referred to as the
“meta-test” phase) is performed “in-domain”, i.e., the source and target domains are different class partitions of the
same domain. Note that soft labels are essential to facilitate backpropagation in a prototypical network’s training.

In contrast to the method proposed in Ren et al. (2018), STC is myopic to, and separated from, a feature extractor’s
pretraining and fine-tuning, and thus compatible with any feature extractor that applies nearest-centroid classification.
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The semi-supervised learning step in STC means that it can be applied with soft or hard labels—but soft labels are
generally preferable in CDFSL given high uncertainty in some unlabelled instances. Lastly, STC is designed for
cross-domain tasks, which is arguably more relevant for practical applications: Guo et al. (2020) showed that several
meta-learning approaches at the time, including prototypical networks, underperform in CDFSL settings.1

A number of semi-supervised few-shot learning methods pretrain (or “meta-train”) their feature extractors using semi-
supervised learning like in Ren et al. (2018): Transductive CNAPS (Bateni et al., 2022) uses query instances for
feature adaptation, GCT (Xu et al., 2022) converts instances into graph nodes aided by unlabelled instances, Dynamic
Distillation (Islam et al., 2021) uses augmented unlabelled instances to fit a teacher-student network pair, and Li &
Zhang (2021) create additional meta-training tasks for meta-learners with large language models using vocabulary
tokenisation and self-supervision. In contrast, in this paper, we evaluate all semi-supervised learning methods using
feature extractors pretrained in a supervised manner, thus anticipating a scenario that is likely to occur in practical
applications, and focus on the effect of semi-supervised learning in the meta-test phase. We compare STC to several
generic semi-supervised methods applied in this setting, including full self-training (Rosenberg et al., 2005), which
fits all trainable parameters to soft-labelled instances, Pi-Model (Laine & Aila, 2017), which optimises consistency
between logits of different copies of augmented unlabelled instances, Temporal Ensembling (Laine & Aila, 2017),
which optimises consistency between logits of augmented unlabelled instances and their exponential moving aver-
age, Mean Teacher (Tarvainen & Valpola, 2017), which uses augmented unlabelled instances to optimise consistency
between a student model and a teacher model given by an exponential moving average of previous students, and Sim-
CLR (Chen et al., 2020), which optimises agreement between projections of feature vectors of different copies of
augmented unlabelled instances. Among the methods that implement semi-supervised meta-training for the feature
extractor, Transductive CNAPS accommodates multiple source domains, which makes it applicable to our evaluation
scenario, so is included in our comparison.

We now briefly review the supervised CDFSL methods that we consider in our experiments with STC, namely URL (Li
et al., 2021), FLUTE (Triantafillou et al., 2021), TSA (Li et al., 2022), and FES (Wang et al., 2022):

• URL distils a universal feature extractor from a base feature extractor collection by matching the universal
model’s feature and logit outputs on each source domain’s instances to those of a base feature extractor pre-
trained on the same source domain. After distillation, the universal feature extractor is used in a CDFSL
episode by fitting a linear projection in conjunction with a nearest-centroid classifier to labelled feature vec-
tors. The universal feature extractor remains fixed.

• TSA builds on URL but fits the universal feature extractor to an episode by attaching channel-wise projections
as adaptors to its convolutional layers, as well as a linear projection to its feature output. The channel-wise
and feature projections are fitted to the labelled set in conjunction with a nearest-centroid classifier.

• FLUTE meta-trains a universal template model with a universal set of convolutional parameters and multiple
sets of batch normalisation parameters, one for each source domain, by fitting each set of batch normalisation
parameters to its respective source domain, while the universal convolutional parameters are fitted to all
source domains. A separate encoder network is trained to predict a training set’s likeness to each source
domain. Given a CDFSL episode, the encoder produces a linear combination of source domains based on
the labelled set, and this combination is used to aggregate the sets of batch normalisation parameters into a
single set as a weighted average, which is then fitted to the labelled set in conjunction with a nearest-centroid
classifier with the universal convolutional parameters fixed.

• FES fits a pretrained feature extractor collection to a CDFSL episode by training a meta-classifier using
stacking with cross-validation on the episode’s labelled training set. The labelled set is split into two partitions
using stratified cross-validation. Each feature extractor in the collection is fitted to one partition using a user-
specified fine-tuning method, with snapshots saved at different iterations, and these snapshots are used to
extract logits on the other partition. The process is performed twice with the partitions switching roles to
obtain logits from both partitions, which are used with their true labels to train a meta-classifier that weighs
the snapshots and produces meta-logits as a weighted average of base logits. For classification, the feature
extractor collection is fine-tuned on the full labelled set, their snapshots saved, and these snapshots are used
to extract logits from query instances. The logits are aggregated by the trained meta-classifier to produce its
predictions. Convolutional FES (ConFES) is a variant of FES that replaces the meta-classifier’s flat weight
kernel with a multi-level kernel hierarchy that is 1D-convolutional in the dimension of snapshot iterations.
The ConFES kernels are connected directly without non-linear activations, which allows them to be expanded

1Note that Ren et al. (2018) considered an “inference only” baseline in their experiments, where the feature extractor received
supervised pretraining, and unlabelled instances were only used to adjust centroids, which is comparable to STC. We consider STC
to be a generalisation of this baseline and show that it can be applied during meta-test to various centroid-based CDFSL methods.
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Table 1: Count and average size of unlabelled sets with fewer than 1000 instances.

dataset sub-1000 unlabelled count sub-1000 unlabelled average size
ilsvrc 2012 0 -
omniglot 600 96.7
aircraft 554 523.3
cu birds 553 487.6
dtd 600 369.1
quickdraw 0 -
fungi 258 462.6
vgg flower 564 508.9
traffic sign 0 -
mscoco 0 -
mnist 0 -
cifar10 0 -
cifar100 145 531.3
CropDisease 0 -
EuroSAT 0 -
ISIC 0 -
ChestX 0 -
Food101 9 878.7

back into an equivalent flat FES kernel while maintaining fewer parameters than FES. ConFES is the strongest
variant of FES evaluated in the experiments in Wang et al. (2022), which is why we use it in this paper.

We apply STC to these methods and evaluate them on the Meta-Dataset benchmark (Triantafillou et al., 2020). Meta-
Dataset originally contained eight source domains: ilsvrc 2012, omniglot, aircraft, cu birds, dtd, quickdraw, fungi,
and vgg flower, and two target domains: traffic sign and mscoco. Requeima et al. (2019) added three additional target
domains: mnist, cifar10, and cifar100, and Wang et al. (2022) added a further five target domains: CropDisease,
EuroSAT, ISIC, ChestX, and Food101.

4 EXPERIMENTAL SETUP

Meta-Dataset produces a supervised few-shot episode for training and evaluating a few-shot learner by first sampling
several classes from the test split of a dataset, and then sampling labelled training and test instances from these
classes (Triantafillou et al., 2020). We follow the official specifications and sample episodes each containing 5 to
50 classes, with up to 500 labelled (potentially class-imbalanced) instances in total, as well as 10 query instances
per class. To enable semi-supervised learning, we pool the remaining instances in the sampled classes that have not
been selected as training or test instances, and randomly select 1000 instances from the pool as the unlabelled set
of the episode based on the assumption that obtaining 1000 unlabelled instances per task is generally achievable in
practical CDFSL scenarios. The 1000 unlabelled instances can potentially be class-imbalanced. In some cases where
the classes are small, there may be fewer than 1000 instances in the pool, and the entire pool is used as the unlabelled
set. Like Wang et al. (2022), we cache sampled semi-supervised CDFSL episodes, and use the same cached episodes
to evaluate all methods, which avoids variance between sampling runs and facilitates paired t-tests. Paired testing
increases statistical power compared to unpaired methods by considering the difference in accuracy on a per-episode
basis. Table 1 shows the number of episodes, out of 600 sampled per dataset, that failed to obtain 1000 unlabelled
instances, and the average size of those particular episodes. Triantafillou et al. (2021) pointed out that Meta-Dataset
instances need to be shuffled during sampling in case a dataset has a particular ordering, e.g., consecutive images may
be from the same video, and implemented this as a shuffling window of size 1000 for instance streams. We noticed that
this window is not big enough for datasets like ChestX, leading to more frequent leaks of same-patient data between
training and test sets than true random sampling, which makes an algorithm’s performance approximately 3% better
on ChestX than with true random sampling. It also causes a 1% accuracy difference in mscoco. Hence, we use true
random sampling for our experiments.

We first evaluate four well-known semi-supervised learning methods for large labelled datasets from the literature:
Pi-Model, Temporal Ensembling, Mean Teacher, and SimCLR, and compare them to full self-training, by applying
all of them to URL (Li et al., 2021), i.e., a linear projection fitted to feature vectors extracted by a fixed universal
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feature extractor, used in conjunction with a nearest-centroid classifier. The universal ResNet18 feature extractor is
downloaded from the official URL repository. The linear projection in URL is treated as the optimisable parameter
set. We used the first 20 episodes of each source domain to tune the hyperparameters of these methods, which led to
a multiplier of 100 for consistency loss in Pi-Model, Temporal Ensembling, and Mean Teacher, an α of 0.5 for the
exponential moving average in Temporal Ensembling and Mean Teacher, and a multiplier of 1 for agreement loss in
SimCLR. For the consistency loss, we found that taking the mean instead of the sum of the squared differences of
the logits leads to more stable performance, presumably due to the varying number of classes in different episodes.
We also evaluate Transductive CNAPS with our cached episodes. We use the hyperparameters from (Bateni et al.,
2022), and the ResNet18 checkpoint downloaded from the official repository, reporting results using the query set as
unlabelled data for transduction. We found that including the unlabelled set as additional data degraded performance.

Following this, we thoroughly evaluate the STC method by applying it to URL (Li et al., 2021), FLUTE (Triantafillou
et al., 2021), and TSA (Li et al., 2022), as well as their counterparts in a two-level ConFES ensemble (Wang et al.,
2022). All fine-tuning processes and hyperparameters are kept consistent with the original papers, all feature extractors
are ResNet18 models downloaded from the official sources, and STC is simply applied to the feature extractors post-
fine-tuning. A single design choice was made for STC: a plain arithmetic average is used to aggregate labelled and
unlabelled centroids instead of an average weighted by the number of instances. This was based on the intuition that a
weighted average can be overwhelmed by a large number of noisy unlabelled instances and lead to instability, and a few
source domain episodes were sufficient to confirm this. Non-iterative results, obtained after the first iteration of self-
training in STC, are presented in tables and compared to non-iterative full self-training for URL, FLUTE, and TSA,
but not their ConFES counterparts, because performing non-iterative full self-training with ConFES is prohibitively
expensive computation-wise. We also show plots visualising the accuracy of STC across 20 iterations.

5 RESULTS

We first show that semi-supervised algorithms for large labelled datasets may not be well-suited for CDFSL, and
justify this claim by showing better performance of simple non-iterative full self-training when using URL as the case
study. We then present results obtained by applying non-iterative STC to a range of state-of-the-art CDFSL methods,
and show that it achieves improved performance over supervised learning and full self-training. Lastly, we present
accuracy-over-iteration plots for iterative STC.

5.1 COMMON SEMI-SUPERVISED ALGORITHM IN CDFSL

Table 2 shows common semi-supervised methods applied to URL, and compares them to the supervised approach. For
each dataset, mean accuracy of 600 few-shot episodes is reported, along with the 95% confidence interval. Results
are averaged for source and target domains separately, as only target domain tasks are truly cross-domain, and their
accuracy represents “strong generalisation” (SG) performance; while source domains represent “weak generalisation”
(WG). The best results for each dataset are marked bold.

Only non-iterative full self-training achieves greater average accuracy than supervised URL in terms of SG perfor-
mance, while Pi-Model, Temporal Ensembling, Mean Teacher, SimCLR, and iterative full self-training all perform
worse. Transductive CNAPS achieves top accuracy in several target domains but its average SG performance is not
as strong as that of the URL-based methods. Non-iterative full self-training always yielding higher accuracy than its
iterative counterpart in SG indicates that full self-training, which is commonly iterative in the literature, may exhibit
instability in CDFSL as more iterations are performed. Overall, the positive results for full self-training provide the
motivation for investigating the more efficient and, as it turns out, more robust STC algorithm, which only applies
self-training to the centroids, in the following sections.

5.2 STC CDFSL EVALUATIONS

Tables 3, 4, and 5 show non-iterative STC performance—for URL, FLUTE, and TSA respectively—compared to that
of supervised learning and non-iterative full self-training. In each of the three tables, the five columns show results
for 1) the supervised base algorithm (“base”), 2) full self-training applied to the base algorithm (“base-FST”), 3)
the supervised ConFES ensemble of the base algorithm (“ConFES”), 4) STC applied to the base algorithm (“base-
STC”), and 5) STC applied to ConFES (“ConFES-STC”). Like before, mean accuracy is reported with the 95%
confidence interval. A Wilcoxon-Holm test (Demsar, 2006) is performed to compute mean WG and SG ranks using
individual episode accuracy values. Paired t-tests, which are generally more sensitive than 95% confidence intervals,
are performed to compute the p value between the methods using their accuracy values in all individual episodes. A
p smaller than 0.05 is deemed to indicate a statistically significant difference. Among the columns, “base” and “base-
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Table 2: Pi-Model, Temporal ensembling, Mean Teacher, SimCLR, non-iterative (1 iteration) and iterative (20 iter-
ations) full self-training applied to URL with 1000 unlabelled instances, compared to supervised URL. Transductive
CNAPS results are provided in the rightmost column.

URL Sup Pi TE MT SCLR ST-1 STC-20 T-CNAPS
ilsvrc 2012 56.6±1.1 56.5±1.1 56.6±1.1 56.6±1.1 56.4±1.1 56.6±1.1 56.6±1.1 55.8±1.1
omniglot 94.5±0.4 94.5±0.4 94.5±0.4 94.5±0.4 94.4±0.4 95.1±0.4 95.1±0.3 93.4±0.5
aircraft 87.7±0.5 87.5±0.5 87.5±0.5 87.6±0.5 87.3±0.5 87.8±0.5 88.1±0.4 82.1±0.7
cu birds 80.7±0.7 80.9±0.7 80.9±0.7 80.8±0.7 80.6±0.7 81.2±0.7 81.3±0.6 77.7±0.8
dtd 76.1±0.6 75.8±0.7 75.8±0.6 75.9±0.6 75.6±0.6 75.8±0.6 76.0±0.6 68.3±0.7
quickdraw 82.0±0.6 81.9±0.6 82.0±0.6 82.0±0.6 81.9±0.6 82.4±0.6 82.7±0.6 78.2±0.7
fungi 69.5±1.1 69.2±1.0 69.4±1.0 69.3±1.0 69.5±1.1 70.7±1.0 71.2±1.0 50.0±1.3
vgg flower 91.4±0.5 91.4±0.5 91.4±0.5 91.4±0.5 91.3±0.5 91.8±0.5 92.1±0.4 91.3±0.5
mean WG acc 79.8 79.7 79.8 79.8 79.6 80.2 80.4 74.6
traffic sign 62.6±1.2 62.6±1.2 62.0±1.1 61.3±1.1 62.0±1.2 62.3±1.2 61.5±1.2 57.3±1.1
mscoco 52.7±1.0 52.3±1.0 52.8±1.0 52.7±1.0 53.0±1.0 53.9±1.0 53.5±0.9 48.5±1.0
mnist 94.6±0.4 94.5±0.5 94.0±0.4 93.8±0.5 94.2±0.4 94.7±0.4 92.2±1.0 95.3±0.3
cifar10 71.4±0.8 71.0±0.8 71.3±0.8 71.1±0.8 71.6±0.8 71.7±0.8 71.3±0.8 72.1±0.7
cifar100 62.6±1.1 62.4±1.1 62.6±1.1 62.4±1.1 62.5±1.1 63.0±1.1 62.6±1.1 61.3±1.1
CropDisease 80.5±0.8 80.8±0.8 80.9±0.8 78.8±0.8 80.0±0.8 81.0±0.8 80.5±0.8 79.4±0.8
EuroSAT 86.5±0.5 86.7±0.5 85.3±0.5 85.8±0.5 86.4±0.5 86.6±0.5 85.8±0.6 78.9±0.6
ISIC 45.5±0.8 45.3±0.8 44.1±0.8 44.0±0.8 45.6±0.8 46.9±0.9 46.8±0.9 44.1±0.8
ChestX 26.6±0.6 26.5±0.6 26.4±0.5 26.6±0.6 26.5±0.6 26.8±0.6 26.8±0.6 27.1±0.6
Food101 51.9±1.1 51.4±1.0 52.0±1.1 51.6±1.1 52.2±1.1 52.1±1.1 51.8±1.1 51.2±1.1
mean SG acc 63.5 63.4 63.1 62.8 63.4 63.9 63.3 61.5

Table 3: Comparison of STC, supervised learning, and non-iterative full self-training using URL.

URL base base-FST ConFES base-STC ConFES-STC
ilsvrc 2012 56.6±1.1 56.6±1.1 56.0±1.2 56.7±1.1 55.9±1.2 −
omniglot 94.5±0.4 • 95.1±0.4 • 93.9±0.6 • 95.1±0.4 94.6±0.5 −
aircraft 87.7±0.5 • 87.8±0.5 87.4±0.7 • 87.9±0.5 87.7±0.6
cu birds 80.7±0.7 • 81.2±0.7 • 79.0±0.8 81.3±0.7 79.2±0.8 −
dtd 76.1±0.6 ◦ 75.8±0.6 74.7±0.8 ◦ 75.8±0.6 74.3±0.8 −
quickdraw 82.0±0.6 • 82.4±0.6 • 83.1±0.6 • 82.6±0.6 83.5±0.6 +
fungi 69.5±1.1 • 70.7±1.0 • 69.9±1.1 • 71.0±1.0 71.2±1.1
vgg flower 91.4±0.5 • 91.8±0.5 • 90.6±0.7 91.9±0.4 90.7±0.7 −
mean WG acc 79.8 80.2 79.3 80.3 79.6
mean WG rank 3.19 2.91 3.09 2.85 2.95
traffic sign 62.6±1.2 62.3±1.2 • 66.1±1.2 • 62.6±1.2 66.4±1.2 +
mscoco 52.7±1.0 • 53.9±1.0 52.7±1.0 • 53.8±1.0 53.7±1.0
mnist 94.6±0.4 • 94.7±0.4 • 96.5±0.5 • 95.1±0.4 96.8±0.5 +
cifar10 71.4±0.8 • 71.7±0.8 • 71.6±0.9 • 72.0±0.7 72.1±0.9
cifar100 62.6±1.1 • 63.0±1.1 62.9±1.1 • 63.0±1.1 63.0±1.1
CropDisease 80.5±0.8 • 81.0±0.8 • 87.2±0.7 • 81.4±0.8 87.7±0.7 +
EuroSAT 86.6±0.5 • 86.6±0.5 • 86.0±0.6 • 86.9±0.5 86.3±0.6 −
ISIC 45.5±0.8 • 46.9±0.9 48.2±0.9 • 46.7±0.9 49.4±1.0 +
ChestX 26.5±0.6 26.8±0.6 26.7±0.6 26.8±0.6 26.8±0.6
Food101 51.9±1.1 • 52.1±1.1 • 54.0±1.1 • 52.3±1.1 54.2±1.1 +
mean SG acc 63.5 63.9 65.2 64.1 65.6
mean SG rank 3.52 3.26 2.69 3.12 2.41

FST” are compared to “base-STC”, while “ConFES” is compared to “ConFES-STC”. If p < 0.05, • indicates an
algorithm’s STC counterpart has better performance, and ◦ indicates the algorithm performs statistically significantly
better than its STC counterpart. In addition, “base-STC” is compared to “ConFES-STC”. If p < 0.05, + indicates
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Table 4: Comparison of STC, supervised learning, and non-iterative full self-training using FLUTE.

FLUTE base base-FST ConFES base-STC ConFES-STC
ilsvrc 2012 50.2±1.1 ◦ 50.8±1.1 ◦ 54.1±1.2 ◦ 49.6±1.1 53.9±1.1 +
omniglot 93.9±0.5 • 93.7±0.5 • 94.9±0.5 • 95.0±0.4 95.9±0.4 +
aircraft 86.8±0.6 • 86.0±0.6 • 87.0±0.9 • 87.1±0.5 87.5±0.6 +
cu birds 79.3±0.8 • 78.5±0.8 • 78.5±0.9 79.8±0.7 78.5±0.9 −
dtd 68.8±0.8 ◦ 68.0±0.7 • 74.3±0.9 68.5±0.7 74.1±0.8 +
quickdraw 79.1±0.7 78.5±0.7 • 82.8±0.6 79.0±0.7 82.8±0.6 +
fungi 59.4±1.2 • 60.5±1.2 • 69.2±1.1 • 61.8±1.2 70.6±1.0 +
vgg flower 91.0±0.6 • 90.9±0.5 • 92.5±0.6 • 91.2±0.5 92.7±0.6 +
mean WG acc 76.1 75.9 79.2 76.5 79.5
mean WG rank 3.45 3.75 2.26 3.33 2.22
traffic sign 57.9±1.1 ◦ 54.1±1.1 • 71.8±1.1 ◦ 55.9±1.1 71.6±1.1 +
mscoco 48.2±1.0 48.6±1.0 ◦ 51.9±1.1 • 48.3±1.0 52.8±1.0 +
mnist 95.7±0.4 • 95.0±0.4 • 97.6±0.4 • 96.2±0.3 97.9±0.3 +
cifar10 78.6±0.7 • 79.0±0.7 75.2±0.9 • 79.0±0.7 75.4±0.9 −
cifar100 67.5±1.0 • 67.4±1.0 • 66.9±1.1 ◦ 67.7±1.0 66.6±1.0 −
CropDisease 78.0±0.8 • 78.6±0.8 ◦ 86.2±0.7 • 78.2±0.8 86.7±0.6 +
EuroSAT 81.6±0.6 ◦ 79.9±0.6 • 88.1±0.6 80.8±0.6 88.1±0.6 +
ISIC 46.1±1.0 • 48.7±0.9 • 48.7±1.0 • 49.0±0.9 51.3±0.9 +
ChestX 26.3±0.5 26.4±0.5 ◦ 27.3±0.6 • 26.1±0.5 27.8±0.6 +
Food101 45.7±1.1 ◦ 46.7±1.1 ◦ 51.9±1.1 45.5±1.1 51.8±1.1 +
mean SG acc 62.6 62.4 66.6 62.7 67.0
mean SG rank 3.46 3.55 2.33 3.44 2.22

Table 5: Comparison of STC, supervised learning, and non-iterative full self-training using TSA.

TSA base base-FST ConFES base-STC ConFES-STC
ilsvrc 2012 56.8±1.1 • 56.8±1.1 • 56.3±1.2 ◦ 57.2±1.1 56.0±1.2 −
omniglot 95.0±0.4 • 95.3±0.4 • 93.4±0.7 • 95.7±0.3 94.5±0.6 −
aircraft 88.4±0.5 • 88.6±0.5 • 87.8±0.8 • 88.8±0.5 88.3±0.6 −
cu birds 81.5±0.7 • 81.8±0.7 • 79.8±0.9 82.2±0.7 79.9±0.8 −
dtd 77.1±0.7 76.8±0.7 76.3±0.8 ◦ 77.0±0.6 75.9±0.8 −
quickdraw 82.0±0.6 • 82.4±0.6 • 83.4±0.6 • 82.7±0.6 83.8±0.6 +
fungi 68.3±1.1 • 69.0±1.0 • 69.8±1.1 • 70.0±1.0 70.7±1.1 +
vgg flower 92.1±0.5 • 92.3±0.5 • 91.9±0.7 • 92.8±0.5 92.2±0.6 −
mean WG acc 80.2 80.4 79.8 80.8 80.2
mean WG rank 3.29 3.03 3.01 2.74 2.93
traffic sign 82.8±0.9 • 84.0±0.9 ◦ 85.7±1.0 • 83.8±0.9 86.6±1.0 +
mscoco 53.8±1.1 • 53.9±1.1 • 54.5±1.0 • 54.7±1.0 55.8±1.0 +
mnist 96.6±0.4 • 96.6±0.4 • 97.1±0.5 • 97.0±0.3 97.4±0.5 +
cifar10 79.9±0.8 • 80.2±0.8 • 78.3±0.9 • 80.4±0.7 78.9±0.9 −
cifar100 70.3±1.0 • 70.4±1.0 • 70.7±1.1 • 70.9±1.0 71.2±1.0 +
CropDisease 84.4±0.8 • 85.0±0.8 • 88.2±0.7 • 85.6±0.7 89.0±0.7 +
EuroSAT 89.6±0.5 • 90.0±0.5 89.2±0.6 • 89.9±0.5 89.4±0.6 −
ISIC 48.4±0.9 • 48.0±0.9 • 48.9±1.0 • 49.5±0.9 50.6±1.0 +
ChestX 27.2±0.6 • 27.6±0.6 27.1±0.6 • 27.6±0.6 28.2±0.7 +
Food101 53.4±1.2 • 53.3±1.2 • 55.2±1.1 • 53.8±1.2 55.5±1.1 +
mean SG acc 68.6 68.9 69.5 69.3 70.3
mean SG rank 3.55 3.25 2.86 2.97 2.37

that the semi-supervised ConFES ensemble has better performance, while − indicates better performance for the
semi-supervised base algorithm.

The results show that for URL and TSA, STC consistently exhibits greater estimated accuracy than supervised learning
and full self-training in SG. For FLUTE, STC has better average SG performance but its relative performance varies
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Figure 2: Iterative STC accuracy (relative to supervised) in 20 iterations given 10, 100, or 1000 unlabelled instances.
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among datasets. ConFES with STC also consistently exhibits greater estimated SG accuracy than supervised ConFES
for URL and TSA, as well as greater average SG accuracy for FLUTE. Finally, considering SG and analogously to
the results for purely supervised learning in Wang et al. (2022), STC in a ConFES ensemble exhibits greater estimated
accuracy than STC in the base algorithm counterpart. It is worth re-iterating that STC achieves greater estimated
accuracy at minimal added computational cost: it only requires unlabelled feature vectors and their soft labels from
forward propagation, while full self-training requires backpropagation for re-fitting after soft-labelling.

5.3 ITERATIVE STC

Figure 2 shows how iterative STC SG performance changes over 20 iterations. Values depicted are differences be-
tween STC and supervised learning. Values greater than 0 indicate that STC achieves greater estimated accuracy than
supervised learning, and values less than 0 indicate the opposite. Each row of figures represents a CDFSL method
(a base algorithm or its ConFES counterpart), and each column represents a different unlabelled set size (10, 100, or
1000). The increased accuracy of non-iterative STC with 1000 unlabelled instances vs. supervised learning, discussed
above and reported in Tables 3, 4, and 5, is reflected in the sharp change from iteration 0 (supervised accuracy) to
iteration 1 (non-iterative STC accuracy) in the rightmost column of the figure.

With 1000 unlabelled instances, STC accuracy generally does not change significantly from iteration 1 to 20, which
indicates that 1 iteration (non-iterative STC) is sufficient to achieve optimal performance, although there are small
improvements for some target domains when applying STC iteratively using TSA. Clearly, STC is more stable than
full self-training in CDFSL, as Table 2 shows that more iterations lead to worse SG performance for full self-training
with the same 1000 unlabelled instances. Comparing the three columns in Figure 2, STC performs better with more
unlabelled instances, as 1000 unlabelled instances lead to better performance in general, and especially consistently
with TSA and its ConFES variant, while 10 unlabelled instances mostly lead to lower accuracy, with the worst drop
being −0.06. (We cut off the display for better visualisation of a more densely-populated range.) The ISIC dataset
appears to benefit most from STC in most settings, whereas traffic sign reacts negatively to STC in multiple cases.
STC generally shows a stronger tendency to decay over iterations when applied on fewer unlabelled instances. For
datasets like mnist and traffic sign, decay can be observed using FLUTE or URL even with 1000 unlabelled instances.

In general, STC performance tends to either remain stable or decay after the first iteration, so non-iterative STC is the
safer option over iterative STC. However, iterative STC is stable with TSA and 1000 unlabelled instances, and small
performance gains can be observed over the iterations on some target domains. As the results in Tables 3, 4, and 5
show that TSA achieves greater estimated accuracy than FLUTE and URL as a CDFSL base algorithm, whether used
with ConFES or not, iterative STC and TSA (with ConFES) should be used for the best possible CDFSL results in this
setting. Even when using 100 unlabelled images per episode, most datasets still exhibit improved performance over
supervised learning when applying ConFES-TSA.

6 FUTURE WORK

This paper focuses on showing the benefits obtained with simple centroid-based self-training. It may be possible to
modify STC in certain ways to make better use of an iterative process, in order to achieve consistent performance gains
over multiple iterations and ultimately better semi-supervised CDFSL performance. Another potential modification
would be to weigh the unlabelled centroids less when averaging with the labelled centroids if the unlabelled set is
small, which may reduce STC performance loss with very small unlabelled sets. Additionally, one may investigate
whether STC can exploit information in unlabelled instances belonging to classes other than those in the labelled
training set: in practice, out-of-class instances may be present in the unlabelled set as either noise or additional data.

7 CONCLUSION

We show semi-supervised learning algorithms for large labelled datasets may be unsuitable for CDFSL as they
frequently exhibit lower estimated accuracy than purely supervised learning. We propose STC, an efficient semi-
supervised learning method that is more robust against data scarcity and domain shift and is compatible with a range
of state-of-the-art CDFSL methods utilising nearest-centroid classification, including URL, FLUTE, TSA, and Con-
FES. We evaluate STC extensively and show that it generally improves these CDFSL methods’ average performance
on the Meta-Dataset benchmark when applied with a moderate number of 1,000 unlabelled instances. STC requires
no additional backpropagation beyond applying supervised learning, which means it is computationally efficient.
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