Multinomial Naive Bayes for Text
Categorization Revisited

Ashraf M. Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes

Department of Computer Science
University of Waikato
Hamilton, New Zealand
{amk14, eibe, bernhard, geoff}@cs.waikato.ac.nz

Abstract. This paper presents empirical results for several versions of
the multinomial naive Bayes classifier on four text categorization prob-
lems, and a way of improving it using locally weighted learning. More
specifically, it compares standard multinomial naive Bayes to the recently
proposed transformed weight-normalized complement naive Bayes clas-
sifier (TWCNB) [1], and shows that some of the modifications included
in TWCNB may not be necessary to achieve optimum performance on
some datasets. However, it does show that TFIDF conversion and doc-
ument length normalization are important. It also shows that support
vector machines can, in fact, sometimes very significantly outperform
both methods. Finally, it shows how the performance of multinomial
naive Bayes can be improved using locally weighted learning. However,
the overall conclusion of our paper is that support vector machines are
still the method of choice if the aim is to maximize accuracy.

1 Introduction

Automatic text classification or text categorization, a subtopic in machine learn-
ing, is becoming increasingly important with the ever-growing amount of textual
information stored in electronic form. It is a supervised learning technique, in
which every new document is classified by assigning one or more class labels
from a fixed set of pre-defined classes. For this purpose a learning algorithm is
employed that is trained with correctly labeled training documents. The doc-
uments are generally represented using a “bag-of-words” approach, where the
order of the words is ignored and the individual words present in the document
constitute its features. The features present in all the documents make up the
feature space. Since the number of words can be very large, the resulting learn-
ing problems are generally characterized by the very high dimensionality of the
feature space, with thousands of features. Hence the learning algorithm must be
able to cope with such high-dimensional problems, both in terms of classification
performance and computational speed.

Naive Bayes is a learning algorithm that is frequently employed to tackle
text classification problems. It is computationally very efficient and easy to im-
plement. There are two event models that are commonly used: the multivariate

Bernoulli event model and the multinomial event model. The multinomial event
model—frequently referred to as multinomial naive Bayes or MNB for short—
generally outperforms the multivariate one [2], and has also been found to com-
pare favorably with more specialized event models [3]. However, it is still inferior
to the state-of-the-art support vector machine classifiers in terms of classification
accuracy when applied to text categorization problems [4-7, 1]. However, recently
anew algorithm has been proposed, called “transformed weight-normalized com-
plement naive Bayes” (TWCNB), that is easy to implement, has good running
time and is claimed to be nearly as accurate as support vector machines [1].
TWCNB is a modified version of MNB that is derived by applying a series of
transformations relating to data and MNB itself.

In this paper we revisit the transformation steps leading from MNB to
TWCNB. We show that using TFIDF scores instead of raw word frequencies
indeed improves the performance of MNB, and that the same holds for docu-
ment length normalization. However, our results also show that, depending on
the particular text categorization dataset, it may not be necessary to perform the
other transformation steps implemented in TWCNB in order to achieve optimum
performance. Finally, we show how multinomial naive Bayes can be improved
using locally weighted learning.

The paper is structured as follows. In Section 2 we describe our experimental
setup. This includes the datasets we have used, how and what kind of features
we extracted from them, and the transformations we apply to those features. We
also describe the MNB and TWCNB classifiers. In Section 3 we present empiri-
cal results comparing standard MNB to TWCNB and support vector machines.
Then, in Section 4, we show how MNB can be improved by transforming the
input, and compare it again to the other learning algorithms. We also present
results for locally weighted learning applied in conjunction with MNB. We sum-
marize our findings in Section 5.

2 Experimental Setup

In this section we describe the datasets we used in our experiments and how we
generated features from them. We also discuss the MNB and TWCNB learning
algorithms.

2.1 Datasets

For our experiments we have used the 20 newsgroups, industry sector, WebKB,
and Reuters-21578 datasets, which are frequently used in the text classification
literature. The first three of these are single-label datasets whereas the Reuters-
21578 is a multi-label dataset (i.e. with multiple class labels per document).

In the 20 newsgroups data the task is to classify newsgroup messages into one
of 20 different categories. The version of the 20 newsgroups data that we have
used in our experiments is the one that is referred to as 20news-18828 (avail-
able from http://people.csail.mit.edu/people/jrennie/20Newsgroups/).

It has all the fields removed from the news messages’ header apart from the
“from:” and “subject:” fields. All the cross-posted duplicate documents have
also been removed, resulting in only 18,828 documents compared with 19,997 in
the original 20 newsgroups data.

The industry sector data contains a collection of corporate WWW pages,
divided into categories based on the type of company. There are 105 classes and
9,637 documents.

The WebKB data also has a collection of WWW pages and is available from
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.
The WWW pages are from four computer science departments and split into
several categories. Like [2] we used only four of the seven classes in the original
data: “student”, “faculty”, “course”, and “project”, resulting in 4199 documents.

The Reuters-21578 data is a collection of newswire articles available from
http://kdd.ics.uci.edu/. We followed the same approach as [1], using the
“ModApte” split into training and test data and removing all classes with no
test or training document. This left us with 7770 training and 3019 test docu-
ments in 90 classes. Note that a single newswire article may pertain to several
categories (i.e. this is a multi-label problem). The standard approach to tack-
ling this problem is to build a binary classifier for each category and that is the
method we employed.

2.2 Feature Generation

In the bag-of-words approach each document is represented as a set of words
and the number of times each word occurs in the document. In other words,
each document has the words as its attributes or features and each attribute
can take on an integer value counting the number of times the particular word
occurs in the document. The set of words (also called “dictionary”) is generated
from all the documents present in a dataset. For a particular dataset, we first
determine its dictionary by reading all the documents present in it. Then, for
each document, we record the number of times each of the words in the dictionary
occurs in it including those that did not occur by giving them a value zero. Note
that we treated the Reuters-21578 dataset differently than the other datasets in
that we determined the dictionary only from the training documents. We formed
words by considering only contiguous alphabetic sequences. We also ignored
words that were in our list of stopwords for all the datasets apart from WebKB.

For many of the experimental results presented in this paper we converted
the word counts of a document using the TFIDF transformation before apply-
ing the learning algorithms. The TFIDF transformation takes the original word
frequency f and transforms it [1]. Assuming that df is the number of documents
containing the word under consideration, and D the total number documents,
then the transformed attribute value becomes:

TFIDF (word) = log(f +1) x log(%).

We also considered normalizing the resulting word vectors to have the same
length [1]. We evaluated two options: normalizing to length one and normalizing
to the average vector length observed in the dataset. We found that performance
can sometimes improve substantially using the latter approach. For conciseness,
we shall refer to these conversions as TFIDF and together with normalization
as TFIDFN.

2.3 Multinomial Naive Bayes

Let us now discuss how multinomial naive Bayes computes class probabilities for
a given document. Let the set of classes be denoted by C. Let N be the size of
our vocabulary. Then MNB assigns a test document ¢; to the class that has the
highest probability Pr(c|¢;), which, using Bayes’ rule, is given by:

Pr(c)Pr(t;i|c)
Pr(ti) ’

The class prior Pr(c) can be estimated by dividing the number of documents
belonging to class ¢ by the total number of documents. Pr(t;|c) is the probability
of obtaining a document like ¢; in class ¢ and is calculated as:

r(wny|C i
Pr(uf) = (3 ot [T ©

Pr(c|t;) = ceC (1)

where fp; is the count of word n in our test document ¢; and Pr(wp|c) the
probability of word n given class c¢. The latter probability is estimated from the
training documents as:

1+Fnc

Pr(wnle) = ———x"—,
" N+YN R,

3)

where F,. is the count of word z in all the training documents belonging to class
¢, and the Laplace estimator is used to prime each word’s count with one to avoid
the zero-frequency problem [2]. The normalization factor Pr(¢;) in Equation 1
can be computed using

€|

Pr(t;) = Y Pr(k)Pr(t;|k). (4)
k=1

Note that that the computationally expensive terms (3, fni)! and [],, fni!
in Equation 2 can be deleted without any change in the results, because neither
depends on the class ¢, and Equation 2 can be written as:

Pr(t;|c) = a H Pr(wy|c), (5)

where « is a constant that drops out because of the normalization step.

2.4 Transformed Weight-Normalized Complement Naive Bayes

As mentioned in the introduction, TWCNB [1] has been built upon MNB and is
very similar to it. One difference is that the TFIDFN transformation is part of
the definition of the algorithm. But the key difference is that TWCNB estimates
the parameters of class ¢ by using data from all classes apart from c¢ (i.e. it uses
the “complement”). To this end Equation 3 is called “word weight” rather than
probability and redefined in the following way:

1+ 309 B

), k#cAkeC (6)
N+Z‘C‘ ;V:lek

Wne = lo.g(

The word weights are then normalized for each of the classes so that their ab-
solute values sum to one and the classification for test document ¢; is based
on

class(t;) = argmax, log(P(c) — 3 (faiwne)], (7)

n

which, because the value of log(Pr(c)) is usually negligible in the total, can be
simplified to

class(t;) = argmin, [Z (friwne)]- (8)

The parallels between MNB and TWCNB can easily be observed if we look at
the classification rule for MNB given in [1]:

1+ Fnc
class(t;) = argmax_[log(Pr(c)) + fmlOg)] 9)

This rule is essentially the same as Equation 1 if we drop the denominator, take
the log and use Equation 5 instead of Equation 2.

Note that we found TWCNB without normalization of the word weights
(which is referred to as “TCNB” in the rest of this paper) to be very similar
in performance compared to TWCNB. This will be discussed in more detail in
Section 3.

As mentioned earlier, multi-label datasets like Reuters-21578 are usually han-
dled differently than single-label datasets. For multi-label datasets, a classifier’s
performance is often measured using the precision-recall break-even point, for
which we need some kind of document score representative of how likely a doc-
ument is to belong to a class. Normally, a different classifier is trained for every
class: it learns to predict whether a document is in the class (positive class) or
not (negative class). This approach is also known as “one-vs-rest”. Although
this method can be used with MNB, it does not work when used with TWCNB.
Unlike MNB, where Equation 2 can be used directly in conjunction with the
one-vs-rest method, TWCNB’s scores (Equation 7 and Equation 8) cannot be
used directly because they are not comparable across different test documents

due to the missing normalization step. Hence a different method is used in [1], as
described in the appendix of that paper. This method can be called “all-vs-rest”.
Based on the all-vs-rest approach, TWCNB’s score is calculated as follows [8]:

docScore(t;) = Z(fm"wnA — fniwnR). (10)

n

In the above, w, 4 is the word weight with data from all the classes, and wy g is
the word weight obtained from the “rest” (i.e. all documents not pertaining to
the class that we are computing the score for).

3 Evaluating Standard Multinomial Naive Bayes

In this section we present experimental results comparing MNB with TCNB,
TWCNB and linear support vector machines. For learning the support vector
machines we used the sequential minimal optimization (SMO) algorithm [9] as
implemented in the Weka machine learning workbench [10], using pairwise clas-
sification to tackle multi-class problems. Moreover, in the case of the Reuters’
data, we fit logistic models to SMO’s output based on maximum likelihood [11]
because this improved performance significantly. The complexity parameter C
was set to 10.

For each of the three single-label datasets mentioned above we present re-
sults with a full vocabulary and with a reduced vocabulary of 10,000 words. We
pruned the vocabulary by selecting words with the highest information gain.
The WebKB and industry sector datasets are collections of web pages, so we
also present results obtained by removing HTML tags for these collections. For
WebKB we used the top 5,000 words with the highest information gain after
removing the tags, and did not remove stopwords. We did so to achieve high
accuracy as MNB is reported to have the highest accuracy at 5,000 words [2].
As for TCNB and TWCNB, we also converted the raw word counts for SMO
using the TFIDFN conversion, normalizing the document vectors to length one.

To estimate accuracy, we performed 5 runs of hold-out estimation for the
20 newsgroups and industry sector datasets, randomly selecting 80% training
and 20% test documents for the 20 newsgroups data, and 50% training and 50%
test documents for the industry sector data. For WebKB we performed 10 runs
with 70% training and 30% test documents. The results reported are average
classification accuracy over all runs. The Reuters-21578 results, however, are
reported as precision-recall break-even points. The macro result is the average
of the break-even points for all 90 individual Reuters’ categories whereas the
micro average is the weighted average of the break-even points, with the weight
for each class being equal to the number of positive class documents in the test
set.

The way we calculated the break-even point for the various classifiers in our
experiments is similar to the way it is calculated in the “Bow” toolkit (available
from http://www-2.cs.cmu.edu/ mccallum/bow/). First, we obtain the docu-
ment score for every test document from our classifier and sort these scores in

Table 1. Comparison of MNB with TCNB, TWCNB and SMO

Dataset MNB|TCNB|TWCNB| SMO

with

TFIDFN

20news18828-113232words 88.36| 91.03 | 90.91 93.52
20news18828-10000words 86.10| 87.98 | 88.47 92.13
WebKB-NoStoplist-54948words 80.05| 79.68 | 78.46 91.31
WebKB-NoHTMLTagsOrStoplist-5000words|85.98 | 87.62 | 85.46 93.24
WebKB-10000words 81.30| 85.23 | 82.12 92.76
IndustrySector-95790words 54.221 92.37 | 92.36 91.65
IndustrySector-NoHTMLTags-64986words |64.00| 88.32 | 88.28 88.60
IndustrySector-10000words 63.37| 87.25 | 87.33 89.74
Reuters-21578 (Macro) 34.40| 69.62 | 69.46 70.16
Reuters-21578 (Micro) 78.49| 86.31 | 85.78 88.47

descending order. Then, starting from the top of our sorted list, we calculate
the precision (i.e. TP/(TP + FP)) and recall (i.e. TP/(TP + FN)) for each
possible threshold in this list (where the threshold determines when something
is classified as positive). The break-even point is defined as the point where pre-
cision and recall are equal. However, quite often there is no threshold where they
are exactly equal. Hence we look for the threshold where the difference between
precision and recall is minimum and take their average as the break-even point.
If there are several candidates with minimum difference then we use the one
which gives the greatest average.

We can see from the results in Table 1 that MNB almost always performs
worse than any of the other learning algorithms. This is consistent with previ-
ously published results [1]. However, as we shall show in the next section, its
performance can be improved considerably by transforming the input.

Our results for the various classifiers are comparable to those that have been
published before on these datasets. However, we cannot compare our results
for TCNB because it was not evaluated separately from TWCNB in [1]. It is
quite evident from Table 1 that the results for TCNB are mostly better than for
TWCNB. Hence it appears that word-weight normalization is not necessary to
obtain good performance using complement naive Bayes.

4 Improving Multinomial Naive Bayes

In this section we investigate a few ways to increase the accuracy of MNB. Note
that these methods have been suggested before in [1] but not evaluated for simple
MNB (just for T(W)CNB). As we mentioned earlier, we found that the TFIDF
conversion to the data greatly improves the results for MNB. We first present
the effect of this conversion on MNB.

The results are shown in Table 2. TFIDF refers to the case where we applied
the TFIDF transformation and did not normalize the length of the resulting

Table 2. Effect of the transformed input on MNB

Dataset MNB| MNB MNB MNB

with with with

TFIDF|TFIDFN, | TFIDFN

20news18828-113232words 88.36| 91.40 92.56 89.69
20news18828-10000words 86.10| 89.96 90.93 89.00
WebKB-NoStoplist-54948words 80.05| 79.89 80.16 75.14
WebKB-NoHTMLTagsOrStoplist-5000words| 85.98 | 88.05 88.30 84.98
WebKB-10000words 81.30| 87.47 | 87.71 79.86
IndustrySector-95790words 54.22| 85.69 88.43 84.09
IndustrySector-NoHTMLTags-64986words |64.00| 75.82 81.40 79.69
IndustrySector-10000words 63.37| 83.22 85.57 81.77
Reuters-21578 (Macro) 34.40| 45.17 | 42.12 20.08
Reuters-21578 (Micro) 78.49| 78.82 76.52 70.94

feature vectors. TFIDFN, refers to the case where we have normalized the fea-
ture vector for each document to the average vector length observed in the data,
rather than one. TFIDFN refers to the case where we normalize to length one
(i.e. the normalization used in [1]).

The results show that the TFIDF transformation dramatically improves the
performance of MNB in almost all cases. TFIDFN, leads to a further improve-
ment, which is especially significant on the industry sector data (only on the
Reuters data there is a small drop compared to TFIDF). TFIDFN, on the other
hand, is not very beneficial compared to simple TFIDF. Hence it appears that
it is very important to normalize to an appropriate vector length when using
normalization in conjunction with MNB. A potential explanation for this is that
the Laplace correction used in MNB may start to dominate the probability cal-
culation if the transformed word counts become too small (as they do when
the normalized vector length is set to one). A similar effect may be achieved by
changing the constant used in the Laplace correction from one to a much smaller
value. However, we have not experimented with this option.

Table 3 below shows how the improved MNB with TFIDFN, compares with
TCNB and SMO. Looking at the results we can see that the improved MNB out-
performs TCNB in all cases on the 20 newsgroups and WebKB datasets, whereas
TCNB outperform MNB on the industry sector and Reuters-21578 datasets.
SMO is still superior to all other learning schemes.

The results show that it is not always beneficial to apply T(W)CNB instead of
standard MNB. Applying the TFIDF transformation with an appropriate vector
length normalization to MNB can lead to better results. Based on our results
it is not clear when T(W)CNB produces better results for a given collection
of documents. The performance may be related to the skewness of the class
distribution because the industry sector data has a skewed class distribution.
However, the class distribution of WebKB is also skewed, so there is no clear
evidence for this.

Table 3. Comparison of improved MNB with TCNB, and SMO

Dataset MNB |TCNB| SMO

with with

TFIDFN, TFIDFN

20news18828-113232words 92.56 |91.03 | 93.52
20news18828-10000words 90.93 |87.98 | 92.13
WebKB-NoStoplist-54948words 80.16 |79.68| 91.31
WebKB-NoHTMLTagsOrStoplist-5000words| 88.30 | 87.62 | 93.24
WebKB-10000words 87.71 |85.23 | 92.76
IndustrySector-95790words 88.43 |92.37 | 91.65
IndustrySector-NoHTMLTags-64986words 81.40 |88.32| 88.60
IndustrySector-10000words 85.57 | 87.25 | 89.74
Reuters-21578 (Macro) 42.12 | 69.62 | 70.16
Reuters-21578 (Micro) 76.52 | 86.31 | 88.47

Note that the good performance of T(W)CNB on the Reuters data can be
attributed to the all-vs-rest method discussed in Section 2.4, which is used to ob-
tain the confidence scores for computing the break-even points. In fact, applying
the all-vs-rest method to standard MNB results in a classifier that is equivalent
to TCNB+all-vs-rest, and produces identical results on the Reuters data. Hence
the industry sector data is really the only dataset where T(W)CNB improves on
standard MNB.

4.1 Using locally weighted learning

In this section we discuss how MNB can be improved further using locally
weighted learning [12]. Our method is essentially the same as what has been
applied earlier to the multivariate version of naive Bayes [13], and found to per-
form very well on other classification problems. The idea is very simple. For
each test document we train an MNB classifier only on a subset of the training
documents, namely those ones that are in the test document’s neighborhood,
and weight those documents according to their distance to the test instance.
Then, instead of using the feature values of a training instance directly in the
MNB formulae (i.e. raw word counts or TFIDF values), we multiply them by
the weight of the corresponding training instance. The number of documents in
the subset (also called the “neighborhood size”) is determined through a user-
specified parameter k. Each training document in the subset is assigned a weight
which is inversely proportional to its distance from the test document.

In our setting we calculate the Euclidean distance of all the training docu-
ments from the test document, and divide all the distances with the distance of
the kth nearest neighbor. Then the weight of each training document is com-
puted based on the following linear weighting function:

1—d;ifd; <=1

Table 4. Applying LWL to MNB with TFIDFN,

Dataset MNB |LWL+|LWL+| LWL+
MNB | MNB | MNB
with | with | with
k=50 |k=500|k=5000

20news18828-113232words 92.56| 93.15 | 93.65 | 90.87

20news18828-10000words 90.93| 93.29 | 92.96 | 89.93

WebKB-NoStoplist-54948words 80.16| 77.77 | 78.10 | 75.23

WebKB-NoHTMLTagsOrStoplist-5000words|88.30 | 87.28 | 88.91 | 88.63

‘WebKB-10000words 87.71| 83.96 | 86.37 | 87.01

IndustrySector-95790words 88.43| 89.50 | 89.53 | 89.65

IndustrySector-NoHTMLTags-64986words |81.40| 85.32 | 84.03 | 83.25

IndustrySector-10000words 85.57| 86.85 | 86.29 | 86.58

Reuters-21578 (Macro) 42.12| 56.29 | 48.18 | 50.29

Reuters-21578 (Micro) 76.52| 84.31 | 80.30 | 75.14

where d; is the normalized distance of training document 4.

This gives a weight zero to all the documents that are further away than the
kth nearest one from the test document. Hence those documents are effectively
discarded. Once the weights are computed based on this formula, we normalize
them so that their sum is equal to the number of training documents in the
neighborhood, as in [13]. Note that, unlike [13] we did not normalize the feature
values to lie in [0, 1] as we found it to degrade performance.

Table 4 above gives a comparison of MNB to MNB used in conjunction with
locally weighted learning (LWL). We report results for three different subset
sizes (50, 500, and 5000). The input data to locally weighted MNB had all the
transformations applied to it (i.e. the TFIDF transformation and vector length
normalization described above) before the distance calculation was performed
to weight the documents. The same transformations were applied in the case of
MNB. We can see that in most cases LWL can improve the performance of MNB
if the appropriate subset size is chosen, only on the WebKB data there is no im-
provement. Moreover, optimum (or close-to-optimum) performance is achieved
with the smaller subset sizes (kK = 50 or ¥ = 500), and in some cases there
appears to be a trend towards better performance as the size becomes smaller
(more specifically, on 20news18828-10000words, IndustrySector-NoHTMLTags-
64986words, and the Reuters data), indicating that size 50 may not be small
enough in those cases. However, we have not experimented with values of &
smaller than 50.

Table 5 gives a comparison of SMO with the best results we have been able to
achieve with locally weighted MNB. Note that the results for the latter method
are optimistically biased because they involve a parameter choice (the neighbor-
hood size) based on the test data. However, even with this optimistic bias for
the MNB-based results, SMO performs better in almost all cases, in particular
on the WebKB data.

Table 5. Comparison of best results for locally weighted MNB with SMO

Dataset MNB SMO

with with

TFIDFN, |TFIDFN
& LWL

20news18828-113232words (k=>500) 93.65 93.52
20news18828-10000words (k=50) 93.29 92.13
WebKB-NoStoplist-54948words (k=500) 78.10 91.31
WebKB-NoHTMLTagsOrStoplist-5000words(k=500)| 88.91 93.24
WebKB-10000words (k=5000) 87.01 92.76
IndustrySector-95790words (k=5000) 89.65 91.65
IndustrySector-NoHTMLTags-64986words (k=50) 85.32 88.60
IndustrySector-10000words (k=50) 86.85 89.74
Reuters-21578 (Macro) (k=50) 56.29 70.16
Reuters-21578 (Micro) (k=50) 84.31 88.47

5 Conclusions

This paper has presented an empirical comparison of several variants of multi-
nomial naive Bayes on text categorization problems, comparing them to linear
support vector machines. The main contribution of this paper is the finding
that standard multinomial naive Bayes can be improved substantially by ap-
plying a TFIDF transformation to the word features and normalizing the re-
sulting feature vectors to the average vector length observed in the data. If
this is done, it can, depending on the dataset, outperform the recently pro-
posed transformed weight-normalized complement naive Bayes algorithm, which
also includes the TFIDF transformation and normalization to (unit) vector
length, but exhibits two additional modifications—weight normalization and
complement-based classification—that appear to represent a departure from
standard Bayesian classification. Additionally, we found that the effect of weight-
normalization on complement naive Bayes was negligible.

We have also shown how the performance of multinomial naive Bayes can
be further improved by applying locally weighted learning. However, even if the
best neighborhood size is chosen based on the test data, this improved classifier
is still not competitive with linear support vector machines. Hence the overall
conclusion is to use support vector machines if their (significantly larger) training
time is acceptable, and, if not, to consider standard multinomial naive Bayes with
appropriate transformations of the input as an alternative to complement naive
Bayes.

References
1. Rennie, J.D.M., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions

of naive Bayes text classifiers. In: Proceedings of the Twentieth International
Conference on Machine Learning, AAAI Press (2003) 616-623

10.

11.

12.

13.

. McCallum, A., Nigam, K.: A comparison of event models for naive Bayes text

classification. Technical report, American Association for Artificial Intelligence
Workshop on Learning for Text Categorization (1998)

Eyheramendy, S., Lewis, D.D., Madigan, D.: On the naive Bayes model for text
categorization. In: Ninth International Workshop on Artificial Intelligence and
Statistics. (2003) 3-6

Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Proceedings of the Tenth European Conference on
Machine Learning, Springer-Verlag (1998) 137-142

Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms
and representations for text categorization. In: Proceedings of the Seventh In-
ternational Conference on Information and Knowledge Management, ACM Press
(1998) 148-155

Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM Press (1999) 42-49

Zhang, T., Oles, F.J.: Text categorization based on regularized linear classification
methods. Information Retrieval 4 (2001) 5-31

Rennie, J.: Personal communication regarding WCNB (2004)

Platt, J.: Fast training of support vector machines using sequential minimal op-
timization. In Schélkopf, B., Burges, C., Smola, A., eds.: Advances in Kernel
Methods—Support Vector Learning. MIT Press (1998)

Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques
with Java implementations. Morgan Kaufmann (1999)

Platt, J.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In Smola, A., Bartlett, P.; Schélkopf, B., Schuur-
mans, D., eds.: Advances in Large Margin Classifiers. MIT Press (1999)

Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artificial
Intelligence Review 11 (1997) 11-73

Frank, E., Hall, M., Pfahringer, B.: Locally weighted naive Bayes. In: Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
(2003)

