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There is a theory which states that if ever anyone discovers exactlytidnatniverse is
for and why it is here, it will instantly disappear and be replaced by songethian more
bizarre and inexplicable.






There is another theory which states that this has already happened.

— Douglas Adams
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Chapter 1

Introduction

Zwar weiss ich viel, doch cht’ ich alles wissen.
(And so | know much now, but all | fain would know:.)

— Wagner in Goethe’s Faust

Are you using a reward card like Miles-and-More, Fly Buys or do you evghopping card?
Did you ever get “junk-mail” from the companies participating in that rewgsiesn? Did
you ever wonder why their recommendations were so specific?

What they do is building up a profile from all the purchases you do, frenptaferences you
enter on their websites, the websites you visit. From this data they are abtotormend

other articles from their stores or services they provide.
But howdo they build such a profile?

The basis for that is most likely a relational database, currently the predomivay to
store data, that contains all the transactions or orders you did, etcrdilem here is, how
to get any interesting information of patterns out of it or in other words téopar‘data
mining”.

Many well-known machine learning and data mining algorithms are propositoregl, i.e.
they only operate on a flat table, a single relation, and not a relational mittheteveral
relations. This relational data, which is actually only accessible to a relateeraler, like
Claudien [De Raedt, 1997], TILDE [Blockeel & De Raedt, 1998], Wafbehaspe & De
Raedt, 1997], etc., can be transformed into a form suitable for a propwitearner in
a general manner. The process of creating new features from thlesierral properties
is calledpropositionalization(cf. [Kramer et al., 2001]). But propositionalization has also

some drawbacks as will be shown later in this chapter.
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Even though this thesis will not describe how to develop a reward systermikgioned
above, it will still present an attempt to implement a general framework, theePiTool-
box!, for creating propositional and multi-instance data from relational datacomtrast
to many relational learners, which are based on Prolog databaseser Rr@QL-database-
oriented to be easily applicable in the “real world”. Additionally to the commanddased
tools, the user will find several graphical user interfaces aiding himtiingeup experi-
ments.

After a short introduction about the different types of learners (@sajonal, multi-instance
and relational), the Proper framework will be presented in detail, includieglitierent
steps that take place for transforming relational data. Figure 1.1 givesraaverview of
the transformation process taking place in Proper. Related approautheshather they
can be integrated into the existing framework will be discussed in the followhagter.
The framework will be tested on well-known benchmark datasets with diffeettings, of
which results will be presented in the Experiments Section. Finally, this thesissclaith

a short summary and an outline of what future work there is still to be done.

Multi-Instance Leamer
A
|
|
|

Multi-Instance Data

+
Propositional Data

REMILK

Jainer o Muli-nstance Data RELAGGS = Broposi Data

| I
] I
| |
\J \J \J

Relational Learner MultHnstance Learner Propositional Leamer

Figure 1.1: Proper from a logical perspective.

1.1 Relational Learning

The above mentioned relational learners are all implemented in Prolog, usitigrier-
logic (FOL). Prolog represents a powerful formalism for expressafgtions, due to vari-
ables and recursion. For a better understanding for the terms used iriTeQle 1.1 gives
an overview of the corresponding terms in the FOL and the database ddalen from

[DZeroski, 2002]).

'Proper is freely available from http://www.cs.waikato.ac.nz/ml/proper/.
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First-Order-Logic Database

predicate symbol relation name
argument of predicate attribute of relation
ground fact of predicate tuple of relation

predicate defined extensionally relation as set of tuples

Table 1.1: First-Order-Logic and Database terms.

The task for a relational learner is now to find interesting patterns in cads@imining or
predicting classes concerning a prediction task. The latter case is tackles thesis and

[Kramer et al., 2001] defines this prediction task as follows:

Starting with some evidencE (i.e. examples) and an initial theofy (back-
ground knowledge), the task is to find a thedfy(i.e. hypothesis) thaxplains

in combination withB some properties aof.

For the East-West-Challenge the prediction task could look like this (takem [iréach,
2002)):

- ExampleF
east bound([car(rect, short, none, 2, load(circ, 1)),
car(rect, long, none, 3, |load(hexa, 1)),
car(rect, short, peak, 2, load(tria, 1)),
car(rect, long, none, 2, load(rect, 3))]).

- Background Knowledgés
menber/ 2, arg/3

- Hypothesisid
eastbound(T) :- nenber(C T), arg(2,C short), not arg(3, C, none).

To determine the feasibility of transforming one learning task into anotherenge from
relational to multi-instance, one can use the following definitions given byR&et, 1998].

Parameters concerning the database are:

r: number of relations

i: maximum number of tuples of an example in a single relation

a: maximum arity of a relation

- d: maximum number of values of a given attribute

e: humber of examples



For a hypothesis these parameters exist:
- T maximum number of tuple variables in a clause of the hypothesis

- J: maximum number of literals of typE; = U; in a clause (representing join opera-

tions)
- C: maximum number of rules in a hypothesis
With these parameters [De Raedt, 1998] then derives the following estimations

- Data ComplexityDC, the size of the dataset:
DC=0(e-i-a-r)

- Query ComplexityQC, the complexity of testing whether a clause rule covers an
example:

QC=0(M-a-M)+i-a-(T—M)), with M =min(J+1,T)

- Number of different rules in hypothesis languade:
HR =0T - (d+1)T . (a-T)¥)

The only condition that applies for relational data is that> 1. Rewriting the above
mentioned example of the East-West-Challenge into normal form, one gets tigs {Vath

Tx as atrain variable and”'y as acar variable):

eastbound :- car(T1l, Cl, rect, short, none, 2), load(C2, circ, 1),
car(T2, C3, rect, long, none, 3), |load(C4, hexa, 1),
car (T3, C5, rect, short, peak, 2), load(C6, tria, 1),
car(T4, C7, rect, long, none, 2), load(C8, rect, 3),
T1 =T2, T2 = T3, T3 = T4,
Cl=C, G3=¢t4, CG=0C C7=2c¢C8

And from that the following values for the parameters can be derived:

3
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Applied to the equations one obtains these figures:

DC = O(72)
QC = 0(6-2) = 0(3.1-10%
HR = 0O(3% 51 .48") =~ 0(8.0-10%)

It is quite obvious that even in this “toy dataset” (with just one example) a@auestive

search in the hypothesis spaier is not feasible, due to the combinatorial explosion.

1.2 Multi-Instance Learning

In case of multi-instance data there is only one relation=( 1), one tuple variable€ll = 1)
and no literals of typd; = U; allowed (/ = 0). Multi-instance learning represents a
relaxation of the attribute-value learning (cf. next Section) where eatarnne has a class
label; in multi-instance learning several instances together have one diats Te in-
stances are grouped together in so-called “bags”. The difficulty nowatsittlis unclear
which instance or which instances are responsible for the class labebpgpngach (in bi-
nary class problems) using propositional learners with this kind of data lagsify all the
instances of a bag and set the bag lab@idsitiveif at least one of the instances was classi-
fied aspositive negativeotherwise (cf. [Dietterich et al., 1997]). Instead of this approach,
which did provide disappointing results, another wrapper method is usedgtmout the
experiments in this thesis, the so-called MIWrapper as described in [BrXnk 2003]. A

short introduction will be given in Section 3.1.

Multi-instance data can be obtained from relational one by joining all adjdables into
one table (nested relations can be joined recursively). But dependitfzeanumber- of
relations and the arity of these relations, the data, i.e. the number of rows, can explode

and become unmanagable.

For the “toy dataset” East-West-Challenge with 20 trains, used in the expesinmeSec-
tion 4 (cf. Table 4.1, page 37), 213 rows are generated out of thesé@0still a lot less
than the estimatedC = O(1440) (since in this case = 20 and not onlyl). It is even
worse for thesuramindataset (see also Table 4.1, page 37), where one ends up with 2378
rows, more than 200 times of the row count of the table containing the targbusgtrThe

impact of this explosion will be seen in Section 4.2, where the results aresdestu
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1.3 Propositional Learning

In propositional or attribute-value learning data with only one relation amgl ame tuple
per exampleisused (= 1, = 1,7 = 1and J = 0). In contrast to multi-instance
data one cannot produce propositional data by joining the tables into deghliabause of
loss of meaning due to multiple number of instances (cz€i@ski, 2002]). To avoid this
one can aggregate adjacent tables, but associated with loss of inforrftagandividual
information for adjacent relations gets lost during the aggregation). Adwdhown later
with the RELAGGS approach the process of aggregation need not leatabig to worse
results compared to a multi-instance learner, rather the opposite. A probtkraggrega-
tion is the explosion of attributes in the new table. If there are many relations wotto&
attributes the aggregation process can produce more attributes than thesdatsanage-
ment system is able to cope with. From the East-West-Challenge datasefiliiedtare
generated through aggregation compared to the multi-instance countdt Befting 6 in

Table 4.1, page 37).



Chapter 2

Proper

This chapter will give an outline of the main building blocks of the Proper fraonk. It

covers all the steps that take place during a complete run, starting with thet whfoe data
into the database, continuing with the various types of propositionalizatiogemeration
of multi-instance data, and the export of the produced data (cf. Figuye Ptk chapter
concludes with an overview of some GUI components that aid the user orpang these

steps.

/l
&

Flattened
Data

yoinet

Table-Structure REMILK/ Flattened

Partially flattened \:| Joiner + | Export
Data Aggregated
Data

Joiner

Relational
Data

RE,

L4 Gas
Table-Structure Table-Structure Aggregated
Data

Table-Structure

s

Table-Structure

Figure 2.1: Proper from the program perspective.

2.1 Import

Proper is currently able to import the following data formats (also depicted uré& i 2):

- Prolog (extensional knowledge, but including ground facts with fusgto

- CSV-files (with or without identifiers for the columns)



Prolog or CSV

Prolog Parser CSV Parser

Parsed
Data

Poslprocessing

Database

Figure 2.2: Overview of the Import in Proper.

For both formats the types of the columns in the table are determined automaticgdly. S
ported types ard nt eger , Doubl e, Date and String. From the encountered data
the best suitable type is determined, i.e. after findinglan eger and a Doubl e the
resulting type is therDoubl e . All values representing missing values like e.g. “?”, “n/a”

or “NULL" are ignored during this determination, since they can be of apgty

Prolog

Prolog or closely related formats, like Progol or Golem that are common in tichinea
learning community, can be imported into databases in such a way that eatbr fand

each list are represented as a separate table.

trai n(east,
[c(1, rectangl e, short, not _doubl e, none, 2,1 (circle, 1)),
c(2, rectangl e, | ong, not _doubl e, none, 3, | (hexagon, 1)),
c(3,rectangl e, short, not _doubl e, peaked, 2,1 (triangle, 1)),
c(4,rectangl e, | ong, not _doubl e, none, 2,1 (rectangle, 3))]).

Figure 2.3: Example of the East-West-Challengerepresents the car and the load).

The example data of tHeast-West-Challenge Figure 2.3 can be represented in the struc-

ture given in Figure 2.4. Since this dataset contains nested functorsoesendt need to

8



specify the relations between the functors explicitly. Otherwise one woukdtbalo this by
indicating which argument index of a functor is functioning as a key, e.geimtil-known

Alzheimerdatasets the argument that contains the compound ID.

1..n car —1..1" load

Figure 2.4: East-West-Challenge in a logical representation.

The structure in Figure 2.3 can easily be translated into the table structwe shéig-
ure 2.5. Thetrai n_li st table is actually not necessary to representtherelationship,
but due to Proper’s generic approach of storing each functor artdistin a separate table,
this relation is generated. A list may not only contain functors like in this exarbptegny
arbitrary constant values, which then will be stored in the list table. If tderoof the list
contains vital information, e.g. for discovering that the values are storax ascending or
descending manner, the order can be stored additionally.

Since lists increase the relational complexity, Proper has the optional budiatare to turn
uniform lists, i.e. lists of the same length, into normal arguments and thereafdirsan/
columns in the table of the functor the list is part of, instead of an extra tahle.t®the
fact that thetrains have different number afars thecar list cannot be transformed. In the
Mutagenesislataset one could change the benzene rings, which always haverspnéte

into normal arguments (sometimes this might not be desirable).

car

PK |car id

train_list load

train
FK1 |train_list_id PK |load id
< car_wheels
" train_list_id car_shape FK1 |car_id

train_direction FK1 |train_id car_length load_shape
train_list_order car_wall load_number
car_roof
car_load

PK |train_id

A
h

F 3

Figure 2.5: East-West-Challenge as relational database.

Proper also offers some more advanced features for importing PrologreRig6 gives an
overview of the different post-processing steps that take place afteath has been parsed.

In the following the additional features are explained in detail:

- Foreign Key Relationdf the relations cannot be determined from the Prolog database
itself, e.g. if we do not have nested functors in the input, it is possible to inted

these vidoreign key relationsDuring the import the functors are rearranged to fit the

9



yas

no Break List into
several Instances

WS

Split Predicate
{symm.fasymm.}

r

no Insert List as
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r

Determine Column
Types and Discard
Inconsistent Ones

Iy

Processad
Data

Figure 2.6: The post-processing of imported data in detail.
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proposed relational model. E.g. the two faetgl, bl) and b(bl, 2) , whereb
is dependent on, have the foreign key relation: second = b : first (wherea has
assecond argument the key, i.e. thgirst argument, ob). This would result in the

new relationa(1, b(2)) .

- Flattening index lists Considering a database that contains geographical data, like
mountains, lakes, states, roads and towns, witlstieas the key for all the functors,
a ground fact for thénterstate 85vould look like this: road(85, ["AL', 'GA',
"SC, 'NC, 'VA]) .Since the key is inside a list, this list has to be broken up
into several facts:r oad(85, 'AL’) , road(85, 'GA) , etc.

- Asymmetric Relationship®epending on the representation of the data there might
be more than one argument containing a key, e.g. inrAlkbeimerdatasets where
there are functors that define a relation between the two argumieats: _t oxi c( al,
bl) . Ifarelationequal | y_t oxi ¢ issymmetricthe instanceequal | y_t oxi c(al,
bl) issplitinto two instancesqual | y_t oxi c(al, 1) andequal | y_t oxi c(b1l,

1) , where the second argument is the so-caklgdii t i d that links both instances
together (thespl i t _i d is also depicted in Figure 3.4 on page 34, displaying bonds
and atoms. The bond relationggmmetricsince it resides between two atoms.). In
case of theAlzheimerdatasets, which have asymmetric relationships, this kind of
processing is not a good idea. In Figure 2.7 one can see that a decesdadrner
working with the data produced by RELAGGS performs below 50%, if a synienetr
representation is chosen. For a correct representatiasgyohmetriaelations, new
distinct functors are defined for each argument position:

| ess_toxic(al, bl) thenbecomes

| ess_toxic(less_toxicO(al), |ess_toxicl(bl)) .

One property of Prolog, the possible different arity of functors, hatsbeen tackled so
far. it would be possible to fill the missing arguments with “NULL", but determinihe
alignment between the two functors is not a trivial task. Another solutionidvoe the
introduction of new functors, consisting of the name and the arity as seffx,a/ 2 and

a/ 3 would then becomea_2 and a_3 . Proper assumes right now that functors of the
same name have the same number of arguments and discards others thiatttiidfie arity.

In case that there are different arities present in the data, Propesréia arity with the

most instances and ignores the rest.

11



toxic-L-firstarg alzheimer_toxic-2-symmetric alzheimer_toxic-3-asymmetric
:::::::

Figure 2.7: Different settings fagklzheimer/lessoxic. first argument as key, two keys sym-
metric, two keys asymmetric.

CSv

The import of CSV files is pretty straightforward, since the data is alreadyaismn-like
representation. If the file contains a header row with the names of the cqltimenshese
are used, otherwise a name is constructed out of the filename and the pofditiecolumn.
By default the ™ ' is the text qualifier and ‘; ” is the column separator, but they can be
set to any value. During the import characters that are not “visible” ASiracters (i.e.
byte values from 32-127) are filtered to avoid problems during the agtipagprocess. A
transformation to Unicode like UTF-8 or UTF-16, is preferable, but that would involve
major changes. Due to this filtering some information might get lost during the tropor

other datasets than used in this thesis.

2.2 Propositionalization and Conversion into Multi-Instance Data

There are currently three algorithms available for propositionalization erating multi-

instance data in the Proper framework, which can be used for experiments

- RELAGGS
- Joiner

- REMILK

Each of them will be discussed subsequently, how each of them funeimohshat possible

drawbacks there are.

'Unicode is the attempt to create a universal character encoding sdbemvétten characters and text.
More information about Unicode can be found at http://www.unicodé.org
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2.2.1 RELAGGS

The first algorithm we want to discuss is RELAGGS, a database-oriepf@dach based
on aggregationsREL ational AGGregatiorg). The version that was integrated is based on
what was used for the comparative evaluation in [Krogel et al., 20033s& aggregations
are performed on the adjacent tables around the table that contains #teatsiute, i.e.

for each row in the target table it performs for numeric columns both ANSL Buj)gi-

tal Equipment Corporation, Maynard, Massachusetts, 1992] graugidfuns likeaverage
minimum maximumand sum as well as non-standard functions lig&ndard deviation
quartile andrange For nominal columns it counts the number of occurences of each value
and creates a new column for each value to store the counts. Besidesdjgesgations
based on a single attribute (i.e. the primary key of the target table), it addiyiaadcu-
lates them on pairs of attributes. There, the other attribute has to be nomiizi, senves

as an additionalGROUP BY condition [Krogel & Wrobel, 2003] besides the primary key.
RELAGGS uses the names of the primary keys to determine the relations in thask&ata
(a drawback of the MySQLMyISAMtable type used in RELAGGS; even though separate
definitions of foreign key relations would be possible with thaoDB type, the JDBC-

driver did not support this at that time).

Modifications

From preliminary experiments with the original RELAGGS implementation the following

modifications were introduced to relax the constraints RELAGGS imposes opisdata:

- Preflattening Since the specified version of RELAGGS only aggregates directly ad-
jacent tables, Proper pre-flattens an arbitrarily nested structure. én wthrds: it
flattens all the branches of the tree structure into single tables, whictsespsea
suitable representation for RELAGGS. This is depicted in Figure 2.1, mowimy f

relational datato partially flattened data

- Table hiding The creation of temporary tables out of the branches (“preflattening”)
means that one has to hide the original tables from RELAGGS. Otherwisedaime
would be aggregated twice, since RELAGGS performs aggregation orbla$tenat
are in relation to the target table. Therefore RELAGGS contains nalack listwith

2MySQL is freely available from http://www.mysgl.com/.
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tables to ignore, containing temporary tables and such that were creatathdoy

propositionalization algorithms.

- Primary Key restriction RELAGGS expects an integer as the primary key of a table,
which may not always be the case. In some domains, e.g. chemical domaithelike
Mutagenesiglataset, the primary key of a table is an alpha-numeric string instead.
If Proper encounters a non-integer key it automatically generates dioadttable
with the relation between the original primary key and a new integer key, which

then used in the tables.

- Use of Indices Determining the relation between two tables based on the primary
key alone proved to be problematic with thkutagenesislataset, where the relation
between the different tables (Prolog ground facts) is based on the cowhpb. In
case of benzene rings it is possible that there exist several rings soommund and
therefore having the same ID, which makes it necessary to relax the tiestfrom

primary keys to indices.

- Loss of data Using ambiguous indices instead of primary keys unfortunately had
other consequences as well: posing a query to the database with agaggréunc-
tion on an ambiguous index instead of a primary key (using@ReUP BY clause)
returns only as many rows as there are ungiue values in the index. Thermuis
an aggregated table with (possibly) fewer rows than the target table. urdesact
this, Proper always adds an additional column in the table during the imptreof
data that acts as a primary key. For such ambiguous datasets it is nowgéssib
signalize RELAGGS to either use a specific primary key or the previously nmertio
auto-generated one as an additional column inGROUP BY clause.

This problem of data loss arises only due to the fact that MySQL is less atrict
the GROUP BY conditions, i.e. that not all columns that appear in tBELECT
clause have to appear either in aggregate functions or irGi@JP BY clause (the
columns of the target table are only listed in tBELECT clause). A behavior that is

not allowed in ANSI SQL, e.g. as implemented in Postgre3QL

- Join type Due to the closed-world-assumption in Prolog data, tables will not neces-
sarily contain full explicit information about the absence of features.rdieronot to

loose any information during aggregatiotATURAL JO N was replaced byLEFT

SPostgreSQL is freely available from http://www.postgresg].org/.
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QUTER JA N. Otherwise the aggregation process could produce an empty result ta-

ble in the worst case.

- Column name ambiguityThe previously sketched behavior for nominal columns,
namely introducing count-columns for each distinct value of such a colummutis
robust concerning generating names for columns. Since MySQL déedlow e.g.
“or*"” in the name of a column the names are transformed, i.e. the invalicacha
ters are changed into underscores. But here ambiguities can be gdodumne has

nominal values like “value-" and “value.”. They are both transformed fatdue_”,

which results in duplicate column names. To resolve this issue the name is now

checked against a hashset whether the same name was already tigeds the case

underscores are then appended to the name as long as necessaryitaumigke.

The underlying version of the framework for this thesis, i.e. version Oslifports only
MySQL and is not ANSI SQL compatilfte The computation of the standard deviation for
instance is not part of the ANSI SQL Standard, but a handy extensiony®Qi. MySQL

uses the standard deviation for populations (cf. Equation 2.1) and nohthéor samples

(cf. Equation 2.2).

S:\/7”L2$2n—2(296)2 2.1)
_nya? = (o x)?
S = = (2.2)

Both equations can be rewritten as SQL statements to make them ANSI compliaatidiq
(2.1) then becomes

SELECT sqrt((count(x)*(sumx*x)) - (sum(x) * sum(x))) / (count(x) * (count(x))))
FROM table

and (2.2) can be written as

SELECT sqrt((count(x)*(sum(x*x)) - (sum(x) * sum(x))) / (count(x) * (count(x) - 1)))
FROM table

wheretableis the table theSELECT is performed on andk is the column to retrieve the
standard deviation from. There is only one problem with these statementseithed there
are no columns to work onCOUNT returns0 and therefore raises@i vi si on by zero

Exception.

*Version 0.1.1 moved towards ANSI SQL, additionally supporting PoSiQte
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This “standardization” is necessary for better portability, since difteDeiabase systems
either do not offer the computation of the standard deviation or calculatégtetitly. The
latter happens in case of PostgreSQL, which calculatesah®leand not thepopulation

standard deviation. Due to different implementations results might not be cabipa

2.2.2 Joiner

The central processing algorithm in Proper is Joier. Like one can see in Figure 2.1 it
performs the flattening of the arbitrarily nested structure of the relationtalidto fitting
structures for RELAGGS (maximum depth of 1) and multi-instance learneesf(at table).
The Joiner works in a depth-first manner on tree structures, i.e. withteattable where
all the others are branching off from. It performs joins starting with thedsamtil a branch
is completely flattened (for RELAGGS this process is stopped one levekahewcentral
table, the root node). To build up this structure the Joiner can either ugettheiscovery of
the relations between the tables or user-defined relations (how this ceméésdliscussed
in Section 2.4.1).

In order to keep the 10 operations to a minimum, the joins are ordered in suely that
the small tables are joined first and the largest last. For RELAGGS a fuptireipation,
mentioned by [Krogel et al., 2003], could be implemented: the propagatitredteys of
the tables that are not directly adjacent to the target taltestead of executing expensive
joins of whole tables only the necessary key columns would be added tovhalle. But
since it might not be possible to change the design of an existing databasepficeluction
system with accompanied business logic that depends heavily on thet@esamn) and the
complete joins are necessary for MILK and REMILK, these expensiuns jwere preferred.
The LEFT OUTER join is chosen as join operation in order not to loose any information
(like mentioned in Section 2.2.1 under Modifications/Loss of data). Sinceif@assan
handle missing values, the created “NULL" values can be interpreted amgiissues.

The columns over which the join is performed are simply the intersection of theemdf
the first table with all the columns of the second one. In case of the East@Natienge in
Figure 2.5 with the two tablegar and | oad there is only one index in thear table,
the car _i d . The intersection is then of coursear _i d .

If it makes sense for some columns to set the introduced “NULL” values pecific value

(e.g. replacing them with “0”) then this can also be defined and the colurenspaated

5An optional feature implemented in Proper starting with version 0.1.1.
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after the join.

In case that there are duplicate columns beside the join columns, e.g. duadgnametric
relationship like in theAlzheimerdatasets, the second column of such a conflict pair is
prefixed with mX_ , where X is a unique number for the current join. Without doing this
one would loose a complete branch of data in asymmetric relationships.

To illustrate the functioning of the Joiner we go back to our East-West-Clgallexample in
Figure 2.5. For RELAGGS one joins until one has only leaves as childrémedrget table,
which can be seen in Figure 2.8. There is only one child, since the EastGiaenge has

only a branching factor of 1.

_relaggsed0

" train_list_id
FK1 |train_id
train train_list_order
. car_id
PK |train_id < car_wheels
car_shape
car_length
car_wall
car_roof
car_load
load_shape
load_number

train_direction

Figure 2.8: East-West-Challenge joined for RELAGGS.

The complete flattening of the database, which is necessary for a multi-iad&aroer, is

shown in Figure 2.9.

_flat

1 | train_id
train_direction
train_list_id
train_list_order
car_id
car_wheels
car_shape
car_length
car_wall
car_roof
car_load
load_shape
load_number

Figure 2.9: East-West-Challenge joined for Ml learner.

2.2.3 REMILK

Apart from RELAGGS for creating propositional data and the Joinercfeating multi-
instance data, the framework contains a third algorithm called REMREIl#tional ag-
gregation enrichment for MILK the Multi-lnstancel earningKit). REMILK enriches

the data the Joiner provided for the multi-instance learner by adding thegedgd data

SMILK is freely available from http://www.cs.waikato.ac.nz/ml/milk/.
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produced by RELAGGS to the multi-instance data. This is done via a join of thestab
generated by RELAGGS and the Joiner, where the columns from RELAS&$&gged
with a_rel aggs_ and the ones from the Joiner with.ni | k_ (with this prefixing and a
sorted export to an ARFF file the RELAGGS attributes are presented fitst tlassifier).

The resulting table is once again suitable input for a multi-instance learner.

2.3 Export

The last step before the classifiers are built and evaluated, is the eidpoetthe generated
tables are transferred to ARFF files to make them available for the WEKAbeoih or for
MILK. Itis possible to exclude certain columns or patterns of columns fremdexported,
if they contain implicit knowledge like primary keys of tables (and their aggesxjand also
to sort them by name for convenience. In case of multi-instance data a dyatifiet can
be specified explicitly or Proper tries to determine one, based on a heufisgdeuristic
is quite simple: if there is onlpneindex in the table, then this is used, otherwise the first
index that does not end withi d . If it ends with _i d it is assumed that it was once
the primary key of a table. Allowing this, one could get the primary key of thgetaable,
which might not be the bag ID. This would happen in case oMhegenesislataset, where
the compound ID is the key for the relations, but due to ambiguity an additiohaho has
to function as primary key. By skipping indices that look like a primary keypBraan

determine the correct bag ID for tiMutagenesislataset.

“NULL” values that were already in the data or introduced during left ojdims are ex-
ported as missing values. If the ARFF file would become too large it is alsdbjmss
export a stratified sample. Finally WEKA filters can be applied to the data détfas

written to the ARFF file, e.g. for transforming all the nominal attributes into bioass.

2.4 Tools

The Proper Toolbox contains already a variety of experiments on exaragdealts, but it
also enables the user to create new ones. In the following several toolsewliesented

that aid the user in creating new experiments.
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2.4.1 Relations

For exploring the relations in an existing database one can use thRétailons shown
in Figure 2.10. With this tool the user can connect to a SQL database ,sselect a
database and create a relation tree starting with the table that contains theatiniigete.
On each node of the tree only those tables are shown that have a relatierctorént node,
which makes it very easy to build up a tree. On the other hand, insteadatingy¢he tree
by hand, the user can use the auto-discovery of the relations by spgdif\e maximum
search depth. But this latter method is only suitable for databases that wemtdgthfsom a
relational Prolog database or if the branching factor is not too high. @ibethe tree will

get too big to handle.

Elrelations =10/x]
URL [idbe:mysl: 3306/ | user [peter Password |peter | Connect ‘
Databases |alzheimer7amineiumake - | = Select |
Exclude Pattern ‘_* Tables |urea|_ne_ v
max. Depth |1 » Show
- great_ne_ - <= Expand
@ great_ne0_ P ——
alk_groups_ i ¥ collapse
n_val :
vl E:
@ r_subst_1_ 102
single_alk_
@ r_subst_2_
aro_r_subst_2_ &4 Search
hond_
double_alk_
@ r_subst 3_
arn_r_subst_3_
ring_subst 2
ring_subst 3
ring_subst 4_
ring_subst_5_ =
hct i
left over tables croup_ Join Columns id Record Count |4

Figure 2.10:Relations- tool for exploring the relations in a database. Here a user defined
tree is displayed for aklzheimerdataset. With thenax. Depthoption the user can let
Proper suggest a relation tree that can be edited afterwards.

The built tree can then be used in the Propositionalization tools, e.g. RELAGS&Sad of
discovering the relations automatically. This is useful if only a few tablesldhimuused in
the transformation process. For tBast-West-Challengghis tree is given in Figure 2.11.
The number in parentheses depicts the number of records in this table, fohith an

ordering used during the process of joining tables as already mentionedtinis2.2.2.

[train_(20)[train_listl (63)[c_(63)[I_(63)]]] |

Figure 2.11: Relation tree for the East-West-Challenge, witereepresents aarand | _
the corresponding oad .
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2.4.2 Experiments

All experiments that are shipped with the Toolbox are defined in Afil&s and therefore
XML 8. Even though XML is human readable it is still cumbersome to create newiexper
ments from scratch by hand (Figure 2.12 shows a snippet of an ANT El&n though all

tools in Proper provide a command line help, it is still easier to do this witBthigler user

interface.
<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect nanme="WEKA Proper" default="all" basedir=".">
<I-- last saved: [Sun May 23 16:22:08 NZST 2004] -->

<property nane="dat abase" val ue="ny_project"/>
<property nane="output" val ue="${proper-dir}/tmp"/>
<property nanme="dat asets" val ue="${proper-dir}/datasets"/>

<l-- default target -->
<target nane="all" depends="init, setup, nmilk, relaggs"/>
<l-- creates the output directory -->

<target nane="init">
<nmkdi r dir="${output}"/>
</target>
<target nanme="setup" depends="setup/ database, setup/inport"/>
<target nanme="setup/dat abase">
<j ava cl assnane="proper. app. Dat abases" fork="yes" maxnmenory="${nenory}">

Figure 2.12: Excerpt of an ANT file generated with tBeilder (the “...” denotes omis-
sions).

With this front-end the user can define properties of the experiment, like attine project

or the database, as well as what kind of files to import (Prolog or CSVhandto propo-
sitionalize. The above mention&elationgtool is also part of th@uilder (for a screenshot
see page 94), which makes it easy to determine what tables should beiponadized.
TheBuilderis not only able to create ANT files that are executable, but also to open them
again for modifications.

In order to run the experiments the user can either run them directly frooothenand line
with ANT or use theRunGUI component (cf. Appendix B.1 page 94 for a screenshot).
Either experiments created by tBeiilder or the default ANT files of the Proper Toolbox
can be executed here.

After loading an ANT file one can choose which target to execute, whereutput of the

experiments is redirected to the GUI. In case of an unsuccessfultexeaudialog pops up

TANT is the “make” for Java. The user can define different targetdlikesin Makefiles, but dependencies
have to be stated explicitly, which increases the readability.

8XML is a simplified version of SGML (ISO 8879), th&tandard GeneralizedMarkup Language
used for information processing. Further information can be fountheatWorld Wide Web Consortium,
http://www.w3.org/XML/.
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g [ 3]

File Database Experiment

["Steps | Properties | Setup | MILK | RELAGGS | ReMilk |

MILK— | (RELAGGS ReMilk

[_1 Proper [Z] Proper [Z] Proper
Setup [C] Export (class.) [Z] Export (class.) [T] Export (class.)
[C] Database [_] Export {unclass.) [Z] Export (unclass.) |1 Export (unclass.)
[Z] Import [C] Evaluate [C] Evaluate [C] Evaluate

[[] Classify [C] Classify [C] Classify

[C] Test [T] Test [T Test

Note: onlythe checked steps will be saved!

Figure 2.13:Builder - enables the user to build arbitrary experiments.

and lists the erroneous targets.
BuilderandRuncan be used in turn to set up a new experiment: changing parameters with
Builder and then testing them witRun Appendix B.2 contains a guided example of how

to use these tools with the East-West-Challenge dataset.

2.4.3 Viewing ARFF files

Another handy tool is tharffViewer(see Figure 2.14). It displays the content of an ARFF
file in tabular form, which enhances the readability significantly. Each coluontams the
name of the attribute and its type in the header. The class attribute is highlighte@tlin b
font. Despite the name of the tool one can also edit files with it, i.e. changingsvafltan
instance, deleting instances or attributes, sorting the instances basedtiribane. It is
also possible to set missing values to a new definite value or to change aificsdue

of an attribute to another one. For nominal valuesAnf§viewerprovides a dropdown list
with all the possible values. It therefore presents an easy way of gaatdified copies

of a dataset.

2.4.4 Distributed Experiments
Architecture

When performing the first experiments with Proper it became clear that thesgal ex-
ecution of steps on a single machine would be far too slow. Instead of ham@\NT

file with all the experiments that are executed one after the other it is alsiblgossuse
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ARFF—Viewer - R:ydocs\uni thesis'work'experiments’,2004- ;|g|5|
File Edit View
Relation: Proper_0.1.0
t1_cEI_AVG _c0_CHT_WAL |11 _c0_MAX | 11_cO_MEDIAM [11_cO_MIM |11_c0_QUARTI ‘H _cl_QUARTZ
Mumeric Mumeric Mumeric Mumeric Mumeric Humeric Mumeric
1 20 a0 30 20 1.0 1.0 3.0
) 25 4.0 4.0 20 1.0 1.0 3.0
] 25 4.0 4.0 20 1.0 1.0 3.0
4 24 4.0 4.0 20 1.0 1.0 3.0
] 1.4 20 20 1.0 1.0 1.0 2.0
4 24 4.0 4.0 20 1.0 1.0 3.0
7 245 4.0 4.0 20 1.0 1.0 3.0
] 20 a0 30 20 1.0 1.0 3.0
] 1.4 20 2.0 1.0 1.0 1.0 2.0
10 25 4.0 4.0 20 1.0 1.0 3.0
Al 25 4.0 4.0 20 1.0 1.0 3.0
12 1.4 20 20 1.0 1.0 1.0 2.0
13 24 4.0 4.0 20 1.0 1.0 3.0
14 1.4 20 20 1.0 1.0 1.0 2.0
15 20 a0 a0 20 1.0 1.0 3.0
16 1.4 20 2.0 1.0 1.0 1.0 2.0
17 24 4.0 4.0 20 1.0 1.0 3.0
18 20 an an 20 1.0 1.0 3.0
14 1.5 20 20 1.0 1.0 1.0 2.0
20 2.0 a0 a0 2.0 1.0 1.0 3.0
| »

Figure 2.14:ArffViewer- for viewing and editing ARFF files.

a Client-Server-System for running these Java calls (later on onlyeéfer as “jobs”). In
Figure 2.15 a general overview is given: a cenf@bServemanages the jobs and sends
them toJobClientsthat are available for execution. The current system is using a multi-
threading approach where server and client communicate via XML messAgesoon as

a message is received a thread is instantiated that handles the reqmeghdroon, the
application is immediately going back into listen-mode, waiting for the next requias.

approach ensures that no timeouts happen and no messages havegeritalte to failure.

Threads

JobDistributor JobServerProcessor JobClientProcessor

-

Applications

JobServer JobClient

Communication
via XML messages

Figure 2.15: Basic overview of the Client-Server-Architecture.

Even though the class diagrams in Appendix A.2 on page 85 show boflolig=rveand
the JobClientas Server-Classes, only tllebServeracts as such. This design originates
in the fact that both, the server and the client, are listening for messadgds ander to
process them efficiently they use multi-threading. It is necessary forligna ¢o accept

other messages while processing a job, since the server is checkingularragervals
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whether the clients are still alive by sendinigsAl i ve -Messages. If the client is not
responding anymore then the server knows that someting went wrong aitblignt, e.g.

an OutOfMemaoryException or a System-Failure, and can remove it from the list of active
clients. With a non-multi-threading client the server would wait forever fmhsa client.

A timeout approach is also not suitable here, since some experiments mayatakéod
complete, depending on the amount of data and the type of classifier bethgamsl a fixed
timeout value would make the server discard a still running client.

For managing the clients the server is maintaining t@a ent Li st s (cf. page 85): one
with idle clients (cl i ent s ) and another one with clients that are currently processing a
job (pendi ng ). Since ad i ent Li st can also contain a job, we can record which jobs
succeeded, failed, are still being processed, or yet to do. Failed gobbeceasily re-run,

using this log as input for th@obServemlgain.

2 JobServer Job Cliert
A
User
starts serer !
-
-
loads jobs
starts client(s) o
-
L registers
-}
adds job te pending
sendsjob o
L L
H uns job
H sends rasult
2SR .k P
removes job from pending (failed or done)
sends shutdown, if no more jobs
e
unregisters
lezion. . 20 A 00 008 Cisterad. Trigl.iie
L
: terminates
Fregistersd Trigh Vsrsion  EA 4.00 Unregisisred Triaive =
i teminates i
e al

Figure 2.16: Example run of the distributed experiments.

In Figure 2.16 the sequence of actions taking place during a run is depi€iest the
user starts thdobServerwhich loads the jobs into its queue. After that thebClientis
started, registering itself with the server. At regular intervalsitigDistributor (a special
purpose thread of thdobServey tries to distribute jobs to idle clients. Before the job is
sent to the client, it is added to thgendi ng list. As soon as the client receives the job

it instantiates aJobd i ent Processor object that executes the job and the client goes
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back to listen mode, while the other thread processes the job. After finistérexétution,
either successfully or not, the generated output is sent back to the sexvstored there
in a global log file. Then the job is removed from the pending list. Once no mbs jo
are awaiting execution and also all pending ones finished, the sends aeshut down
message to all clients before terminating itself.

The messages that are sent between the server and the clients arerbaddt, since
this poses the most flexible way. The Appendix A.2 (on page 87) showsftaredt class
diagrams and Table 2.1 states the DTD of these messages with a correspxasfinge.

Type DTD Example Message
Message <! ELEMENT nessage (head, body)> <?xm version="1.0" encodi ng="UTF-8"?>
<! ELEMENT head (from type)> <message>
<! ELEMENT from (ip, port)> <head>
<! ELEMENT i p ( #PCDATA) > <frone
<! ELEMENT port (#PCDATA) > <i p>192. 168. 0. 1</ i p>
<! ELEMENT typ ( #PCDATA) > <port>31415</ port>
<I ELEMENT body (#PCDATA) > </from
<type>regi ster</type>
</ head>
<body/ >
</ message>
Dat aMessage L. S
<! ELEMENT body (data)> <body>
<! ELEMENT data (line*)> <dat a>
<! ELEMENT | i ne (#PCDATA)> <l ine>M Wapper with base classifier:</line>
<l ine>J48 pruned tree</|ine>
<line>------oennnan- </line>
Fi | eMessage L L
<! ELEMENT body (data)> <body>
<! ELEMENT dat a (filename, |ine*)> <dat a>
<! ELEMENT fil enane (#PCDATA) > <fil enane>eastwest.arff</fil ename>
<! ELEMENT | i ne ( #PCDATA) > <line>@el ati on eastwest-Proper_0.1.0</line>
JobMessage L L
<! ELEMENT body (job)> <body>
<! ELEMENT j ob (status, run, additional)> <j ob>
<! ELEMENT st at us ( #PCDATA) > <stat us>f ai |l ed</ status>
<! ELEMENT j ob ( #PCDATA) > <run>proper. app. Experi nenter -class...</run>

<! ELEMENT addi tional (run*)> <addi tional />

Table 2.1: DTDs and examples of messages sent betdae$erveandJobClient(s)

It is obvious that not all kinds of jobs are parallelizable, that for certgiesythe ordering

is important, e.g. the import of the data has to be finished before the propabiaiion
takes place. To ensure the order of execution, it is possible to insedlleatsynchroniza-
tion pseudo-jobsThe effect of such a pseudo-job is that tubDistributorwaits until all
pending jobs are completed before new jobs are sent to the clients agairigsee 2.17,
“Simple” scheme).

An extension to thisimple schemes that dependencies for jobs can be defined: for jobs
that depend on each other one puts them in a list in the order they needxedotesl, e.qg.

i nport beforer el aggs . If jobs are independent then the list contains only one element.
The result is a number of dependency lists like shown in Figure 2.17.pEhéi ng list is

now no more a sequential list, but for each dependency list there existeegponding slot
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Simple

Extended

import: al zhei nmer
import: eastwest
synchroni ze

rel aggs: al zhei ner
rel aggs: eastwest
synchroni ze

export: al zhei nmer
export: eastwest
synchroni ze
eval uat e:
eval uat e:
eval uat e:

al zhei ner
east west
nmuskl

al zhei ner:
east west :
nmuskl1:

inport -> relaggs -> export -> evaluate
import -> relaggs -> export -> evaluate
eval ute

Figure 2.17: Simple and extended synchronization scheme.

for taking in a job. Figure 2.18 displays these lists. The functionality is béstresl to as

a “dripping apparatus” where the single “drops” resemble the jobs anuetkte'drop” can

only fall if there is no other “drop” occupying the slot. The server nowalts in regular

intervals whether there are any free slots and still “drops” available affiththe case the

next “drop” falls into place, i.e. a new job is sent to a free machine forugi@t. This way

of parallelizing jobs guarantees better efficiency, since all jobs that eatistributed will

actually be distributed.

dependency lists

pending list (“slots")

musk1

relaggs

relaggs

- e.ee alzheimer

Figure 2.18: Visualization of the extended synchronization scheme agpiitgippparatus”.
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Generating Jobs

The current format of the input for thibbServelis just a plain text file where each line
contains the class name to execute and the corresponding parametesg, iikstinvoking
the class from the command line. Thebberrepresents a convenient way to extract these
calls from existing ANT files (either the default ANT files or ones created thighBuilder)
to create such a jobfile.

In the GUI (cf. Figure 2.19) one can load the specific ANT files to create fabm. The
user can then decide which targets to run in which order and also insetireyization
points where necessary. Sometimes it is necessary to override thet@@®péren in the
ANT files with other values, e.qg. if a different classifier is to be used andigut should
be saved in a different directory, then this can be done orPthuper t i es tab. The current
configuration for generating the jobs can be saved in an XML file and if @apened then
all the necessary ANT files are loaded automatically.

Finally the generated jobfile can be edited in the user interface, if negdssdeting jobs,

changing parameters).

=10l x|
Jabfile = Choose
[ file exchange between Server and Client [_] append Jobs ta file
Targets r Properties | =) Jobs |
database: alzheimer_amine_uptake = [ clear X Delete
database: alzheimer_choline =
_ . [=- Add File Delete all
database: alzheimer_toxic Add 4 up
database: cancer
database: cancer2 Insert ¥ Down
database: dd_pyrimidines Add all = Load
tfafafaase: dd{rlaﬂ‘nes Add sync n Save
database: eastwest2 Insert sync
database: genes_growth L
. -
| b Generate ‘ = Exit

Figure 2.19: Screenshot of tlebberfront-end.

Execution

The execution of the experiments is pretty straightforward: starting therseith the pre-
viously generated jobfile and then subsequently starting the clients. With @riatves
it is possible to automate the start up of the clients by using SSH%gehe SSH agent

provides a passwordless login on remote machines, which is very usefut ihas to do

®Documentation on the SSH agent can be found at http://mah.everytpdgpos/ssh.
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many logins. For that reason a few shell scripts were implemented that caargiastop
clients that are listed in a plain text file.

The scripts perform the following steps for each host listed in that file:

- connect tchostvia ssh

- starting a “niced’JobClientwith nohup in order to keep it running after logging out

again

The JobMonitor(cf. page 95 in Appendix B.1) provides a GUI front-end for the command
line basedlobServerandJobClients With this tool it is possible to read the job queue of
the JobServerdelete certain jobs, shutdown the server or clients. It is also possibleto ad

new jobs to the queue, e.g. ones that failed and have to be re-run.

JobMonitor

~
Yy \ \ >~ _ G
eu““\bo/ 7o AT ~ou
&7 V2 V% ~
_@0/ \% \% S a
Nk AN

—

P \ JobClient A
s ks
s Jobs | ReS N\
» \ \
\ N\

JobClient B

%
) a
E%f,t?

JobServer

JobClient C

Figure 2.20: Interaction of thégobMonitorwith the JobServeandJobClients

After the execution the generated logfiles can be processed with otls shat generate
CSV files and ATpX-tables. The CSV files can be further processed by Microsoft Excel

templates mentioned in the appendix on page 120.
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Chapter 3
Related Work

The approaches to propositionalization or generation of multi-instancenstm¥ar are just
a tiny fraction of the algorithms available. In this section a few more will be ptegseand
discussed whether they can be integrated in the Proper framework, ifidhietalready

happen.

3.1 MIWrapper

The multi-instance learner MIWrapper used throughout the experiments & special-
purpose algorithm, but a meta-scheme for multi-instance learning. It is goarapound
standard propositional learner as described in [Frank & Xu, 2008keAch of the algorithm
as outlined in the mentioned paper will be presented and an example wherpptiach
should have an advantage over the aggregations generated by REB.AGG

In multi-instance learning each example is a bag of instances, but only thebagclass la-
bel. The MIWrapper approach assigns each instance of thetances in the bag a weight
proportional tol/n. By weighting each instance one gets a learner that is not biased to
certain examples (ones with more instances), since all the bags have thevsayhere-
gardless of the number of instances they contain. For predicting a bdgplang instance
is run through the built model to obtain the class probability. The averageesé throba-
bilities is taken to determine the class label, since all instances are assumedjiumabg e
weighted.

The advantage of this approach in contrast to RELAGGS becomes olifvibeslata looks
like in Figure 3.1. Here are two classes that are basically mirror images bfaher,
resulting in the aggregates to cancel out each other. The MIWrappeeaitier hand is

able to derive a useful decision tree from the data, as can be seeréBTab
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Figure 3.1: Artificial Dataset.

MIWrapper RELAGGS

X <0

| vy <0 pos (4/0)

| v >=0 neg (4/0) neg (4/2)
X >=0

| vy <0: neg (4/0)

| vy > 0: pos (4/0)

Table 3.1: Unpruned decision trees for the artificial dataset, containiragg Wwith 4 in-
stances each.

3.2

RSD

In contrast to the database-oriented approach written in Java, R&lRAtional Subgroup

Discovery) by FilipZelezry is implemented in Yap Proldg A short introduction will be

given on how RSD works, based aAdlezry et al., 2003].

RSD takes an inductive Prolog database as input plus an additional mapgedendef-

inition. The constraints given with the mode-language define not only theidaysgof

subgroup descriptions, but also enable a more efficient induction and fbe search for

patterns (thus avoiding the combinatorial explosion mentioned in Section 1.1).

1.

Identify features Here all first-order conjunctions are identified that form a legal
feature definition, i.e. they are composed of one or more structural ptedimtro-
ducing a new variable and of utility predicates that consume all new varialiese
features do not contain any constants and can be constructed indapgraf the
input data.

An example for a structural predicate ismodeb( 1, hasCar (+train, -car)),
where themodebdenotes that the binary predicdtas Car may be used in theody

of the clause. Thel” is the maximum number of cars the feature can address of a

given train. '+’ stands for an input and ‘-’ for an output variable.

'RSD is freely available from http:/labe.felk.cvut.ezelezny/rsd. A link for Yap Prolog is also provided

there.
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2. Employ constantsin this step the set of features is extended by variable instantia-
tions, where several copies of each feature are instantiated with diffevastants.

Irrelevant features are detected and removed.

3. Produce relational table The rule induction algorithm, a modified CN2 [Clark &
Nibbet, 1989], takes these generated features as input. After creatiagpaopri-
ate set of features it is possible to generate a single relational tableaefingsthe

original data. Output for propositional learners can be producedf(a.g§vVEKA).

Due to the constraints that need to be specified, RSD is currently not itgdgrdo the
framework. Still, the generated tables could be post-processed in PByenabling the
user to define constraints, the integration could be tighter: the tables in thmsateould
be exported together with the contraints and fed into a Prolog engine thattinethe RSD

engine. The output could again be post-processed and used furfPremier.

3.3 SINUS

The SINUS system developed by Simon Rawles is also Prolog-based and was originally
based on LINUS the transformational ILP learner by Léwaad Zeroski (cf. [Lavré &
Dzeroski, 1994]). The following outline of the propositionalization prodegaken from
[Krogel et al., 2003] and limited to the steps that are of interest here. ddder may refer

to the previously mentioned paper for more information.

- Input declarations SINUS needs the declaration of all the predicates used for ground
facts and background knowledge, the cardinality of the relationshipselkatthe
predicates and the arguments of the predicates. The retetionrcar is defined like
this: train2car 2 1:train *:#car * cwa . Here “1”" and “*" denotes the
cardinality (“one-to-many”), “#” defines an output argument (othegviigss an input
argument) and since there are two argumentsai n and car , this is denoted by
“2". ** cwa” is only of historical relevance (used in the PRD files used INUS to

define the hypotheses language).

- Feature generationFirst-order features are constructed recursively, which function

as input to the propositional learner.

2SINUS is freely available from http:/iwww.cs.bris.ac.uk/home/rawlessginu
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- Feature reductionlrrelevant and low quality features, according to a quality measure,

are removed.

- Propositionalization A table containing the propositional data is constructed and can

then be output to a file on which a propositional learner may work.

From this brief sketch it is easy to see that SINUS is relatively easy to iteegr@ the
framework. There are basically three steps: the first is to export théoredhdata to a
fitting input format, where each table represents a predicate. The dégdofahe rela-
tionships can be easily determined by counting and comparing the keys of thbteare
related. Secondly a Prolog engine is invoked to run SINUS with the givienadtal then to
output the propositional data. Finally the output from SINUS could be pasiessed in

the framework again.

3.4 Stochastic Discrimination

Another approach to propositionalization is based on stochastic discrimieatoteveloped

by [Kleinberg, 2003]. The application to Machine Learning given in fififager & Holmes,
2003] will be outlined shortly here. In stochastic discrimination normally thodsaf fea-
tures are generatealmostat random and then during prediction the class with the highest
vote over all examples (by using equal-vote) is predicted. The featteemdy generated
almostat random since only features that cover more examples than the defeadhfage

for the class are used. But to achieve a good generalization it has alecettsbred that
each training example of a class is covered by about the same numbetuwé$eaven

though this may not always be possible in practice.

Figure 3.2: Chemical fragme@ C=C

This method can be used for generating propositional features frogtistaldata, e.g.
chemical domains like mutagenicity or carcinogenicity, where we have labedptig) But
instead of generating random sub-graphs the search is guided ts/dramples (an idea

borrowed from Progol [Muggleton, 1995]), i.e. to extend a featutlg lterals which are
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true for this focus example are used. For each class a user define@mnoihelxamples are
chosen with a coverage that is below average. A randomized list of allifesef the graph
is generated in such a manner that all but the first entry are connectetb&staone prior
entry in the list. Every prefix of this list is therefore a connected subfgodiphe example.
Finally every sub-graph is either checked whether it appears in evaph@r the number
of unique instances of the sub-graph in each graph is counted. Aagdalthe result of
the previously mentioned paper, the latter setting produces better results.

Stochastic discrimination could be integrated into the Proper framework, irsctheo-
retically possible to decompose the sub-graphs into SQL statements andguesqulries
to the database. The user only has to define relations between tablesthaegant for
discovery, e.g. the atom-bond-atom relation. From this relation-fragmenpdassible to
generate graphs that can be represented as SQL statements. E.gyrttenfria Figure 3.2
could be written as the statement in Figure 3.3, which is depicted in Figure 3t4vBua
though the search in the database could be optimized by introducing indicesjstisgill
a huge number of join operations necessary, which makes it infeasibienfgper or more

branched fragments.

sel ect
count (di stinct al.atomid)
from
atom al, atom a2, atom a3, atom a4, bond bl, bond b2, bond b3, bond b4
wher e
al.atomtype = 'c’
and al. bondid = bl. bond.i d

and bl. bondtype = '-' and bl.split.id = b2.split.id

and a2.atomtype = 'c’
and a3.atomid = a2. atomid and a2.bond.id = b2. bondid and a3. bond.id = b3. bond.i d

and b3. bond_type = =" and b3.split_.id = b4.split.id

and ad.atomtype = 'c’
and a4.bond.id = b4.bond.id

Figure 3.3: Chemical fragment as SQL query.
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Figure 3.4: Graphical representation of the SQL query bihved predicate is split into two,
since it contains twat ons (thespl i t _i d identifies the entries that belong together). The
grey boxes depict the building blocks for longer and branched fratgmen
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Chapter 4

Experiments

This chapter will show the feasibility of the presented approach to propasiization and
generation of multi-instance dataor this purpose several well-known benchmark datasets
will be used. First the different datasets will be introduced and whatdfisdttings are used

for the experiments. Afterwards the results will be presented and destirssgletail.

4.1 Datasets and Settings

For the experiments the following well-known benchmark datdse¢se used (the particu-

lar names of the datasets used in the tables and figures are also mentioned):

- Alzheimer’'s diseaseThese are actually four related problems trying to predict low
toxicity, high acetocholinesterase inhibition, good reversal of scopolaméheed
deficiency, and inhibit amine re-uptake:

alzheimertoxic, alzheimercholine, alzheimescopolamine, alzheimeamineuptake

- Drug-data designThese are the well-known pyrimidine and triazine datasets, exam-
ples of the so-called Qualitative Structure Activity Relationship (QSAR) @gugit to
the prediction of drug propertied:

dd_pyrimidines, ddtriazines

- East-West-Challengd he well-known trains dataset:

eastwest

- Genes From the original KDD Cup 2001 data four datasets were created: avne f

predicting the function of a gene (without the localization information), amaihe

!For the experiments version 0.1.0 of the framework was used.
2The web resources for the datasets can be found in Appendix C.
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with the localization of a gene as class. From these two non-binary datasdigay
rized versions were created (cf. [Krogel et al., 2003]): whethezraeds responsible
for a protein that is responsible for “cell growth, cell division and DNAthesis” is
one, and the other one whether the localization of the produced gene isdbesior
not:

genesgrowth, genegrowth bin, genesucleus, genesucleusbin

Musk 1/2 Instead of using one flattened table, a target table, containing only the bag
ID and the class, and a data table, containing the rest of the attributesextiereted:

musklrel, musk2rel

MutagenesisThree different approaches were used to turn the mutagenesis data into
a multi-instance representation: bags either contain a) all atoms of a compoind
all atom-bond tuples of a compound, or ¢) all adjacent pairs of bourelsahpound:

mutagenesisatoms, mutagenesigidbnds, mutagenesishains

Secondary structure of proteinghe task is to predict whether a position in a protein
is in an alpha-helix or not

proteins

Suramin analoguesBased on the atomic structure and bond relationships the task is
to predict a compound being active or inactive as anti-cancer agent:

suramin

Thrombosis The thrombosis prediction task from the PKDD2001 Discovery Chal-
lenge:

thrombosis

After importing the datasets and generating propositional and multi-instanaefrdan

the relational model, one gets the figures shown in Table 4.1. There omsedfiddtailed

overview about the number of classes, the number of attributes that veeheged (includ-

ing the class attribute and in case of multi-instance the bag attribute), the nuimbeorls

in the result table and how many instances and bags respectively thisaefmeSince the

number of attributes varies depending on the type of post-processingutit@mne of the

different settings, one with and the other ones without post-processimgijven.

3Note: The data generated by the Joiner is actually propositional and not multidesiia these cases (see
Table 4.1).
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Dataset Classes | Attr. (Sett. 1) | Attr. (Sett. 2-6) Records Inst./Bags/Bags
alzheimeramineuptake 2/2/2 237/62/298 237/40/276 686/686/686 686/686/686
alzheimercholine 2/2/2 251/70/320 251/40/290 1326/1326/1326 1326/1326/1326
alzheimerscopolamine 21212 237/60/296 237/40/276 642/642/642 642/642/642
alzheimertoxic 2/2/2 251/70/320 251/40/290 886/886/886 886/886/886
dd_pyrimidines 2/2/2 95/90/184 95/8/102 1762/1762/1762 1762/1762/1762
dd.triazines 2/2/2 125/118/242 125/10/134 | 23650/23650/23650 23650/23650/23650
eastwest 2/2/2 66/26/91 66/11/76 20/213/213 20/20/20

genesgrowth 13/13/13 27/49/138 27/12/40 | 4346/14238/14238 4346/4346/4346
genesgrowth.bin 2/2/2 27/49/138 27/12/40 | 4346/14238/14238 4346/4346/4346
genesnucleus 15/15/15 27/49/134 27/12/40 | 4346/14238/14238 4346/4346/4346
genesnucleusbin 2/2/2 28/49/134 28/12/40 | 4346/14238/14238 4346/4346/4346
musklrel 2/2/2 | 1661/168/1828| 1661/168/1828 92/476/476 92/92/92

musk2rel 2/2/2 | 1661/168/1828| 1661/168/1828 102/6598/6598 102/102/102
mutagenesisatoms 2/2/2 26/12/37 26/5/30 188/1618/1618 188/188/188
mutagenesisbonds 2/2/2 56/18/73 56/9/64 188/3995/3995 188/188/188
mutagenesisghains 21212 88/26/113 88/13/100 188/5349/5349 188/188/188
proteins 2/2/2 22/22/43 22/3/24 1612/1612/1612 1612/1612/1612
suramin 2/2/2 151/22/172 151/9/159 11/2378/2378 11/11/11

thrombosis 4/4/4 293/91/394 293/65/357 770/86452/86452, 770/770/770

Table 4.1: Overview of the produced data, where each column showsathesvfor
RELAGGS/Joiner/REMILK.

Setting | Classifier Parameter Nominal Attributes Missing Values
1 | unpruned REPTree, -P-MO0, NominalToTrueBinary| for binarized attr.
for genes* LogitBoost/DecisionStump | for genes*: default replaced by “0”
2 | LogitBoost/DecisionStump default/default - -
3 | unpruned REPTree -P-MO - -
4 | LogitBoost/unpr. REPTree max depth|l default/-P-M0-L1| - -
5 | LogitBoost/unpr. REPTree max depth |3 default/-P-M0-L 3| - -
6 | AdaBoostM1/pruned J48 default/default - -

Table 4.2: Settings for the experiments. In case of multi-instance data theayipsfr was
used with default parameters.

Attribute | NominalToBinary | NominalToTrueBinary
att att att=a att=b
a 1 1 0
b 0 0 1
? 0 0 0

Table 4.3: Different behavior of the originBlominalToBinaryfilter and the modified ver-
sion, if nominal attribute contains only two distinct values (“att” is the name oftaengle
attribute). Missing values are replaced with “0”".
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Based on this data several settings of experiments are executed as listdaderl 2. All
the experiments were run on Intel Pentium 4 machines with 2.60GHz and 5b2RBM,

where the Java Virtual Machine (JVM) was limited to 1.2GB of heap size (missitries
in the tables and figures, denoted by “-” or missing bar, mean that the Jvislgut of
memory).

The following learning schemes (in alphabetical order) were used:

AdaboostM1A standard boosting algorithm by [Freund & Schapire, 1996].

missing values.

- J48 The Java implementation of Quinlan’s C4.5 (cf. [Quinlan, 1993]).

1998].
- REPTree An unpruned REPTree is a decision tree built with info gain.

In all experiments 10 runs of 10-fold stratified cross-validation was,us#g oneastwest

DecisionStump 1-level decision tree with a binary split and a separate branch for

LogitBoost Performs boosting based on additive logistic regression [Friedman et al.,

andsuraminLeave-One-Out was employed, due to the small amount of instances ©r bag

respectively.

For turning nominal attributes into “binary” ones, a modified version ofNlbeninalToBi-
nary Weka filter was used. This filter creates a new attribute for each distinat wdla
nominal attribute, whereas the original filter does this only for nominal attstihtst have
more than two distinct values, otherwise the attribute is thought to be alreaaly.bifa-
ble 4.3 shows the different outcome of the original and the modified filter if éimepunter
an attribute with only two distinct values.

Here one can simulate the closed-world-assumption of imported Prolog das®tting
the missing values to “0”: if a feature is not explicitly mentioned then it is me&sing

(“NULL"), but not existing(“0™).
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4.2 Results

The following sections discuss the previously introduced experiment seftindgetail, the

intention of each setting and the outcome.

4.2.1 Setting 1

For a fair comparison (cf. Figure 4.1 and Table 4.4) between the diffatgarithms an
unpruned decision tree was chosen. Not J48, since it still performs gex@uning, but
REPTree. Pruning was not used, because it is sensitive to the absalugeo§ each in-
stance’s weight, an effect that makes it harder to provide a fair congpai®r a simulation
(at least on single-instance data) of the RELAGGS “coun®NJT _VAL column) of nom-
inal attributes in adjacent tables thminalToTrueBinaryilter was used in combination
with replacing all missing values in such binarized columns with “0”. It is onlgSilole to
simulate this behavior to a certain degree: no aggregation takes place irgettaaaie and
therefore RELAGGS does not perform any binarization there. The diliehe other hand
still transforms every nominal attribute.

Due to the method of dealing with missing values using fractional instances|fQuin
1993], the unpruned decision tree literally “explodes” for data with nonattabutes that
contain lots of missing values (because REPTree generates a copy aftamcawith a
missing value for each branch, and does so simultaneously for eadhhrahis happened
in case of thegenes* datasets, where it was not possible to create a tree that fitted into
memory. In this case the ensemble LogitBoost/DecisionStump was used, ty gesaits.
Apart from theAlzheimery the genesnucleus* and thethrombosisdatasets, the three ap-
proaches perform more or less equal. The difference in case Afzheimersingle-instance
datasets between the RELAGGS and Joiner data is due to missing valuesisidisciissed
in detail in Section 4.3. In Setting 2 a different outcome can be seen fgetiesnucleus*
datasets. In other experiments, where the attributes were ordered ia sagtthat first the
Joiner ones and then the RELAGGS ones appeared, it was hypothésrdide order af-
fected the learner. Since the order is now reversed, first RELAG@®han Joiner, and the
outcome is still unchanged, this can be ruled out. The differences iea$t@vesand the
suramindatasets are not of such importance due to the high standard deviatior58R40

(which holds true for all the following settings).
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Figure 4.1: Comparison for Setting 1.
Table 4.4: Accuracy and standard deviation for Setting 1.
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4.2.2 Setting 2

Setting 2 uses an ensemble consisting of LogitBoost and DecisionStump, itlottefault
settings (i.e. 10 iterations for the boosting algorithm). The results can bd foigure 4.2
and Table 4.5. In contrast to Setting 1 no post-processing of nominalsvedok place,
since the DecisionStump handles missing values differently. It treats the misdires as
another value, whereas decision trees like REPTree treat them asamkno

With this setting there are basically no differences in the result for the eliffepproaches,
only on themutagenesis3 datasets where the MIWrapper produces worse results.
Comparing the results for thgenesnucleus* datasets with the ones from the previous
setting (binarization of nominal attributes and replacing missing values) nawraé ap-
proaches perform equally well. This dataset is apparently sensitive aoization and/or
replacing missing values.

Thethrombosisdatatset, in case of the Joiner data, also profits from the different hgndlin
of missing values. This dataset contains a lot of missing values, especially imothinal
attributes. By treating these as a separate value, one gets a nearly pErfesentation
(above 99% and standard deviation of less than 1%). That the combindttbe two
datasets (REMILK) does not fit into memory is not surprising due to the that, the
dataset has 357 attributes and 86,452 instances, resulting in a matrix wit3 3886ells.
musklrel is a dataset where the Joiner has a slight advantage compared to the ather tw
approaches, even though this dataset contains no missing values at alaggiegation

apparently loses some important information crucial to the predictive power.
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4.38
3.17
5.33
3.60
2.92
1.72

.30

75.00 + 4442|6000 + 50.26| 80.00 + 41.03

31.69 =+

1.48
0.58
1.94
1
14.93
12.71
9.44
7.31
8.64
2.80

REMILK

3.75| 8593 &+
3.17 | 76.59 =+
518 | 7426 =+
429 | 81.67 =+
296 | 83.12 &+
1.72 | 66.27 =+

1.44| 31.53 =+
.85

0.51| 8434 +
2.00| 76.67 =+
126 | 87.30 =+
13.83| 77.30 =+
12.20| 78.66 =+
3.05| 76.67 =+
6.80 | 83.93 +
8.90 | 84.40 =+
3.67 | 59.86 =+

0

Joiner

3.86 | 8543 =+
3.28 | 76.59 =+

Datasets

5.40 | 7483 =+
42

3.67 | 80.33 =+
292 | 8314 =+
114 | 66.27 =+
155 3218 =+
042 | 84.13 =+
209 | 7475 =+
143 | 86.44 =+
15.10 | 81.67 =+
9.07 | 67.02 =+
8.36 | 72.87 +
8.25| 73.02 =+
3.50 | 60.29 =+
52.22 | 63.63 + 5045|5454 + 52.22
1.38| 99.33 =+

12.66 | 78.90 =+

RELAGGS
7793 =+
73.47 +
79.90 =+
83.12 =+
66.15 =+
84.26 =+
76.18 =+
87.20 =+
77.98 +
78.56 =+
76.48 =+
84.28 +
85.21 +
59.82 =+
5454 =+
97.38 =+

Figure 4.2: Comparison for Setting 2.
Table 4.5: Accuracy and standard deviation for Setting 2.

alzheimeramineuptake | 84.46 +

alzheimercholine
alzheimerscopolamine

Dataset
alzheimertoxic
dd_pyrimidines
dd.triazines
eastwest
genesgrowth
genesgrowth bin
genesnucleus
genesnucleusbin
musklrel

musk2rel
mutagenesisatoms
mutagenesis®onds
mutagenesisghains
proteins

suramin
thrombosis




4.2.3 Setting 3

Like in Setting 1 this setting uses again an unpruned REPTree. But this timenstotra-
ing of nominal attributes and no replacing of missing values takes placeigcifi:eM.3 and
Table 4.6). The purpose of this setting is to explore the possible effecte dfaiminal-
ToTrueBinanyfilter and the replacing of missing values with “0”.

Of course, problems arise from the use of an unpruned decision tremsénaf larger
datasets, likegenes* andthrombosis Even after removing all the nominal values with
a lot of missing values from thgenes* the JVM runs out of memory working on the
Joiner/REMILK data. Theahrombosisdataset with its 80,000+ instances also contains
many nominal attributes with a high percentage of missing values, resulting ircia8fies
because of insufficient memory (i.e. JVM heap size). That the singlenitestdatasets
Alzheimemwith their limited number of instances (around 1000) do not produce anitses
for the Joiner data can only be explained with the huge amount of missingsvalost of
the attributes have.

Table 4.7 shows what percentage of attributes in a dataset have at ¢fnash percentage
of missing values, e.g. in tr@dzheimertoxic dataset 81.82% of the nominal attributes have
a missing value portion of more than 75%. The datasets shown in that tablgevemated
with the Joiner.

Thesuramindataset also runs out of memory in case of the Joiner data, which is apipare
linked to the fact that of the 9 attributes (including the class), 5 have 53% efngisalues.
Especially one nominal attribute, the atom identifier, has more than 1100 distines.

A surprising finding is the significant increase for the multi-instance data iddtigazines
dataset (standard deviation is only around 0.5%), whetdgyrimidinessuffers compared
to Setting 1. Since there are no missing values in these datasets, the reab@nust lie

in the binarization of the nominal attributes with tNeminalToTrueBinaryilter.
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Figure 4.3: Comparison for Setting 3.
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Table 4.6: Accuracy and standard deviation for Setting 3.
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Table 4.7: Overview of portion of attributes with missing values in dfeheimertoxic,
genesgrowth and thrombosismulti-instance datasets (generated with the Joiner).

It is

checked how many attributes (in percent) have a percentage of missieg eddave a cer-

tain threshold. This is done fa@\ll attributes and only foNominalones.
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4.2.4 Setting 4

Setting 4 uses LogitBoost with default parameters like Setting 2, but instetakiol
DecisionStump as the other part of the ensemble it uses a decision tree RifeslREwith a
maximum level of 1. Again there was no post-processing of nominal attribagsissing
values. The goal of this experiment is to check, whether the differardlimg of missing
values and different treatment of nominal attributes has an impact on thiesres

REPTree, like already mentioned in Setting 2, treats missing values as unkwbereas
the DecisionStump treats them as a separate value and creates an extrddrrianFurther-
more, the REPTree uses multi-way splits on nominal attributes in contrast to the
DecisionStump, which performs binary splits on them.

The REPTree runs into memory problems once again, even though noteae savin
the previous setting. Here seveganes* datasets generated by REMILK, as well as the
thrombosigdataset, would consume more memory than allowed, i.e. 1.2GB. In case of the
thrombosisdataset not even the multi-instance data produced by the Joiner sutceede
building a model and running cross-validation, failed running out of memory

As one can see in Figure 4.4 (and the corresponding Table 4.8), dllzheimerdatasets
perform a little bit less well, as well agenesgrowth.*. On the other hand, therug-data
datasetsgdd_pyrimidinesanddd._triazines experience a boost in accuracy of over 10%, an
indicator that for these datasets the treatment of nominal attributes is quidigiqseissing
values are of no concern here, since the datasets do not contairtagd. shows that the
binarization that RELAGGS performs on nominal attributes is somewhat obdvistage
when using such a shallow tree. In such cases the un-binarized multi-iestatecseems

to represent the better approach.
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77.88 +
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Figure 4.4: Comparison for Setting 4.
Table 4.8: Accuracy and standard deviation for Setting 4.

alzheimeramineuptake | 80.85 +

alzheimercholine
alzheimerscopolamine

Dataset
alzheimertoxic
dd_pyrimidines
dd.triazines
eastwest
genesgrowth
genesgrowth bin
genesnucleus
genesnucleusbin
musklrel

musk2rel
mutagenesisatoms
mutagenesis®onds
mutagenesisghains
proteins

suramin
thrombosis




4.2.5 Setting 5

This Setting uses a logit-boosted REPTree with a maximum level of 3 insteat\6ftithis

it is possible to explore how important the interactions among attributes areefalifar-
ent datasets. Since an unpruned REPTree grows quite big in case ofhattributes with
missing values, another preprocessing step was performed fpeties* datasets: all nom-
inal attributes with at least 33% of missing values were removed. Fay¢hes _r el ati on
relation these were the attribute$ ass , conpl ex and noti f .

The results of this batch of experiments can be found in Figure 4.5 and4&hle

Like in Setting 3, thesuramindataset crashes with @&utOfMemoryException. AREPTree
with a maximum level of 3 is apparently already to deep to process the multi-vatued
tributes with many missing values. For theombosisdataset only the RELAGGS data
works with these settings.

In comparison to the REPTree from the previous experiment with just oeg tbe accu-
racy of RELAGGS increased significantly (roughly 10%) for &kleheimerand theDrug-
data datasets. The difference between RELAGGS and Joiner data incréarses
alzheimeramineuptakeand alzheimerscopolaming but vanishes foalzheimercholine
The one foralzheimertoxic does not change remarkably. The findings Alrheimey re-
garding the accuracy, are linked directly to the size of the datasets: sneatihesets result
in a decrease of accuracy and greater ones in an increase, an inticatgarfitting.

In contrast to that, botgenesnucleusdatasets drop in their accuracy significantly, the in-
creased depth of the tree apparently introduces overfitting. This overfitso happens to
the classifier built on top of the REMILK data fgenesgrowth since the accuracy for the
RELAGGS data is slightly worse and the one for the Joiner data is a little bit b&tter.
expected outcome was that the differences would cancel out each other

The Mutagenesisiatasets improve, but not so dramatic in case of RELAGGS. The multi-

instance data on the other hand profits more from the increased depthtiifehe

a7



ORELAGGS

E Joiner

EREMILK

e e T
P R

]
L e

A A A SIS
e

e

555

I A A A A ST |
O OO ORI

A |
OO

O SIS
e Ty

e P ]
O O OO OO

T o

ORI

A
B T T T R

T =
DR

e ]
B e ]

DN

]
E e

DN

B e ]

AR

A A
I O OO OO

I A S S SIS
O OO ORI

A S ST |
N 2 O OO ORI

100

70 A

30 H

20 A

10 A
0

60 11
50 11
40 4

9% ul Koeinooy

Datasets

Figure 4.5: Comparison for Setting 5.
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Table 4.9: Accuracy and standard deviation for Setting 5.
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4.2.6 Setting 6

The final experiment setting consists of J48 boosted by AdaBoostM1. cbhibination
was chosen since J48 is a commonly used decision tree learner and bpostiitigs, in
general, better results. The results (cf. Figure 4.6 and Table 4.10})lfiergetting are also
used in discussions of performance regarding tree sizes and runtimemlaieSection 4.4.
RELAGGS achieves the best results on &kieheimerdatasets, whereas the MIWrapper
performs not as well as in the previous setting. Considering Table 4.11eitio8 4.4)
showing that the average size of trees generated from the RELAGGSsdataut one
maghnitude larger than the ones for the Joiner data this fact is not suprisaly ahe
combination of both datasets results in a model with an accuracy as good 2GRS,
but with smaller trees.

All three approaches work surprisingly well on td pyrimidinesdataset. In case of the
dd.triazinesdataset, the JVM crashes with @utOfMemoryException during the execu-
tion the 10 runs of the 10-fold cross-validation and not already duriildibg the model.
Exceptions happened also to the binarized versions @fehedatasets and thterombosis
dataset, running on the REMILK data. Fgenesgrowththe classifier quit on the Joiner
data.

An interesting result was the increasing accuracy on gbeesnucleusdataset from
RELAGGS to REMILK, where the combination of RELAGGS and Joiner dadapces the
best result of the three (the outcome that was hoped for in generasénadggenesgrowth
(RELAGGS/REMILK) the tree is always pruned back to one node, ptiedi¢he majority
class.

The suramindataset normally produced accuracies around 50%. The best resulis w
always achieved with the Joiner data, but with J48 the RELAGGS data astaevaccuracy
of more than 70% (still, the high standard deviation of roughly 50% persists).
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Table 4.10: Accuracy and standard deviation for Setting 6.
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4.3 Comparison of RELAGGS and Joiner

During the experiments the following question arose: why does the dataiqgeddy
RELAGGS for single-instance problems, like tAizheimerdatasets, achieve better results
compared to the one created by the Joiner, even though there was agatggr happening
(depicted in Figure 4.7, the bars with the suffig-all” ). In the following the necessary
steps are outlined to obtain the same results for both approaches.

The first step is to remove all the columns created by aggregate functioms tfre
RELAGGS data, leaving only those that are generatedvX . MAX is still used, since
otherwise no data from adjacent tables will be added to the result tabl@tfdrereason for
MAX is that it does not introduce any new knowledge in case of single-institaeit either
returns the only value if there is a corresponding row in the adjacent al§ULL" if not.

M N can also be used for this purpose insteadaX , since these functions return the same
value in single-instance data. The data generated by the Joiner is mobdessich a way
that all nominal values beside the bag ID and the class are transformedty attributes
with the NominalToTrueBinaryilter. Thus simulating the “counting” of RELAGGS (i.e.
the _CNT_VAL column) performed on nominal attributes (in single-instance data the count
is either “0” or “1”). But still the results differ as can be seen in Figure {#esults with
suffix “-2-no_agg”).

One difference in the data is still left: tidominalToTrueBinaryilter leaves missing values
alone, in contrast to RELAGGS that inserts a count of “0” if it cannot &nzkrtain value
in an adjacent table. By changing the missing values of binarized attributes ifoiher
data to “0” the same results can be achieved (results with sufmissingto_zero” in
Figure 4.7).

The conclusion from this comparison is that the absence of a feature ablalimforma-
tion. Especially in chemical domains a missing functional group can changadtle of

functioning of a molecule quite profoundly.

4.4 Tree sizes and runtimes

Depending on the goals, the highest accuracy might not always be shelmce. In a
time-critical system, where one always has to rebuild models within a given time limait, o
will settle with a less accurate, but faster, model. It is better to have a reaalntine. If

one is thinking of embedded systems with their limited system resources, smallelsmod
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Figure 4.7: Performance comparison of RELAGGS and Joiner on the iAleneataset (the
suffices indicate the step referenced in the text). The used classifigheveree-classifier
J48 with default values.

are preferred over larger (and possibly more accurate) ones.

The basis for the discussion is Setting 6 using AdaBoostM1 combined with Q48
datasets where all three approaches generated results are cahsldetes following the
size of the trees, the time for building a model and evaluating it, and the perfoenvh dif-
ferent database systems are taken into account. All figures are tlagawefer 10 iterations

of AdaBoostML1 (if boosting could be performed at all).

In Table 4.11 one can see that RELAGGS is producing the smallest tred 20Utimes
(on average). A quite interesting fact is that the REMILK trees only getlsne@mpared to
the RELAGGS trees, if the multi-instance data from the Joiner produces thieshtiee.
The expectation that the combination of the multi-instance data with the aggretgted
would produce the best results was not fulfilled. Most of the time (9 outipftgenerated
marginally better results than RELAGGS, but with a greater standard deviation

Based on the current results one can say that RELAGGS producesenagjéhe smaller
trees, but that seems to be quite dataset dependent (fatzakimerdatasets, the Joiner
approach creates the smallest trees).

The results in Table 4.12 suggest that RELAGGS is the fastest appmattidering the
overall running time. Even though RELAGGS and the Joiner are both fastdge same
number of cases, the multi-instance learner is only faster in case of sirstgeiie datasets

due to the smaller number of attributes it has to consider for building the modakuvid
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Dataset RELAGGS Joiner | REMILK
alzheimeramineuptake 73.60 10.89 70.50
alzheimercholine 166.80 16.63 136.00
alzheimerscopolamine 95.00 9.00 49.90
alzheimertoxic 80.80 8.60 47.40
dd_pyrimidines 14420 | 391.80 178.60
dd_triazines - | 5096.50 -
eastwest 4.00 31.40 5.00
genesgrowth 1.00 - 1.00
genesgrowth bin 97.14 | 186.80 -
genesnucleus 327.25| 1317.67 1082.25
genesnucleusbin 161.90 | 410.70 -
muskZlrel 11.00 44.80 13.00
musk2rel 9.60 | 182.80 31.00
mutagenesisatoms 22.20 37.57 37.00
mutagenesisbonds 14.00| 109.60 33.00
mutagenesis8hains 13.60| 183.20 35.00
proteins 6.56 14.33 6.56
suramin 3.00 15.20 5.00
thrombosis 19.20 | 600.00 -
# Times Smallest Tree 10 4 1

Table 4.11: Tree size for AdaBoostM1/pruned J48 averaged overrd€dtes (only datasets
with results for all three approaches were considered for the “Smallest Tount).

absolutely, the multi-instance learner is slower.

Finally the performance of different database systems, namely MySQIPasidjreSQL,
will be discussed (based on Proper version 0.1.1; performed on a mobilarife/1.60GHz
with 512MB of RAM). Oracle 10g, a commercial product, could not be inetldue to
lack of disk-space. But preliminary tests with thastwestlataset (Oracle 10g is sort of an
overkill for that dataset, since the initial size for a database is more thaviBO@vealed
the applicability of the framework. The only drawback was that the databzs®not be
created “on the fly” like with MySQL or PostgreSQL, but have to be installed database

administrator (DBA) beforehand.

As one can see in Table 4.13, the version optimized for MySQL (and threref portable)
performs best. Due to modifications to the RELAGGS code, concerning tiagadf
columns (in ANSI SQL one can add only one column at a time, whereas in My@@L
can add as many as necessary) and the setting of the default valuesiercal columns
(PostgreSQL does not yet support tBEFAULT x property, it has to be simulated with a
subsequentPDATE statement), the performance drops significantly. Since PostgreSQL is
a fully-fletched object-relational database system, it seems to suffettiismverhead quite
dramatically. Given the current results one might want to stick to the optimiz&lyer-

sion, if one is not dependent on an ANSI SQL compatible system. MySQLagisears to
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Dataset RELAGGS Joiner | REMILK
alzheimeramineuptake 3408 399 1880
alzheimercholine 6409 1589 7932
alzheimerscopolamine 1687 491 4888
alzheimertoxic 3096 838 8745
dd_pyrimidines 3613 75 2874
dd_triazines - 1023 -
eastwest 2 4 1
genesgrowth 1845 - 8647
genesgrowth.bin 15018 | 200679 -
genesnucleus 9618 | 119363 367823
genesnucleusbin 18763 | 206016 -
musklrel 811 1240 445
musk2rel 1393 | 59538 54427
mutagenesisatoms 37 41 288
mutagenesisbonds 60 510 3106
mutagenesis8hains 128 1385 3964
proteins 435 3 56
suramin 2 39 32
thrombosis 524 31777 -
# Times Fastest 6 6 2

Table 4.12: Runtimes in seconds for AdaBoostM1/pruned J48 (i.e. time to baildaksi-
fier for printing the tree and to execute 10 runs of 10-fold CV). Only adtawith results
for all three approaches were considered for the “Fastest” count.

Dataset MySQL (optimized) MySQL PostgreSQL

Imp. | REL | Joi. | REM | Imp. | REL | Joi. | REM Imp. REL Joi. REM
alzheimertoxic 8 30 10 14 8 222 14 17 157 359 23 17
dd._triazines 170 9 | 10 21| 158 | 796 | 11 11 | 3475 | abrtd | abrtd | abrtd
eastwest 1 1 1 1 3 6 2 1 14 11 2 1
genesnucleus 19 6 6 339 21 12 4 | 1235 661 80 8 15
musk2rel 73 53 3 220 69 | 2136 4 col 401 col 9 col
mutagenesis8hains 16 3 0 9 15 7 0 13 267 21 2 5
proteins 7 3 0 13 6 6 0 12 255 89 1 2
suramin 11 4 1 6 9 51 1 6 - - - -
thrombosis 593 col 31| 1478 | 594 col 25 - - - - -
Table 4.13: Runtimes in seconds for different database systems (Imp. srtimp

REL = RELAGGS, Joi. = Joiner, REM = REMILK)Note: “col” means that too many
columns were produced (but not necessarily a program terminatidmrt"ahat the pro-

cess was aborted, because consuming too much time, and

executed at all.
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be more stable compared to PostgreSQL (if that statement is possible, babedexpe-
rience with relatively small databases), PostgreSQL e.g. just hung sometiithesut any

apparent reason, while importing takzheimertoxic data.

4.5 Summary

Summarizing the above discussed experiments, one can say that evam REILJGGS is

not the fastest approach for generating the data used as input fda#isefier (the Joiner
beats RELAGGS quite often, cf. Table 4.13), the smaller amount of dataipedddue to

the aggregation speaks in favour of RELAGGS. The memory usage fomaah proposi-
tional classifier based on RELAGGS data is considerably less than thdtéf, Msing the

data generated by the Joiner or REMILK. This is crucial if one consideger datasets,

like thrombaosis even though this is, compared to tables in “real world” databases, quite a
“small” table. There single tables (before the propositionalization takes)ptacehouse
several million rows, instead of only 80,000+. The REMILK approach is pteblematic,

due to the huge amounts of space it needs for the combination of both tableppfoach

to tackle these space issues will be presented later in the Conclusion in Section
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Chapter 5

Conclusion and Future Work

This thesis presents an attempt to develop a practical database-oriembesvirk for dif-
ferent propositionalization algorithms. The flexible and easy-to-upgiadegn allows for
the future integration of other propositionalization algorithms in addition to REGAG
Thanks to the graphical user interfaces one can easily set up newinegpes. Proper
makes standard propositional and multi-instance learning algorithms avadabgdtional
learning. The experiments given in this thesis have shown the feasibility aiphimach.
The most fruitful direction for future work involves algorithmic improvemertsficiency.
Proper’s current approach of generating all the data beforehassentially bottom-up
approach, its main drawback being a potentially large memory requirement.sgibp®
workaround could be top-downapproach that generates one final tuple after the other,
potentially recomputing intermediate results over and over again, but at a radobed
total memory cost. Ideally such an incremental Proper variant would alsouyged to
incremental propositional learning algorithms to take full advantage of pagessavings.
A further optimization concerns the replacement of expensive completeljpitie propa-
gation of only keys instedd

For better portability of Proper the database querying must be fully AN&! &npliant,
which will require some changes, e.g. the replacing of the already mentiog&DM
extension of the standard deviationSTDDEV ). Also the support oforeign key relations
by the JDBC driver would make the auto-discovery function for relaticatavéen tables
more efficient and the naming convention, i.e. same name in two tables defielesi@r
between them, irrelevant. A side effect would be a more convenient wagseimbling a
relation tree.

Due to the promising results on benchmark datasets, the next step will beydPapper to

LA tool for doing this is provided with version 0.1.1 of the framework.
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a “real world” system:TIP — theTourismInformationProvider [Hinze & Voisard, 2003].
Standard machine learning algorithms could replace the simple threshold®useaking
recommendations to tourists, based on data supplied by Proper’s algorithms.

To conclude this thesis one can say that propositionalization is by all meaasilé
approach to learn from relational data. By using the RELAGGS approaehis able to
produce compact representations of the underlying relational data wahandoning pre-
dictive power. Even though RELAGGS takes longest (in the current impletien) in
generating the data used as input for a learner, the building of a clagsifigeedictions is
a lot faster compared to the other approaches, Joiner and REMILKkgharihe smaller

amount of data being produced for the learner.
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What do a dead cat, a computer whiz-kid, an Electric Monk who believesdhd ig pink,
guantum mechanics, a Chronologist over 200 years old, Samuel Tagleridije (poet)
and pizza have in common? Apparently not very much;

...and that's where machine learning comes in.

— freely adapted from Douglas Adams






Appendix A

Implementation

In this chapter a brief introduction to the Proper framework will be givenstly, how
execution takes place and then secondly the classes (in UML notationdtivattfe frame-

work.

A.1 Execution

The execution of a tool in the Proper framework happens in two stagésh wehdepicted

in Figure A.1:

1. Parse command line arguments specializedAppl i cat i on parses the command
line arguments (via th€onmmandLi ne class) and initializes a specializédgi ne,

i.e. transferring the parsed parameters.

2. Execution A specializedEngi ne is executed.

In case of aCommandLi neFr ane the user can interactively change the parameters and
hence influence the execution. If the GUI element is just a visual frasht@a command
line based tool, then it normally calls &ppl i cati on instance with the necessary pa-
rameters instead of initializing thengi ne itself again. This happens with th&uilder,
which only reads the ANT files and feeds the parameters intéipé i cat i on. In other
circumstances, e.g. if the element is an aggregation of several tools, it bagkdsier to
initialize eachEngi ne directly. A more detailed overview of the activities taking place can

be found in Figure A.2 and A.3.
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parses command ling
arguments

CommandLineFrame

" set parameters . . .
parses command line Application P - Engine performs exacution basad
arguments on parameters

Figure A.1: General overview of the flow of parameters inside the framewo

2 app:Application engine:Engine

User

starts ¢l ass with arguments

initialize(args[]) (parsing args)

print parametes

process (sefting engine params)

boolean:= execute

initialize

executing classspecific code

boolean= execution result

termination

e

Figure A.2: Execution of a command lidgpl i cati on.
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E frame::CornmandLlineFrarme

A
Uzer
|
starts ¢lass with arguments -
-
initialize
nfargs[) (parses command line args)
print parameters
beforeCreate (class-specific code)
createFrame
afterCreate (classspecific code)
termination
e ey
T

Figure A.3: Execution of &omrandLi neFr ane - the execution of akEngi ne is omit-
ted.






A.2 Class Diagrams

In the following most of the classes that are part of the Proper framearerkhown with
their most important methods and members. This overview is by no means contplete,
only purpose is to provide the big picture of the framework. The order seda@n the

package structure.

Packagepr oper . app

This package contains classes that can be started from the command hnparameters
that are provided will be interpreted and passed on to a specidizgdne (cf. page 70)

instance.

Amerare it Obyect Daizbasedpplicafion

Apolicafion
+ printDescription : woid

cl: CommandLine + printUzaged) : void

# initEngine(Engine) : woid
printCrescriptioni) : vaid
printUzage) : woid

parameterEmron]) : woid
zetCommandLine/CommandLling) : woid Experi mentar
chediCommandLine) : void
setfrgs(String ) woid

runi) ; woid

runiString ]y : void

I
process]) :woid
intEnginelEngine) : woid
toXhiL): Element fester the command
fremXMUElement) : veid -} T~ L line interface for
toString() : String & prece=gs bocm the TesterEngine

*®

the command line
interface forthe

# process):boolean [|TT77T77T
Exparimenter-Engine

o ™ EF 4+ o+

Classifier

the command line
process) : boolean interface for the
Classifier-Engine

*

Standalone ArffCornparer Jobs

# procesa)): boolean # procesm): boolean ant: Ant

process]) : boolean

getProperies : String[0
getlobs] : String]
processSting) : boolean
=zave(String) : boolean

generates Jobs fo
the JobServer

o+t o+ om

creates a "standalone"
wersion of a clasz, i.e.
extracting all
neceszany ¢laszes and
chaning the padiage
structure

compares bwo
ARFF files and
can create C5Y
output
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creates databases

the command line
for the i

forthe
Imparter-Engine

printsthe
relationsin a
databaze

Databases Import Relations
# process): boolean| # process) : boolean| # process(): boolean|
RELAGGS
the command line

# processt: boolean]] | interface for the
the command Export RelaggsEngine
line interface for L------

- i # process]): boolean|
the Arffer-Engine process() Amslication
\ﬁ Oatahasedgalication

MILKE

printDescription) : void ﬂ'————___ the command line

+  printUsaged : vaid # process): boolean| interface for the
/ initEngine(Engine) : vaid Flattener-Engine
E=gger

e proces) : boolean|
REMILK b

_______ the command line
Reducer Fropagation # process): boolean| e e
Rehilker-Engine

T

*®

the command line
interface for the
BagArterEngine

# process): baslean # process): boolean

transforms a tree
little helperfor deleting structure of 3
rovs in a table database into 2

starscheme

66



Packagepr oper . cor e

Most classes are derived from the clBs®per Cbj ect , which contains essential methods
for output and debugging. The frames in Proper (cf. page 74) pedkilsame functionality

due to the implementation of th& oper | nt er f ace.

Proper Object
winterfaces
te=plies Pragerrfeface
+  addListenenProperinterface] : void +  addlistenenPmpemtiedzes)  void
+ remowelistenenProperinterface] : void +  mwovelisterenfmpedriedzoe) - void
+ getlistenera) : Wactor +  getlisterers() . Vector
+ notifyListenenProperinteface) : vaid + motifylisterenPmpetiedzes) © uoid
+ zefwerhoseString(Sting) c woid =~ fFroc------------o [+ setlesoss Sting (Siag)  wid
+ getWerboseString : String + getledose Stdmg () - Shicg
+ getWerbose) : boolean +  getlemose() : boolean
+  getWerboselevel() : int +  getlesomelevs!() . int
+  setOutpulfPrintStream) : waid +  setCutoutPintstean) @ woid
+  addOutputiPrintStream) : void +  gdd CeiputiPrintStean) o void
+  printfObjects : void +  pint{Oéyect) ; void
+  printlniObject) : woid +  prnthn(Ciyect) - uoid
+ toStringl): String
zinterfaces
Argurnert Object CommandLine!nferface
+  metCommamdiime (Command Lime) & vofd
+  fiAdditionalfrg(String) : String + checkCommandiine() ; void
+  parEaeterEmmoe ©ouoid
+  prntOesodotion () o woid
+  prntlEage) ©void
+ o Shiegll o woid
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Packagepr oper . dat abase

In this package all classes can be found that are related to databass.acc

«interfaces
Lisker
+  zeiSorhoodesn) o owoid
+  getlor) Choolean
+  clean)  void
+  gedlish) ; Veoor
h -
R T
. ! -
. i "
. H b
B ! .
J B .
2 H "
. H .
- N ~
» N .
» N .
S H "
- [ F
. ! -
Databaselister Tablelister Columnlister
- zort boolean - sort boolean - sort: boolean
sortByHame: boolean - table: String
+ setSomfboolean) : waid - emecluder Buxeluder - onlyMeminal: boolean
+ getSor): boolean - onhilndexes: boolean
+  cleard) : vaid + setSort(boclean) : void - enlyPrimary: boolean
+ getlish) : Vector +  getSedd): boolean - excluder Excluder
+ szetSornByMamelboolean) : woid
+  getSetByName( : boalean + =etSorboolean) : woid
+  setExcludesString) : void + getSord): boolean
+ cleam): waid +  setExcludesSting) : woid
+ getlist) : Wectar + cleam): woid
+ getlish{String) : Wector +  getList]) : Wector
+ zetTable(String) : void
+ getTabley: String
+  toString) : String
Comparzhle Compaahle
Table Colurmn
namea: String - name: String
size: int - type: int
sontByMame: boolean
+ getMamell: String
+ getMame: String +  getType(:int
+ getSize(:int +  =etTypelint): woid
+  =zetSizeint) : woid + isMominald) : boolean
+ getSotByMame] : boolean + izintegen] : boolean
+ zetSortByMamelboolean) : void + islecimald): boolean
+ izsMumerical(): boolean
+ izhatel): boolean
+  toStringl : String

Defzultiutale Teeliode
TableTreeNode

getTablel) : Table
setTablelTable) : void
getChildTableAfint) : Table
getAllModes) : Wector

getAllTables]) : Weactor
parseTreeString(String) : TableTreelode
toTreeSting(TableTreeMode) : String
toString(): String

o+ o+t o+t o+t
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ProperOiject ProperOiject —
Connector Creator for creating il

pr— | 7| databases

Tiwer: : ring +  exist(String) : boolean

url: String + create(String): boolean|

databasze: String

user: Sting
pazanard: String

+ o+ o+t

connect() : boolean
sonnecl(String, String, Stiing, Sting, String)  boolean
disconnect() : void
isConnected] : boolean - table: String

RelationDiscoverer

- maxDepth: int
- excluder: Excluder

+ discoven) : TableTreeNode
+ leftOverTablegTableTreeMode) @ Wectar

Executor

Propertiyest +

selectString) : ResultSet
ConmeciorObject 4

update(String) : boolean

i] + count{String) @ int

# oconnector: Connectar + getRecordCount(String) : int

+ getRecordCountString, String, boolean) : int

+ getDistinctCount{String, String) : int

A +  getDistinctvaluesString, String) : Vectar

+ getDistinctualuesSting. String, boolean): Vectar

+  getConnectar): Connecter

Dropper
+ drop(String) : boolean
+ drop(Table) : boolean
+  dropWector) : boolean
+ dropAll]) s boolean
Joiner
ExecutorObject - joinType: int
# ewecutor: Executor ﬂ“———_ﬁ______ RELLh SR
+ ambigicusColumnsString, Sting, Vector) : HashSet
e oot + createdoin(String, Sting, Vector, int): Sting
+ join(String, String, String): boolean
+ join(String, String, Vector, String) : boolean
+ determineBestloin(String, String, Wector) :int
+ determineColumnsString, Sting) @ Vector
+ determineColumnsString, boolean, String, boolean) : Wectar

Modifier

+ renameTable(String, String) : boolean
+ renameColumniSting, String, String): boolean
+ deleteColumn(String, Sting) : boolean
Writer Readar Sparser
- reader Reader - table: String £ ?a:IE:. SBttri_ng A —
- field: String o neeseading B
+  setlnstancesnstances) : vaid sort: boslean N °'a|$gl'e'd_-f_3;_""b9 \ returns a stratified |
+  getinstances) : Instances - excluder Excluder i °“IVU "SIS' '_f_ d_°§ eT" sample of a table
+ writeq) - void - classified: boolean = ShULICHESTIED (booledn
+ wirite(instances)  void - fieldList: Wector - percentage: double
r - orderBy; String _ s
: - nominals: Vector R e e
: - noMulls: Vector e ZeE
i - percentage: double
|writes a + getinstances) : Instances
| :
| WEKA Instances + read0yaid
ifrom atableto a H

ifile

reads the content of
atable and creates
WEKA-Instances
from it
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Packagepr oper . engi ne

Here the classes are located that represent the actual tools, wherégepth cat i on

classes are only the parser of the command line arguments.

DzfabzseCrgine

conn: Connectar
exec: Executor

£

getConnecton]) : Connectar
getExecuton]) : Executor
+ execute(): boolean

£

Ergine

Properlyjsct

- paramz Hashtable

ilk

+  executel): boolean

il kClassifier

+  executel): boolean

il kExperi menter

+  emecute): boolean

+  setParametenString, Object) : void

+  existsString) : boolean 4

+ getParameterString) : Object

+ getStringP arametenString) : Sting

+ walueEqualsString, Object) : boolean

+  execute(): boolean

+ toSting(): String

e ka WekaClassifier ‘e kaExperi menter
+  executel): boolean +  executed) : boolean +  execute(): boolean

builds 3 WEKA
elassifier and
prints it

builds a WE KA
ol assifier und
ol aszifies
unelassified
instances

a"standalone”
version of the

Experimenter for
WFE KA
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builds a MILK
classifier and
prints it

buildz a MILK
classifier und
classifies
unclassified
instances

a"standalone"
wersion of the
Experimenter for
MILK




Arfter
transforms a R dumps a table
database with inst: Instancer 77T mTm into Zn ARFF file
tree structure into
ome with a star +  executel): boolean
scheme
'
' Ergine
i DafahaseEngine
Fema— - Instancer creates an
- eonn: Connecter T be—ao___. Instances Object
] ——=={-  exes Executor 4]_—_——_ + execute(): boolean out of the content
+  emecute): boolean of a table
# getConnecton]): Connector
# getExecuton] : Executor
+  execute): boolean
Z} EBaghrffer dumps a table
_____ into a
+ execute(): boolean multi-instance
getBagColumni) : String ARFF file

Importer S
N imports Prolaog
indewar: Indexer | and CSV files into
namer: Namer a database

+ ewecute(): boolean

Relaggs Flattener R Mil ker

=ql: =qlengine
dropper: Dropper

join: Joiner +
drop: Dropper
dizeoverer RelationDizscoverer

execute): boolean

+ executel): boolean

+ exmecute]): boolean

uns RELAGGS

runs the Joiner

vombines RELAGGS
and Joiner

Packagepr oper . gui

The main class for the GUI, that starts all other GUI tools, is found here.

ComrmaadLimreFame

frame:ApplicationFrame

windones: HashSet

initialize) : void

createlnstance;String) : ApplicationFrame
closefind o) © waid
addifindo(ChildFrame) : waid
removellfindonChildFrame) : woid
showifind o ChildFrame) : woid
getinfindowlist) : Iterator
minimizeifind o) woid

restoreiilfind o) @ waid

+ ot o+ o+t o+ o+ A

Froper

provides the main
______________ menu for
launching all
other frames

*

initialized) : wvaoid

# woreateFrame() @ wvoid
createbdenud : void
launchhdenulString) : vaid
launchilfind oo String) : woid
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Packagepr oper . gui . core. di al og

Special dialogs used in the framework.

RelzticnsDizlog ErrarBox
forseletinga | - panelRelations: RelationsPansl
"Relations Tree" - panel0kCancel: OkCancelPanel MessageBox
# initializeg) : void - Labﬂel- JL;in_el ;
; . - buttens: String .
# createDialogl) : void icon: String Infor mation specialized
text: Sting 1 }----- MessageBoxes
e with predefined
icons
#  createbialogd : woid ’.”
+ show) :woid -
FroperDizlog +  getPrassedButton() : int QuestionBax
- parent: ProperFrame
approved: boclean
J0iElog
+ getParentFramel : ProperFrame
———# initializeq) : woid
# oreateDialog) :veid DatabaseDialog
# resizeDialog) : void —h
+ refresh() : void - panellB: DatabaseFanel )
+ close(): void - panelOKCancel: OkCancelPanel fooooooo L“”tsi'“""tg;
+  approved() : boolean "“’ EES A0 S
+  show : void # createDialog) : void caiumn
+ show) :woid
ListDizlog EditDialog
displays alistof | ____._| - listems: JList - areaTest JTedres
elementsichoices - panelOkCancel: OkCancelFanel - panelOkCancel: OkCancelPanel .
tet: Sting  froeees far editing test
# createDialog) :wvoid - editable: boolean
# initialize) : void
#  createDialogd) : void
JFileChooser FileChooser Bug-Fix: entering a filename by
. o Femeeee-- hand and hitting Return results in
] + showSaveDialogiCompanent) - int a NULL in the getfileCrmethod of
the nomal JFileChooser
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Packagepr oper . gui . cor e. event

The package folLi st ener and Event Obj ects .

EwertObject
Connector Change Event CurrentDir ChangeEvent SizeChangsEvent
- conn: Connestor - curentDir: File - zize: Dimension
+ getConnector): Connector + getCumrentDin]: File + getSize() : Dimension

the size of
somponent did
change

ifthe directony in
a FileTextField
changed

propertiesz of a
Connectar-Instance
were changed

winterfaces ainterfaces winterfaces
CorrecforChangelisfoner CurrerilinChangelisfonar LizeChangelisfoner

e rtirGharged (CumentOirChang e Evert) - woid + sizeChanged (SizeChangelwent) & void

+ commectorCherged (GonrechorChange Event) - woid +

winterfaces
CEvenflisferer
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Packagepr oper . gui . core. frame

The frames that form the basis for all frames in Proper are located here.

DurnrnyFrarme

uzed for Dialogs as
Dummy-Parent -
othemise the
Application doesn't
terminate!

JFrame

ProperFrante

R

addListenenPropernterface) : woid
removelistenefFroperntaface) : void
getlisteners]) : Wectar
notifyListenenProperlnteface) : woid
setWVerbose String(String) © woid
getWerboseStringd : String
getverbose) : boolean
getverboseLevell : int
setOutpubFrintStream) : woid
addOutputlPrintStream) @ woid
print{0Object) : void
printinfObject) : void

initialized : void

createFramed) : woid
resizeFrame) : void

showbd eszageBoxSting, String, Stringl], String): int

CommandLineFrame

setCommandLline/CommandLline) : void
checkCommandLined : woid
parameterErron]) : vaid
printbrescription : vaid

printlzager) : void

runString Q) : woid

+ 4+ + + o+ o+

«interfaces

corePropernferface

+ 4+ttt ottt F ottt

Fod ListerenPmooeditedzee) - vodd
remove ListerenPopedtheraee) [ vodd
getiisterers) : Veckor
roifyliserenPmoedriedaee) - woid
setVemose Shimg (Shimg) © void

get lemhose Skhing () - Shing
getliemaze ) @ hoolean

get lemoseleveld () int
setlutoutyPint Stream) o void

Fo'd Cedpud(Prirt Shream ) & vodd
anrtOlect) & rodd

il (Ciect) o uoid

xinterfaces
careCommandlinelafedace

+F o+ o+ o+

setCommardlime (Command Lire) - vofd
checkCommamdline ) - wodd
parFmeterEmoe i
primtOestiotion () ;- woid

pimtlszge ) woid

e (St [l waid

ApplicationFrame

windowes: HashSet

initializel : void

ereatelnstancelString) : ApplicationFrame
closeiiindowe) : woid
addiindownaChildFrame) : void
removelfindonChildFrame) : woid
showilind ownChildFrame) @ vaid

getifind owlistD) : Iterator
minimizewindons @ void
restoraiilfind ol : void

B

frame for the main GUI
element that handles all
other windows

(ChildFrames)

ChildFrame

parent: ApplicationFrame

createFrame : void

createlnstance(String, ApplicationFrame) : ChildFrame
setP arentFramelApplicationFrame) : void
getFarentFramel: ApplicationFrame

setFrame Titlel) : woid

DatabaseChildFrame

# conn: Connector
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frame for
"normal® windows
beside the main

GUI



Packagepr oper . gui . core. | i st

Classes concernindLi st are in this package.

JListHelper

+ o+t o+t

toEtringAmay(Objectf]) : Strin
getlistDatarlList) : Object|

Jlist

List

getAllListlatal)List) : Object]
invertindices(JList, int[]) : int]
etinverseSelectedindices(IList) : int]]
getinverseSelectedValuesiiList) : Object
gettdatchesi/List, String) : ind]

Packagepr oper . gui . cor e. panel

General and special panels, e.g. for &r/éViewerare in this package.

helper: JListHelper
popup: JPopup

+ o+

select() : void
select(Sting) : woid
imvertSelectiont) : void

a JList with a
popup for
selecting entries

JPanel

ProgerPane!

title: String

initialized) : woid
createPanel]) : void

P

showhdessageBoxSting, String, String[], String): int
setEnabledStatelString) : woid
setSelecteditemn(IComboBox, String) @ woid

G

OkCancel Panel

DatabasePanel

+ o+ + + %

createPanel]) : woid
removefctionlisteneffotionListener) : void
addActionListenenActionlistener) : woid
removelkevlisteneneyListenar) : void
addkeyListenenMevblistener : void

simple Panel with
Ok/Cancel-Buttens

enables to
connect to amy
SOL-Servervia
JbBC

driver: String
url: String

uzer: String
pasaword: String
excludes: String
conn: Connector
database: String
table: String

sizelisteners: HashSet
connectorlisteners: HashSet

# initialize) : void
creataPanel) : void

7 - connect]) woid
listlatabaszel) : woid

listT ables] : woid
listCalumnsd : vaid
selectDatabaszer) : vaid
selectTabled) : woid

notifySize Listeners) : woid
notifyConnectorliste neral : woid
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RelationsPanel

ArffPanel

maxbepth: int
driver: String
url: String
database: String
table: String
uzer: String
pazamord: String
excludes: String

tableArff: ArfiTable
filename: String

column: String ‘_ﬁf preferredTree: String
preferredbatabaze: String clazzField: String
preferedTable: String

preferredColumn: String # initialized : void

#  createPaneld: void

+ getTrea) : String

- showTree) : void
showRelations]) : waid
showdaina] : waoid
showdaininfo) : waid
showRecardInfol) : waid

*

+ o+ o+ 44+

initialized) : woid
createPanell) : woid
calehdean) : vaoid
setvalues(String) : woid
deletefdtributed) : vaid
deleteAttributes]) : woid
deletelnstanced) : woid
deletelnstances]) : woid
sortinstances) : void
notifyListenen]) : woid

for explaring the
relations bebween
tables

contains an
Arff-Table for
dizplaying ARFF
files




Packagepr oper . gui . core. tabl e

JTabl e related classes populate this package.

winterfaces
TableMode!

ArffTablehodel

Logger Table Model

PropertyTabel Model

Result SetTableModel

instances: Instances

S

getinstances]) : Instances

getadtributeAting ; Atribute

getTypelint. int) - int
deleteattributeAtint) : void
deleteAdtributesind[]) : void

renamedAttributeAtiint, String) : void

deletelnstanceAt(int) : void
deletelnstancesint]]) : void
sortinstances(int) : woid
isMissingAf(int, int) : weid

data: Vestor
displayData: Vector

+

+

filterString) : woid
getEntriesint[) : Vactor

- properties: Object][]
- changad: boolean

= ResultSet
meta: ResultSethletabata
data: Object[l]

loadbatal : woid

todel for LogFiles

Model for
displaying ARFF
filas

1

Maodel for
displaying
Fropeties

DefaultTableCall Renderar

+ getTableCellRendererComponent Table, Object, boslean, boalean, int, inf) - Component

ArffTablaCell Renderar

getTableCellRendererbomponenti Table, Object, baslean, boolean, int, inf): Component

+
JTable
sethdodel(Tablebodal): woid

ArffTable FropertyTable
- searchSting: String - changed: boolean
- changelistenars: HashSet

+ getFroperies(: Object][]
+ szetModelTableModel) : void + setProperties(Object ) : void
0

file

far displaying and
editing an ARFF

for Properties:
name-value-relation
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hadel for
displaying a

AbsfraciTableMode!

Tablehap

TableSorter

ArffTablaSorter

Example-Code from
Sun for sorting
Tables by clicking
on the Header

Sorter for ARFF
tables




Packagepr oper . gui . core. t ext

All classes concerning text elements are found here.

DatabaseTextField

RelationsTextField

forzelecting a
database, tahle ar

dialog: [DatabaseDialog

dialog: RelationsDialog .
forzelecting a

column

openDialogd : boolean
removeConnectorChangelistenenConnectorChangelistenar) : vaid
addConnectorChangelistenenConnectarChangelistener : waid

FProperTexiField

parent: Froperframe
tewtField: JTexField
buttonField: JButton

JPanel

columns: int
tewt: String

type: int
uselcon: boolean

initializeg) : woid

including
parameters

forselecting a
WEKRA classifier,

createPanel) : woid
operiziog( : hoolean
getDocument]) : Document
getText]) : String
setTexdString) : void

+ o+ o+ oA AR

+ o+

relations tree

initialize) : waid
apenbialog]): boolean
getTreel) : String
setTreelString) : woid

FileTaxtField

dialog: FileChooser
currentlirChangelisteners: HashSet

+ b+ b+ R

initialized) : wvoid

apenbialog]): boolean

getFile): File
removeCurrentlirChangelisteneCurrentirChangeListener : void
addCurrentlirChangelistenenCumentlitChangelistenar) : woid
setFileFile) : woid

getFiles) : String

setFilesString) : woid

forzelecting one
armultiple files

ClassifierTextField

FilterTextField

editor: GenericObjedtEditor
dialog: FropertyDialeg
parameters: JTextFiald

editor: GenericObjectEditor
dialeg: FropertyDialog
parameters: JTextField

+ o+

initialized) : woid

openbialogd : boolean
getParametersTextField() : JTextFiald
setP arametersT exdField(d TexdField) : vaid

+ o+

initializel) : woid

openbialog]): boolean
getParametersTextField) : JTextField
setParametersTexdFieldid TextFiald) : woid

for zelecting a
MILK classifier,
including

parameters

farselecting a

MIClassifierTextField WPE KA filter

# initialized : void
# openDialogd: boolean

Packagepr oper. gui . core.tree

Core classes regardidgr ee are located here.

JTres

FroperTres

axpandAlld : void
collapzeAlll : waid
clean]) : waid

addiodesttutableTreeMods, Wectar : woid
removebadebutable TreeNode) @ void
removehodesfactor @ vaid

o+ o+

addhodelhutableTreeMode, MutableTreeMode) : waid

e

gasier handling o
adding and
removing of
nodes




Packagepr oper . gui . exper i nent

Several tools for executing or building experiments, includingBhdder, can be found

here. These tools are found in the menu below “Experiment”.

CosmrarndlineFrame

frame::ChildFrame

parent: ApplicationFrame

I+ o+ o+

createFramer) : void

createlnstance(Sting, ApplicationFrame) : ChildFrame
setParentFramelApplicationFrame) : wvoid
getParentFrame) : ApplicationFrame

setFrameTitled) : void

Builder Experi mentFrame Run
# initialize() : void # initialize() : woid # initialize() : woid
#  createFramed) : woid # createFramed) : woid #  createFramed) : woid
newnProjec])  woid start]) : woid loadFiled) : void
openProject : woid stop() : woid start]) : woid
saveProjectSting) : wvoid savel) woid stop() : woid
chedProjech]) : boolean clean : void clearOutpuot) - woid
T shomOptiona]) : woid savelutput) : woid
i reload]) : woid shomdptions)) : woid
’ reload) : woid
addFilea]) : woid
for building custom displayvErrara)  waid
experiments, -
AML based GUI
Setup Relaggs il ke R il k

for executing
custom experiments
(created with the

Builder)

GUl frontends to
the standard
experiments
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Packagepr oper . gui . hel p

The classes located in the “Help” menu are found here.

Conmmamd LineFame

frame::ChildFrarme

parent: ApplicationFrame

* 4+ + 4+

createFramel) : woid

createlnstancelString, ApplicationFrame) : ChildFrame
zetParentFramel®pplicationFrame) : wvaid
getParantFramed : ApplicationFrame

setFrameTitlel : woid

Help

simple HThL wigwer
[zl asses, scripts, manual)
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Packagepr oper . gui . renot e

Tools for administrating the distributed experiments, menu “Remote”, are loaatiis

package.

frame::ChildFrame

ComrmrardineFame

parent; ApplicationFrame

# oreateFrameq) : woid

+ createlnstance(String, ApplicationFrame) : ChildFrame
+ zetParentFrame(ApplicationFrame) : woid

+ getParentFramel) : ApplicationFrame

# setFrameTitle) : void

Jobber JobMonitor

B

initialize) : woid
createFramed) : woid
generatel) : woid

generates Jobs fo
the JobSener,
from amy ANT file

Packagepr oper . gui . uti |

*

initialized) : wvoid

# createFrame] : void
refrashListal) : waid
addJdaobal : woid
shutdownSenen]) : void
shutdownClient) : woid
killClient) : woid

startShell]) : woid

monitars and
administrates a
JobSencer

The tools from the “Util” menu, including tharffViewer.

Coarm @rd LimeF e

frame::ChildFrame

parent: ApplicationFrame

createFrame) : woid
createlnstancelString, ApplicationFrame) @ ChildFrame

getParentFrame) : ApplicationFrame

#
+
+ setParentFrameApplicationFrame): void
+
#  setFrameTitle() : woid

A NS

Arffieeer Editor Logger Relations Sqlviewer HELer
L for explaring .
q a little tool for
fo;_;r_lew::;nf#l asimple textfile viewer far relations in a asimple fron.tend testing 2501
editing iles) editor LagFiles database for SOL queries soripts
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Packagepr oper . i np

Helper classes for the import, like parser and post-processing, ard Fare.

ProperDiyect

Farser

e

clean] : void
getFilenamel : String
zetFilename(String) : woid
parse(String) : waid
parse(Reader) : waid
getPredicates]) : Wectar

parseErmonException) : void

nextClause] : String
parze Hause(Shing) @ void

parses Prolog
databases

{conzisting of
ground facts)

zinterfaces
Parsernizifzee
+ CLASS POSITIVE: String
+ CLASS HEGATIVE: String|
L=+ alean] : woid
+ getFilename) - Shing
+ metFilerame(Shicg) o woid
+  parme(Shhing) uoid
+ parmeReaden) o void
+ getfedicates(  Vector

PrologParser

#  nextClause) : String
# parseClause(String): void

Gloreable
Daiz

id: int
data: Vector
parent: Data

4+ + 4+ 44

hasParent]) : boolean
add(Dbject) : woid
get(int) : Object
removelint) : Object
isMullfint) : boolean
zize):int

getiigae ] ; Shing
setiiane (Shmg) o vofd
doSEimg) ; Shing

List

CSVParser

hazldentifiers: boolean
separator. String
qualifier: String

nextClause): String
parseClause(Sting) : void

+
+
+

getMame) : String

setMamelString) : woid -

toString) : String

Fredicate

- name: String
elaszLabelAdded: boolean

reprezents a
Frolog List

+ getMamel : String
+  setMamelSting) : void
+ toString(:

String

factst)

81

represents 3
Prolog predicate
{only ground

parses C5Y files

FroperDiyect
Compaahle
Fimgerprirt

walue: Object
isMull: boolean

+

compareToObject) : int
equalgObject): boolean)
isMull) : boolean

uzed for
determining the
Class type of
arguments of 3
predicate (for the
table definition)




Propertiyect
Narner

- traversen Trawerser

- Indexer indexer

- identifiers: boolean
- containsID: boolean

used for naming
tablesz, columns

+ oreateldMamesData): Wector

+ fixMame(String) : String

+ getTable(Sting): String

+ getPrimangkewString) : String

+ getParentPrimanskewString) @ waid

+ getColumnMame(Data, int): Sting

Fropeniyect
Traverser Fropenyject
predicates: Wectar Indeer

indemxes: String

+ isPredicate(String) : boolean hrawemser Trawerssr

+ getPredicates] : Wector .
for retrieving +  getlists): Vectar manages index

i + tind D Wech N~

previously parsed + findFirstPredicate(String) @ Data n gzt;roeci:ss?dln:ex;o o | s definitions and
predicates (can be[ """ 77 + findFirstList(String) : Data "~ geﬂndexCouniO' int ’ applies them to
Prolag ground + findAllPredicates(String) : Vectar . geﬂndexNameso'_me the parsed
facts ar CEW lines) +  findAllListrString) - Weotar . igslndex(Data intj: boolean predicates

+  findAllArg TypesString) - Wector n removeNuIIIll'udexés:] Cuoid

+ gethlaxlength{String): int +  keylzlnt) : boolean

: Q:M;f:'\f;'”e_scsf";"g' miYE Wz +  addSplitindexd(D ata, inf : woid

shufflelDs0 - wold + isSplittndesqData, inf): boolean
+ remove(lata):woid
+ add(Predicate) : void
Froperliyect
PostProcessor

- indexer Indexer
- travemser Traverser

performs lots of
postprocessing on
previoushy parsed
predicates

+  process]): Traverser

- fixlnconsistend{String) : waid

- discardInconsistent{String) : void
- optimizeLlist(String) : void

- flattenLists() : woid

- splitPredicate]String) : void

- processForeignbeys) s void

- fixblulipleQeourence) @ woid
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Packagepr oper.i o

10 related classes, like for accessing ANT files and parsing command liaenpters, are

found in this package.

At Tee

filename: String - streams: Wector

getFilenamed) : String
isLoaded?): boalean
reloadd): boalean
getlame): String
getProject]) : String
getTargetString): Target
getTargets - Wectar
getfintTargetal : Wector
setProperhyString, String) : woid
getPropertySting) @ String
getProperties]) : Weotar

getT asksString) : Wector
getlavaTasksString) : Weotor
getfurgumentsT ask) : Wectar

addiFrintStream) : vaid

getlint) : PrintStream
removelPrintStream) : PrintStream
removelint) : FrintStream
containgPrintStream) : boalean
zizel) : int

print{CObject) : woid

printinf0bject) : waid

flushil : woid

+ o+ o+ o+ o+ o+ o+ o+

o+ o+ o+ o+ o+ o+ o+

CarmmandLine

tohdLl) : Element
fromXMLUElament) : waid
has\aluelString) : boolean
exizta’String) : boolean
getalue(String) : String
getWaluelSting, String) : String
setWaluelString, String) : woid
getParameters]) : Wector
toStringl : String

toWecton]) @ Wectar

toArray) ;o String[]

A Acce ssiviedace

+ o+ o+
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Packagepr oper . net

convenient olass for extracting
Hostname, IP, Fort from a string
that may look like this:
host.bla.orgM22.162.0.1:1224

ar
MOZAG2.0.1:1234

forsending and
receiving data
awer an
IP- etk

Address
........... + etHost{String) : Strin
+ etlPCSting) : int]
+

Classes used for network communication are found here.

getlP StString) : String
+  getPor(String) : int

Poperiect
D=t

serwersocket: ServerSocket
lastException: Exception

+ o+ o+ o+ o+

getSenrarSocket]) : SenverSocket
getlastException) : Exception
sendiinetSocdetdddress, String) : boalean
sand(inetsSodietaddress, String, boolean): boalean
recaivelint) : String

receivelint, int) © String
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Packagepr oper . r enot e

The classes concerning the execution of distributed experiments are iathkisge, includ-

ing theJobSer ver and theJobCd i ent.

Server

Application

senver: ServerSocket
clients: ClientList

I T

procesa)) : boolean

getPory: int

getHostName(): Stiing
addToEmarLog(String) : woid
addToAccessLogiString) : woid
deletelLogs) ; void
chedClients) : void
izAlivellnetSockettddrass) | boalaan

lient] , ClientList) : void

afterCheckClienta] : void
getClientList{int): ClientList
startup() : boolean
iz0perationald) : boolean
befarefccept]) ©void
afterfccep{Socked) : woid

e Fte Ffmeesson | Fmoesos
executef) : boolean
shutdown() : void

Thread
Frocessor

sener. Sener
client: Sodet
msg: Message
sender. Data

i

JobClient

- running: beslean

+ getRunning(): boolean

4+ setRunning(boolean) : woid

# afterCheckClients) : woid

# starup: boolean

+ isOperational(: boolean

# createProcessor : Processor

+ registen]: boolean

+ _unregister) - boolean

+ .sendTolobSererSting) : boolean

wait for Jobs to
exacute

Job Server

- jobs: Stack

- jobsTodo: Stack

- jobsDone: Vector

- jobsFailed: “Wector

- pending: ClientList

- additional: ClientList

- distributor: JobDistributer

+ adddebmVector) : void

+ isSynchronizing() : boolean
# canSendlob): boolaan

# lient|

# afterCheckClients() : woid

+  getClientlistint : ClientList
# statup): boolean

# shutdown() ; void

+ isOperational( : boolean

# createProcessor) : Processor
- chediForZombieaString, Clientlizt) : woid
+  zendShutdowni]) © woid

+  sendKilld D woid

, ClientList) : woid

sarverthat
,,,,,,,, manages the
clients and jobs

JobCliertProcessor

# initialized) : void

# process): boolean

- receivedShutdown: woid

- receivedKill() : void

- rundob() : void

- notifyfdditionaldobiString) : weid
- zendFiled) :woid

- saveFile(): woid

JobServerProcessor

+ addToEmorLog(String) : woid
+ addToAccessLog(String) : void
2 readAli(: Message

#  imitialize() : void

# pmocess{) :hoolean

+ wnQivoid
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# initialized) : void

# process(): boolean
- addClientd @ void

- saveResul) : void
- adddoeba] : woid

- deletedobs]) :void
- sendJoblist]) : void
- zaveFiled: woid

- sendClientsD rvoid

Job Di stributor

# cinitializediwoid  grotnoonnTnInIOIISORRS
# process()y: boolean
- sendJob : void

Thread that
executes 3 Job
sent fram the
Serer

SenarThread

--1that handles

Client requests

[
Server-Thread
that distributes

the Jobs to
JobClients



Job

data: String
additional: String

+ + + +

getClassMame) : String
getParameten’: String]
getédditionall : String[]
getlogFilenamel: String

represents a Job
the JobSenrer
takes as input

Jobfdder

Application

# process]): boolean

sends jobsto a
JobSancer

86

ClientList

clients: Stack
jobs: Stack

o+ ko o+ 4

size) : int

getlint) : InetSodeettddress
getloblint) : String
containslnetSodiettddress) : boolean
index0fInetSocettddress) © int
addilnetSocetdddress, String) @ woid
remove(intl | InetSocketiddress
removellnetSodettddress) : InetSocketAddrass
pushilnetSocetd ddress, String) : woid
popll: InetSocetdddress

peahl): InetSocketdddress

peaklabl) : String

toString) : String

represents a list of
Clients with their
according jobs




Packagepr oper . r enpt e. nessages

The different messages that are sent betwladrSer ver andJobd i ent .

contains a job
dezcription for a
cliant

a general
message

FPoperiject
tMes=zage

doc: Document

+

[

getHeaden) : Element
getBodw] : Element
clean]: woid
clearBody): waid
getlP0: String
setlP{Sting) © vaid
getFor]) :int
setPodint) : void
getType) : String
setTypelString) : woid

JobMessage

+ o+ o+ + o+ o+

getlobl: Element
getadditional() : Element
getStatual) : String
setStatusString) © woid
getRun): String
setRuniString) : void
getlobDataly: String
setloblatalString) : void

87

Databessage

+ o+ o+ o+

gethatal) : Element
getlines) : Weactor
getlineCount) : int
setlinesWector) : waid

FilebMes=sage

+
+

getFilenamer) : String
setFilenamelString) : void

for transferring
ling-ariented data

for transferring
a file




Packagepr oper . uti |

Some basic helper classes and interfaces.

Tirner

listeners: Wector

repeated: boolean

+ o+ttt ottt o+

addListenenTimerlinterface) : void
removelistenanTimernterface) : woid
getlistenars]) : Wector
notifyListenerst : woid

notifyListenen Timerlnterface) : woid
clean]) : woid

star) : woid

stopl):waid

isRunning() : boolean

winterfaces
Cludernferface

+oF o+ o+ 4

geblizt]) - Veoior

getCame Sersitive ) - boolean
mrFtehirdes (Shimg) it

mrFtehirdes (Shing, hoolean) @it
comrtairsShimg)  Aooleam
cortairerShing, hoolean) F hoolean
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winterface:
Tinrerinferfzce
+  HinerEvent(Tiaer) © void
Excluder

+ getlisht]) : Wector
+ getCazeSensitive]) : boolean
+ matchinde:String): int
+ matchindexString, boolean) : int
+ containa(String) : boolean
+ containsString, boolean) : boolean

Includer

o+ o+ o+ o+

getlish] : Wector

getCaze Sensitive) : boolean
matchindexString) : int
matchindexString, boolean) : int
contains{String) : boolean
eontaingString, boolean) : boalean




Packagepr oper . xm

Core XML components are found in this package.

implements

MutableTraeNode

Node

getRootl: TreeMode
_______ getParent]): TreeHode
childmen () - Envmestion
getliild At ;. Treetiode
gedChild Cowrt) © it

+ o+ o+ o+ o+ o+

setParentifutableTreeMode) : woid

Cornment

Elerment

content: String

+

getContent]) : String
setContentString) @ waoid
toString(): String

name: String
atts: Wectar
elements: Vector
content: String

children) : Enumeration
attributes] : Enumeration
getChildAkint): TreeHade

Aftribute

getattributesdint  Attribute
getattributelString) : Attribute
getChildCount? : int
getattribute Count) @ int
getMamel) : String
getContent() : String
setContent(String) @ void
isEmpty) : boolean
toString) : String

+ 4+ o+ o+ 4

Docurnent

Path

pi: String
root: Element

+ getlElement, String) : Wector

clean]) : vaid
getRootl: Element
getPI0): String
setPI(String) : void
wirite(String) : boolean
wirite(friter) : boolean
read(String) : boolean
readiReaden : boolean
taStringl) : String

+ ok ko o+

Farser

+ parselReadear): woid
+ getRool]: Element
+ getPI0: String

winterfaces
HMLAccesslnieface

+  osL)  Element
+  foar WL El emrent) o woid

based on SAX
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name: String
wvalue: String

gethame) : String
getValue) : woid
setaluelString) @ woid

really simple
XPath
implementation

implementing
Classes can read
from and write to
Xhil




A.3 Development
The following tools were used in the course of development:

- Java-SDK 1.4.2
http://java. sun. conl

- ANT 1.6.0
http://ant. apache. org/

- VIM 6.2.98 (mainly) & NetBeans 3.5 (sometimes) for developing

http://ww. net beans. or g/

- cygwin 1.5.5-1 (Bash for Win32)
http://ww. cygw n. cont

- SSH-Agent (part of cygwin)
htt p:// mah. everybody. or g/ docs/ ssh/

- MySQL 3.23.47 (NT)/3.23.58 (linux-i686) & JDBC driver MySQL-Coruter 2.0.14
http://ww. nysql.com

- PostgreSQL 7.4.1 & JDBC driver 7.4 build 213
http://ww. postgresqgl . org/

- Oracle 10g for Win32 & Oracle Driver 10.1.0.2.0

http://ww. oracl e. com
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Appendix B

Proper Manual

B.1 Main Menu

1P rogram
WEKA
E shell
= Exit  Altx
1.1 WEKA

Starts WEKA - but be careful: closing WEKA also results in closing Proper!
1.2 Shell

Opens a shell

1.3 Exit

Exits Proper

2 Experiment

Either predefined experiments or self-defined ones can be execu&ed he

Setup
Milk
Relaggs

Builder
Run
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2.1 Setup

Creates the databases and imports the data for the predefined experiments

5etup - riydocs'unithesis' work' proper'database.xml - |EI|5|

Step |Datahase ~ | | E3 Options | | <2 Reload |
(%5 Datasets Output_ |

alzheimer_amine uptake

alzheimer_choline
alzheimer_ scopolamine
alzheimer toxic
cancer

cancera

dd_pyrimidines
dd_triazinez
eastwest
eastwestd
geobase
jobdata

krk

lerke2 -

| * st | | Xt |

2.2 MILK

Performs a flattening of the whole database of each experiment into a sinlgleeaport-
ing the content to an ARFF file and evaluating that. For some experiments yilag$f
unknown instances may take place and also some testing.

MILK - rivdocshuniithesis\work',proper',proper-mi.=mil - |E||£|

Step | Praper v|| E5 Options || ) Reload |

(%5 Datasets Output |

alzheimer_amine uptake

alzheimer_choline
alzheimer_scopolamine
alzheimer_ toxic
dd_pyrimidines
dd_triazines

eastuest
eastuests
geobase
Jjobdata
krk

krk3

mesh

| Start | X it

4]
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2.3 RELAGGS

Instead of flattening a database RELAGGS uses aggregation for fifopakzation and
performs the same steps after exporting like MILK.

RELAGGS - ridocshunitthesis' work' proper' proper.xmil — |EI|1|

step|Pruper "|| &' Options || v Reload |

[ & Datasets | B Output |

alzheimer amine_uptake

alzheimer_choline
alzheimer_scopolamine
alzheimer_ toxic
cancer

Cancers

dd_pvrimidines
dd_triazines
eastwest
eastwests
geohase
jobdata

krk _ |
lrrle il

| st | Xt |

2.4 REMILK

REMILK is the combination of MILK and RELAGGS, i.e. it uses the multi-instanatad
from MILK and adds the aggregation from RELAGGS to it.

REMILK - rihydocstunii thesis' work' proper proper-remi.=mi - Dlﬂ

Step |Pmper v| | 5 Options | | 2 Reload

5 Datasets Output |

alzheimer_amine_uptake -

alzheimer choline
alzheimer zcopolamine
alzheimer_toxic
cancer

dd_pyrimidines
dd_triazines

eastwest

castwesta

genes_growth
genes_growth_bin
genes_nucleus
genes_nucleus bin
geobase

Jobdata

krk

lrk3

mesh

| start | | Xt

4]
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2.5 Builder

The Builder enables the user to build his own experiments from scratch.setéing up
databases, importing data and performing propositionalization etc. Theragpés can be
saved to ANT files.

= =] =
51 ] ]
= =] =
] =] ]
= =] =
] =] ]

2.6 Run

Here you can run any ANT file that was built for Proper.

=101 x|

| Dtew || @aw || 'opons || o Roload |

E
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3 Remote

Tools for distributed computing are found here.

JobMonitor
Jobhber

3.1 JobMonitor

The JobMonitorenables one to check on adgbServetthat is currently running, started
with . /scripts/server.sh . It provides insight into what clients are registered with
this server, how many jobs are done or have failed.

3 10b-Monitor e =10l x|
Server [localhost | Part [21415 | Refresh (a0 | 2 Connect H ETs ‘
» Topo | m pone | () Failea | = cuents | %f pendng | B adutional |
X Delete
= Add Jobs
Rafresh | Entries: 0 ‘ = Exit ‘

3.2 Jobber
With this tool you can create a job file thal@bServe(started with the script/ scri pt s/ server. sh

) uses as input. The basis are previously generated ANT files, eitheratiefined ones or
user-defined.

i [=

Johfile = Choose

[ file exchange between Server and Client [_] append Jobs to file

Targets r Praperties @ Jobs |

database: alzheimer_amine_uptake = | [l Clear X Delete
database: alzheimer_choline E_—

) . . L=~ Add File Delete all
database: alzheimer_toxic Add 4t up
database: cancer
database: cancer2 Insert L
database: dd_pyrimidines Add all = Load

dd_triazines
— Add symc Save
database: eastwest SV =l
database: eastwest2 Insert sync
database: genes_growth |

‘ } Generate | = Exit
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4 Util

Several useful utilities for working with Proper

Editor
Logger

Relations
Sqlviewer
XSLer

4.1 ArffViewer

A little Viewer for ARFF files that is also able to edit them.

ARFF—Viewer otk experiment =10l

File Edit View

Relation: Proper_0.1.0

_e0_AVG | 11_cO_CMT_WAL 11 _cO_MAX | t1_cO_MEDIAN [11_cO_MIN (11_cO_QUARTT |11 _c0_QUART2
Mumeric Mumeric Mumeric Mumeric Mumeric Humeric Mumeric

2.0 30 3.0 2.0 1.0 1.0 3.0
2.5 40 4.0 2.0 1.0 1.0 3.0
2.5 40 4.0 2.0 1.0 1.0 3.0
2.8 40 4.0 2.0 1.0 1.0 3.0
1.8 20 20 1.0 1.0 1.0 2.0
2.8 40 4.0 2.0 1.0 1.0 30
2.8 40 4.0 2.0 1.0 1.0 3.0
2.0 30 30 2.0 1.0 10 30
1.4 20 20 1.0 1.0 1.0 20
2.5 40 4.0 2.0 1.0 1.0 3.0
2.5 40 4.0 2.0 1.0 1.0 3.0
1.8 20 20 1.0 1.0 1.0 2.0
2.4 40 4.0 2.0 1.0 1.0 3.0
1.8 0 20 1.0 1.0 1.0 2.0
2.0 30 3.0 2.0 1.0 1.0 3.0
1.8 20 20 1.0 1.0 10 2.0
2.4 40 4.0 2.0 1.0 1.0 3.0
2.0 30 3.0 2.0 1.0 1.0 3.0
1.5 20 20 1.0 1.0 1.0 2.0
2.0 30 3.0 2.0 1.0 1.0 3.0

Kz Iv

By clicking with the right mouse button on the header of a column you get additionc-
tions:

ARFF—Viewer orkexperiments - |EI|£|
File Edit Wiew
eastwest.arff |
Relation: eastwest-Proper_0.1.0
Mo, [t_c0_AvG DIA [t1_cO_MIN [t1_c0_QUARTT [t1_c0_QUART3
Numeric e Numeric Humeric Humeric
5 1.5 1.0 1.0 1.0 20
9 1.5 Set all values to... 1.0 1.0 1.0 20
12 1.5 Set missing values to... 1.0 1.0 1.0 a0
1 1.5 Replace values with... 1.0 1.0 1.0 20
6 1.5 1.0 1.0 1.0 20
19 1.5 Rename Attribute... 1.0 1.0 1.0 20
; g g Delete Attribute g g 1 g 1 g g g
15 20 DellelSt RS S 20 1.0 0 30
18 2.0 Sort Instances 2.0 1.0 1.0 30
20 2.0 30 30 2.0 1.0 1.0 30
2 2.5 40 40 2.0 1.0 1.0 30
3 2.5 40 40 2.0 1.0 1.0 30
4 25 40 40 2.0 1.0 1.0 30
B 25 40 40 2.0 1.0 10 30
7 25 40 40 2.0 1.0 10 30
0 2.5 40 40 2.0 1.0 1.0 30
11 2.5 40 40 2.0 1.0 1.0 30
13 2.5 40 40 2.0 1.0 1.0 30
7 2.5 40 10 2.0 1.0 1.0 30
¥
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4.2 Editor

A simple Text editor.

i ] 4|
[ Hew
= Load

& save

@4 Search

[v] wrap lines

4.3 Logger

For viewing log files and searching in them.

results. 31415

=10l x|

|| #amner || Auwon | | cFLoaw

Line Timestal Host
1 Tue Apr 0847 NIE 0 cp190-1.wireless.waikato.dmz. properapp.Databases -log Ridocswnithesishwo &
2 Tue Apr 0847 NIE 0 cp190-1.wireless.waikato.dmz. proper.app.Databases: -append_log "no" -databa:
3 Tue Apr 0847 NIE 0 cp190-1.wireless.waikato.dmz.
4Tue Apr 7.08:47 NZE 0 cp190-1.wireless.waikato.dmz: Datahase
5 Tue Apr 13 17:08:47 NZST 2004 dhep190-1.wireless waikato.dmz 31416 = =
6 Tue Apr 13 17:08:47 NZST 2004  dhep190-1.wireless waikato.dmz.31416
T Tue Apr1317.08:47 NZST 2004 |dhep190-1.wirelesswaikato.dmz 31416 |Found alzheimer_amine_uptake.
ue Apr T TMNZS 0 cpt80-1. wireless waikato.dmz. =true
ue Apr 0847 NIE 0 cp190-1.wireless.waikato.dmz.
10 Tue Apr 0847 NIE 0 cp190-1.wireless.waikato.dmz. proper.app.Databases -log Ridocswnithesisiwol
11 Tue Apr 0847 NIE 0 cp190-1.wireless.waikato.dmz. proper.app.Databases: -append_log "no" -databa:
12 Tue Apr T:08:47 MZE 0 cpt80-1 wireless waikato.dmz:
13 Tue Apr 13 17:08:47 NZST 2004 dhep190-1.wireless.waikato.dmz.31416 | Database
14 Tue Apr 13 17:08:47 NZST 2004 | dhep190-1 wireless waikato.dmz 31416 = =
15 Tue Apr 13 17:08:47 NZST 2004  dhep190-1.wireless waikato.dmz. 31416
16 Tue Apr 13 17.08:47 NZET 2004 | dhep190-1.wireless.waikato.dmz:31416  Found alzheimer_choline..

[*]
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4.4 Relations

A little tool for exploring the relations of a database.

EdRelations = [=] |
b rys o alhost 33061

@ great_ne_
P great_na0_

aro_r_suhst_2_

hond_

double_alk_
§r_subst_3_

" aro_r_subst_3_
ring_subst 2
ring_subst 3
ring_subst_4_
ring_subst_5_

4.5 SqlViewer

For querying an SQL-Serversgl ect , i nsert , update, desc are supported).

ERs0L-viewer - alzheimer_amine_uptake =[Ol x|

s myou ovatost 3300 [ #acomen |

select ™ fram _flat

[MULL] [NULL] TMULL] [MULL]
[MULL] [NULL] [MULL] [NULL]
[MULL] [NULL] [NULL] [NULL]
[MULL] [NULL] [MULL] [MULL]
[NULL] [NULL] [NULL] [NULL]
[MULL] [NULL] [MULL] [MULL]
[MULL] [NULL] [MULL] [MULL]
[MULL] [NULL] [MULL] [NULL]
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4.6 XSlLer

A tool for testing XML/XSL.

95 [=] 23]
S Java |

Filename | = Load || > Reload H & save H Save As... |

5 Windows

For handling the windows in Proper. As soon as a window is opened ibapirethis menu.

Minimize
Restore

Setup - riidocsinithesis'work'proper'database.zmil

5.1 Minimize
Minimizes the application and all of its windows.
5.2 Restore

Restores the application and all of its windows.
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6 Help

If you need Help concerning Proper, this is the place to look for.

Help

About

6.1 Help

This is the central place to look for information of how to use Proper, hoveldeses are
used etc.

Eltelp... -3l x|
| <= Back | | = Forward | ﬁ Home
WEKA Proper Doc

GUL

Classes

Jawadoc

Scripts

WEEKA Proper Homepage

Last Updated: Wad Apr 14 10:14:21 NZST 2004

6.2 About

Thefamousabout box... ;-)

=101 x|

WEKA Proper
The Propositionalization Toolbox for WEKA

{)2004
_____E,.".A- v Unirversity of Wi kato
_IJ Newy Zealand
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B.2 First Steps

1 Predefined Experiment

Here we show how an already defined experiment, the East-West-Cleglismmagrried out.
The corresponding ANT files are each time mentioned.
All mentioned menu items are found in the “Experiment” menu.

1.1 Setup

For this we execute the menu item “Setup”.

You can change properties of the ANT file temporarily for a run by clicking©ptions”
and editing them.

With “Reload” you restore them to the ones stored in the file.

1.1.1 Creating the Database (database.xml)

- Choose “Database” from Steps

- Highlight “eastwest” in the Datasets
- Click on “Start”

Setup - 1\ docs'uni', thesis', work’proper'database.xml =10 x|

Step |Datahase v| | Options | ‘ <3 Reload

5 Datasets output |

alzheimer_amine uptake

alzheimer choline
alzheimer scopolamine
alzheimer_toxic

cancer
CENCErE

dd pyrimidines

dd_triazines

eastyest

easatwestl

geohase

jobdata |
et -
| » Start | X Esit
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1.1.2 Importing the Prolog Data (import.xml)

- Choose “Import” from Steps
- Highlight “eastwest” in the Datasets
- Click on “Start”

Setup - ri\docs'uni' thesis'work’ properdatabase.xml

Step | Database '| | E5 Options || 3 Reload

|5 Datasets Output

Import

=101 x|

alzheimer_amine_uptake
alzheimer_choline
alzheimer_scopolamine
alzheimer toxic
Cancer

cancers
dd_pyrimidines

dd triazines

BASCWEST

eastwestl

geohase

jobdata

4

|‘ ‘D Start

| 7 Exit

1.2 MILK

For this we execute the menu item “MILK”.
1.2.1 Propositionalization (proper-mi.xml)
- Choose “Proper” from Steps

- Highlight “eastwest” in the Datasets
- Click on “Start”

MILK - rydocs'uni‘ thesis'work’ proper', proper-mi.xml - |EI|£|
Step |Prnper '| | Options | | v Reload
5 Datasets | [ Output |

alzheimer_amine uptake
alzheimer choline
alzheimer scopolamine
alzheiner toxic
dd_pyrimidines
dd_triazines

eastyest

eastyests

geohase

jobdata

krk

Krki

mesh

m=k]l rel

l

| b Start

| < Exit
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1.2.2 Exporting to ARFF (export-mi.xml)

- Choose “Export” from Steps
- Highlight “eastwest” in the Datasets
- Click on “Start”

MILI( - riydocshuni' thesis\work' proper' proper-mi-xml — | EII il

Step [Proper ~|| [foptions || 7 Reload |

=(Proper
5 Datasets =
Export
alzheimer_amine Evaluate

alzheimer_cholin Classify
alzheimer_scopoliTest

alzheimer toxic
dd_pyrimidines

dd_triazines

EASTWESE
eastwest? =
gqeohase
jobdata
krk
krk3
nesh

ol

mn=kl rel

| st | | Xem |

1.2.3 Evaluating (evaluate-mi.xml)

- Choose “Evaluate” from Steps
- Highlight “eastwest” in the Datasets
- Click on “Start”

MILI( - riwdocshuni' thesis'\work' proper',proper-mi.xml - |EI|5|
Step | Proper v|| 5! Options || v Reload |
={Proper
57 Datasets £
Export

alzheiner amine Yeaonate
alzheimer cholin Classify

alzheimer_scopolqTast

alzheiner_ toxic
dd_pyrimidines
dd_triazines

eastwmest

eastests ]
gqeohase
jobdata
krk
krk3
mesh

ol

m=sk]l rel

| stan | | Xex |
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1.2.4 Further Steps

There are also two more steps for some other experiments:
- Classifying of unknown instances (classify-mi.xml)
- Testing the built classifier against a test set (test-mi.xml)

1.3 RELAGGS

Here the same steps are performed like with MILK, but starting from the memdfRELAGGS”.
(the ANT files have the same name, but without the “-mi”)

1.4 REMILK

Ditto, but with menu item “REMILK?".
(the ANT files have the same name, but without the “-remi”)
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2 User-defined Experiment

Instead of adding new Experiments to existing ANT files (import.xml, export.xml) etc
Proper also offers the possibility to create ANT files for single experiments.

This is quite useful, since an experiment has to be included in all the staAd&rdiles
and not just the one where it is needed. Let’s say, if we just want toiféstenht classifiers
or different export schemes, we can do this easily with the so called “Builde

The “Builder” is an easy way to “click” ones way to an experiment: it autombyicaeates
ANT files with the calls of the necessary Java classes and the neceasamygpers.

For this purpose we need two Tools, both of them found in the “Experimentugpia turn
(since we're building up the experiment incrementally, i.e. setting up and tgsting

- Builder (for generating the ANT file)

- Run (for executing the experiments)

We show the use of the Builder exemplary at the dataset of the East-Wakkei@fe (the
representation of the dataset differs a little from the previous one).

2.1 Setting up the Database
Either start the Builder or if it is already started create a new Experimentlbgting the
menu item “New”.

Since we want to create the database and the Builder only checks asdhmatieked Steps,
make a tick at “Database”

Builder - ciitemptest.xml -0 x|

File Experiment

| Steps | Properties | Setup | MILK | RELAGGS

TMILK-— | [RELAGGS
[_| Proper [ Proper
Setup [_] Export iclass.) [_] Export {class.)
[v| Database | | [_] Export {unclass.) | | [_] Export {unclass.)
[_] Import [_| Evaluate [_] Evaluate
[ Classify [] Classify
] Test ] Test

Hote: only the checked steps will he saved!
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When we change to the Database tab, we see that the database name isaddeace

EBuilder - chbemphtestxeml

We can either change the name here or do this in the properties (recommeadgd
“first_experiment” (underscore instead of blank!).

EBuilder - citempiitest.xml

wealkca classifiers trees 48
welks classifiers trees Map

Fproper-diriidatasets
F{proper-diridist

arg.git mm.mysgl.Driver
*_id_**_id*id1,idstrid
_flat,_relagos,_keys,_file™ _identifier_
leftauter

200m

milk-additional =\ F{clagsifier}
milk-additional-numerical =W Bclassifier-numericalt
milk-classifier milk.classifiers. Mirapper
milk-classifier-numerical  |milk.classifiers Mirapper
F{proper-diriitmp

hiyFroject
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After changing the name we save the experiment:

1]

o
|
o
|
]

Now we're ready for the first test, i.e. we’'ll have to execute the “Run” migem and open
the previously saved file (via “Add” - it is possible to add more than one AMThiére):

O] x|

] =

Ediiffnen x|

Cwes | 6o

(O] s o 7 % T e

] — (5 T
(T s [
e (S — -

[ - (=1 - -
[ = — O
s [ e -
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Since we now only have one target to execute, we don’t have to chooffewie don't
choose specific targets, all of them are executed (can take a long timeig noecareful
i-)). We start the execution by clicking on “Start”.

Elrun =0

_Dmew || Sade || p'options || v Reioad |

e =

If no errors occurred we can continue with the next step...
2.2 Importing the Data
Since we now want to import the data into the database we’ll have to checkepél®-

port™:

EBuilder - o temphtest.xml

O O O

[

|
|
|
I} |
]
|

(=
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After changing back to the Import tab, we'll have to choose the file(s) aeatwo import.
The East-West-Challenge consists of a relational Prolog database witivé®aad Neg-
ative examples, so we check “Pos./Neg. Examples” and open the file it20p# in the
datasets directory beneath “trains2”:

Hdatahase}

I

=

=

EEC R ]
D 100trains.pl
L]
[ README.DATA
D VSSVEL.SCC

B O & O O O dO

20trains.pl

3 S A

$idatahase} D
I |

51

B O

=

Oz~ @@ S

[ R

[ 2otrains.pt
[} README.DATA
[ vssver.see

B O ==

100trains.pl

E O & & O & ©
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By saving these changes and reloading the ANT file in the Run-Windowhad get an
output like this after a successful run:

_(Ol x|
| Dinew | Sagd || foptions || © Reload |

('%’Targets Output |
L0/ L0 =

= [ clear
Processing 1:

Sto|

Creating table for 1... @ P
Fetrieving all predicates/lists (1l)... HSQ\-‘E
3754375

Proceszing c:

Creating table for c...

Fetriewing all predicates/lists (c)...
3754375

Processing easthound list0:

Creating table for eastbound listO...

Retrieving all predicates/lists (eastbound list0)...
120/1z20

Storing done!

| st | | Xem |
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2.3 MILK

Now we want to generate multi-instance data, which is just creating one tabtd the
relational database. The target we're interested in, is the direction the énr@moing: east
or west.

From now on we don’t show explicitly which Step to tick, since it is obviousTfitbe head-
ings of the following pararaphs.

2.3.1 MI Data Generation

First we choose the table “eastbouh@y connecting to the database and selecting the
database “firsexperiment”)

EXBuilder - c:itemp! =10] x|
File Database Experiment

Steps | Properties Setup | MILK | RELAGGS \

meper r/Expﬂrl([:Iass.) rExpnn(um:lass.) r/EvaIuale r(:lassify rTsl‘

Datahase ‘$(uatabase} ‘
Table [ [
ﬂ
URL |Jdbc:my5q\:mocalhost3306! | User \nubady \ Password \ Cnnnect
[ Datahases |ﬁrsl,experimem v| ‘ = Select ‘
[
| Exclude Pattern Lkeya_ﬂle*_memm\ Tables ‘ | A
[
Hc

Next we choose the field “eastboundl”, which contains the direction dfaies

Builder -k I [m] 4
File Database Experiment

(" Steps | Properties | Setup | MILK | RELAGGS |

fProper rExpurt {class.) rExpurl {unclass.) rE\raIuaie rCIassify rTes‘t |

Database |s{oatabase; I e
Tahle |eastbound_ ||
Field [pastbound1 I

’ :

E3choose Column... : x|

=l

Datahases |ﬁr51,experiment b | | = Select |
Exclude Pattern |_keys, fle”_icentif] Tables | eastbound_ v|| 5 select. |
Columns |easthoundi ¥

=l

=

oK cancel
Not
E

The rest of the default parameters are just the way we need them.
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After a successful run we get an output like this:

Dropping tables. ..
Felations:

easthound
|-easthound listl_
| l-c_

-1

Left owver tables: []

Joining: c_ + 1_ = _flattened O

JToining: easthound listl_ + _flattened 0 = _flattened 2
Joining: eastbound + _flattened & = flat

Fecord-Count (easthound /_flat): 20/2Z13

Finished = true

2.3.2 Export (classified Examples)

For the export of the classified examples, i.e. the training examples folassifer, we
only need to set “Field” (our class in the ARFF file) to “eastboundl” in tlielaggs” table.

${database} D
K
I
I

Ethoose Column...

st operiment  ~ || & soteet_|
eastoouna___ ~ || solect_ |
easthoundt v

| o | coem |

vl
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2.3.3 Export (unclassified Examples)

As with the classified examples we only have to set “Field” to “eastbounddihag

Builder -k ;Iglll

File Database Experiment

[ Steps | Properties | Setup | MILK | RELAGGS |

fPruper rExpurt {class.) rExpurt {unclass.) rE\raIuate rCIassify rTest |

Datahase [s{database) |-
Table [nat |-
[0 BagField | | J
Class-Field | |-

[i Ehoose Column...

[v patabases |ﬁrst_experiment hd | | = Select |

Exclude Pattern |_keys,_file*,_identifi| Tables |easthuund_ e || = Select |
Columns | easthound1 ¥

ok | cancel |

C
[
[v] Filter arguments |—R firstlast-v |

[vl Set missing values to Zero [v]
Mote: exports the classified instances to an ARFF-file

2.3.4 Evaluate

The next step is to train our classifier on the given training set, which weregvia
ﬂRunH'

We can either use the standard classifier as input for the MIWrappih vweh]48 or choose
another WEKA-Classifier (it is recommended to change the classifier in tpeRies-Tab,
since the updating of one value for a placeholder is easier and lespeyna).

Builder - ciitemp’ test.xml — | EII il

File Database Experiment
| Steps | Properties | Setup | MILK | RELAGGS |
rPruper |/Expurt(class.) |/Expurt(unclass.) |/E\.-‘aluate rCIassify |/Test |

ARFFfileto evaluate | §{outputy$!project-namelmi.anf [

ARFF file for Statistics |§{outputy${project-namerstat-miai | ..

MILK Classifier [{mille-classifier} [
[¥ additional Arguments |${mi|k—additi0na|} |

[ cVruns | 10

Note: evaluates the created ARFF-file via Crossvalidation and a given Classifier
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After running the Evaluation in “Run” we should receive this output:

=l
| Dinew || Zaga || options || © Reload |
S Targets Output |
MI-Experimenter < 1 clear
T 2 stop
Starting experiment... [ save

hdocshuniythesis\workyproperhtup \MyProject-ni.arff... 0Os
hdocshuniythesis\workyproperhtup \MyProject-ni.arff... 0Os
10. r:‘ydocshunihthesis‘\work\proper'top'\MyProject-mi.arff... 0Os

1. r:hydocsiunilthesis\work'\proper’tmp MyProject-ni.arff... 0=
Z. r:ydocsiunilthesis\work'\proper’tmp'MyProject-ni.arff... 0=
3. r:vdocs\unihthesis\work'\proper\twp\MyProject-ni.arff... 0s
4. r:ydocsiunilthesis\work'\proper’twp \MyProject-ni.arff... 0=
5. r:hdocsiunilthesis\work\proper\tup \MyProject-ni.arff,... 0=
6. r:ydocsiunilthesis\work'\proper’tmp'MyProject-ni.arff... 0=
7. r:ydocsiyuniythesisyworkiproperitwpyMyProject-ni.arfe... 0s
S,

9. ¢

Overall time: 5=

Fesult can be found in: r:‘%docs‘uni‘thesis\work\proper/tmp/MyFroj
ect-stat-ni.arff

| ¥ Start | | X |

Note: One error source can be that the project name contains a blank.
2.3.5 Classify

Our previously exported unclassified examples can now be labeled in thafiClation step.
The default values are sufficient for this.

Builder— Stemphtest.xml =10Of =]

File Database Experiment
[ Steps | Properties | Setup | MILK | RELAGGS |
(Pmper rExpurt (class.) rExpurt(unclass.) rE\raIuate rCIass'rfy rTes‘t |

ARFF file to huild classifier |${0utp UtE project-name}-mi.arff ||

ARFF file with unknown examples |3ut}I${pr0ject—name}-unclassiﬂed-mi.arl‘f]l

Output for classified examples ||utput}f${pr0ject—name}—classiﬂed-mi.arl‘fﬂ

Milk-Classifier |${mi|k—c|assiﬂer} ||

[v] additional arguments |${mi|k—additiona|} |

Note: unclassified instances can be classified here
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2.4 RELAGGS

The next tool we want to parametrize, is RELAGGS, which is based oreggtion of the
adjacent tables around the main table where the target attribute is located.

2.4.1 Propositionalization

Like in MILK we choose “eastbound as the “Table” and “eastboundl” as the “Field” to
use in the propositionalization step.

HBuilder - citemp’ test.xml

[T —
TR
T
I

o E e E R =
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Which results in an output like this:

=10 x|

| Dinew || Zaga || options || © Reload |

55 Targets Output |
easthound o [ Clear
|-easthound_listl_ —

e (&3 stop

RN
= save

Left ower tables: []

Dropping tables...

Joining: c_ + 1_ = _relaggsed 1

Joining: eastbound list0_ + _relaggsed 1 = _relaggsed_0
Finished = true

Felations for RELAGGS:

easthound
|-_relaggsed 0

Left over tables: [_relaggsed 1, c_, eastbound list0_, 1_]

Fecord-Count (eastbound /_relaggs): 2Z0/20

Dropping tables...

| ¥ Start | | X |

Note:

That “c_, eastboundistO_, |_" are listed in the left over tables is absolutely correct. RELAGGS
only aggregates the directly adjacent tables, so that the tablesrid “| " wouldn't be
touched. Hence we create temporary tables (with the prefeddggsed”) that resemble
joins of the branches.
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2.4.2 Export (classified Examples)

Here we only have to set “Field” to “eastboundl” in the tahlelaggs”

${database}

Ethoose Column... X

rst_experiment v || o5 select|
teass || 5 Select |

oostbowar 7]
[ [k

{1 [ T

2.4.3 Export (unclassified Examples)

Again set only “Field” to “eastboundl” in the tablerélaggs”

${database}

Ethuuse Column...

rst_experiment  ~ || G5 Select |
tewgs  v|| & solect |

=

{0 R
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2.4.4 Evaluate

The same as with MILK, the only difference is that you can choose a ndNMEHA clas-
sifier instead of a MILK classifier.

2.4.5 Classify
The same as with MILK, the only difference is that you can choose a noNE#A clas-

sifier instead of a MILK classifier.
The resulting ARFF file with the labeled instances can be viewed with the Aviifie

ARFF—Uiewer - r:"-.,dnts"-.,uni"-.,thesis"w.,wnrk"-.,prnper"-.,tn'lp"-.,MyPr;f =1O x|
File Edit View
MyProject-classified.arff
Relation: MyProject-classified-Proper_0.1.0
Mo, |t _e0_AWG | H_e0_CMT_MAL | 11_cO_MAX [t1_cO_MEDIAN ‘H _c0_MIM |11 _c0_QUARTI ‘M _ch_a
Numeric Humeric Humeric Numeric Mumeric Numeric Hum
.0
4.0 4.0 2.0 1.0
4.0 4.0 20 1.0
20 20 1.0 1.0
4.0 4.0 2.0 1.0 7
4.0 4.0 2.0 1.0 |
20 2.0 1.0 1.0
20 20 1.0 1.0
20 20 1.0 1.0
20 2.0 1.0 1.0
30 a0 2.0 1.0
3.0 a0 2.0 1.0
4.0 4.0 20 1.0
20 2.0 1.0 1.0
4.0 4.0 2.0 1.0
20 20 1.0 1.0
4.0 4.0 20 1.0
2.0 a0 2.0 1.0
4.0 4.0 2.0 1.0
3.0 a0 2.0 1.0
3.0 a0 20 1.0 |
20 20 110 110 x
[ ]
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2.5 REMILK

The parametrization of REMILK is basically the same as with the previous dalesnly
want to explain the generation of multi-instance data in short, where the joire &fithK
and the RELAGGS table happens.

2.5.1 Propositionalization

The values that can be entered here are the same as with the ones fr6lmMIRELAGGS
with only one exception:

you can also define a field for the join of the two tables. In some cases ibggreh that the
wrong column or none at all is determined automatically. If this is the case yospeify

a field here, that acts as the join column, normally would this be the bag column.

EBuilder - citemp' test.xml ol =]
File Database Experiment

Steps | Properties | Setup [ MILK | RELAGGS | ReMilk |

["Proper | Exporticlass.) | Exportfunclass.) | Evaliate | Classify | Test | =

Database [stdatanase) ]
Table |EESthDUﬂd7 ||J
Field [easthound =]
Result Table (MILK) [_nat | J
v skip MILK O
Result Table (RELAGGS) |_retaggs | J
[l skip RELAGGS O
Result Table [_remilk ]
[ Exclude Tables |$€Exuludeitahles} ‘
[v] Type of Join |Ieﬁnuter - ‘
[vl max. Depth for Discovery | -1 ‘,%
[0 walue instead of NULL [ |
[ predefined Relations-Tree | ||J
[ Use Index in GROUP BY (RELAGGS) O e
[vl Anyindex instead of Prim. Key (RELAGGS) =
[l Index to use instead of Prit. Key (RELAGGS) | |
[ Field for Join [ = =
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3 Other stuff

The generated statistics ARFF files can be evaluated with the following script:
scri pts/eval uate. sh

It creates CSV files (US and DE) ariX-tables.

The CSV files that are generated can be inserted in the following MS Exueldee that
contains some useful Macros for visualization:

docs/ _experi nments. x|t
A general template for exporting Excel tablesAgXis the following:

docs/ | atex_tabl e. x| t
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Appendix C

Datasets

The following datasets listed here with the web resource they originate from, were used
during the experiments:

- Alzheimer’'s disease
http://web. conm ab. ox. ac. uk/ oucl / resear ch/ ar eas/ machl ear n/ al zhei mers. ht

- Drug-data design
ftp://ftp.mMnet.org/m-archive/lLP/ public/data/drug/

- East-West-Challenge
The version used by Eelezry's RSD:
http://ww. cs. wai kat 0. ac. nz/ m / pr oper/ dat aset s/ east west
A slightly different dataset can be found here:
ftp://ftp.mnet.org/n -archive/lLP/ public/dataleast _west/

- Genes Besides the original KDD 2001 Cup data two binarized datasets wertedrea
the same way as described in [Krogel et al., 2003].
http://ww. cs. wi sc. edu/ simdpage/ kddcup2001/

- Musk 1/2
ftp://ftp.ics.uci.edu/pub/ machi ne-1 earni ng- dat abases/ nmusk/

- Mutagenesis
http://ww. cs. wai kat 0. ac. nz/ ml / pr oper/ dat aset s/ nut agenesi s3
The version used by Eelezry's RSD:
http://ww. cs. wai kat 0. ac. nz/ m / pr oper/ dat aset s/ nut agenesi s
The original dataset can be found here:
http://web. conl ab. ox. ac. uk/ oucl / r esear ch/ ar eas/ machl ear n/ nut agenesi s. ht m

- Secondary structure of proteins
http://web. conl ab. ox. ac. uk/ oucl / resear ch/ ar eas/ machl earn/ prot ei ns. ht m

- Suramin analogues
http://web. com ab. ox. ac. uk/ oucl / resear ch/ ar eas/ machl ear n/ suramni n. ht m

- Thrombosis
http://ww. uncc. edu/ know edgedi scovery/ Medi cal Dat a. ht m

The datasets can be downloaded from the Proper homepage http://wmaikeso.ac.nz/ml/proper/datasets/.
Scripts are included to convert the original data into the one that was usiegl éxperiments.
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