
Greenstone: A platform for distributed digital

library applications

David Bainbridge, George Buchanan, John McPherson,
Steve Jones, Abdelaziz Mahoui, and Ian H. Witten

Waikato University, New Zealand & Middlesex University, UK
{d.bainbridge, jrm21, s.jones, am14, i.witten}@cs.waikato.ac.nz

g.buchanan@mdx.ac.uk

Abstract. This paper examines the issues surrounding distributed Dig-
ital Library protocols. First, it reviews three prominent digital library
protocols: Z39.50, SDLIP, and Dienst, plus Greenstone’s own protocol.
Then, we summarise the implementation in the Greenstone Digital Libary
of a number of different protocols for distributed digital libraries, and de-
scribe sample applications of the same: a digital library for children, a
translator for Stanford’s Simple Digital Library Interoperability Protocol,
a Z39.50 client, and a bibliographic search tool. The paper concludes with
a comparison of all four protocols, and a brief discussion of the impact
of distributed protocols on the Greenstone system.

Keywords: Distributed protocol, Z39.50, CORBA, graphical user interface
support

1 INTRODUCTION

Use of the open source Greenstone Digital Library software is gathering pace.
By mid-2000, more than a dozen libraries and universities had arranged access
to the software to help meet their digital library needs. Since its release on
Source Forge (www.sourceforge.net) last October, there have been thousands of
downloads per month—but the actual level of use is hard to determine. One
project that uses Greenstone extensively is HumanInfo, a Belgian-based NGO
that regularly produces humanitarian aid digital library collections on CD-ROM,
and distributes upwards of 10,000 copies of each collection within developing
countries.

As the user base expands, the collective needs of users expand too. To step
outside the mind set indoctrinated by: generate a new Web page in response to a
user clicking on a button or hyperlink—the classical form for a digital library, if
you will—Greenstone, like other digital library projects [4, 7], provides a protocol
for fine-grained interaction with other programs [5]. The protocol is implemented
using CORBA [8] and has been extended to support both the SDLIP and Z39.50
protocols.

The purpose of this paper is to demonstrate how distributed protocols pro-
mote a variety of distributed digital library applications. We select four appli-
cations, built within the Greenstone digital library framework, for discussion: a
pilot digital library project for children, a translator for Stanford’s Simple Digital
Library Interoperability Protocol (SDLIP), a Z39.50 client, and a bibliographic
search tool.

The digital library for children utilises a client (which in Greenstone is called
a “receptionist”) that provides a digital library environment specifically designed
for primary school pupils. The receptionist supplies a different user interface from
the standard Greenstone look and feel. Moreover, the protocol allows relevant
collections served on other Greenstone sites to be seamlessly integrated into the
children’s work environment. The second example accepts requests from SDLIP
clients and translates them into Greenstone protocol calls; data returned from
Greenstone is then converted back to the appropriate SDLIP format.

The third illustration, a Z39.50 client, is another example of a reception-
ist, this time with the “standard” Greenstone look and feel. By incorporating
into Greenstone the YAZ software package (www.indexdata.dk) the necessary
protocol exchange can occur without changing any of the upper layers in the
Greenstone code. This new “backend” can access any Z39.50 server; here we
demonstrate its use with the Library of Congress’s OPAC catalogue. In the final
example we move to a Java client to support a rich dynamic graphical envi-
ronment for user input and display, using the protocol to communicate with a
Greenstone server.

The structure of the paper is as follows. We begin by reviewing three ex-
isting protocols used by digital library projects, followed by a summary of the
Greenstone protocol (see [5] for a more detailed description). Next we describe
the four selected applications that demonstrate different aspects of the Green-
stone protocol and how it connects with other protocols. We conclude with a
discussion that brings out the similarities and differences of all four protocols.

2 EXISTING PROTOCOLS

Three prominent protocols used in the digital library field are the ISO/ANSI/NISO
approved Z39.50 protocol, Cornell University’s Dienst protocol, and Stanford
University’s SDLIP.

2.1 Z39.50

Z39.50 specifies a wide-ranging protocol for information retrieval between a client
and a database server [2]. Its origins stretch back to 1984, and three progressive
versions of the specification were ratified by standards committees in 1988, 1992,
and 1995. It is currently administered by the Library of Congress.

Defined as part of the application layer of the Open System Interconnection
(OSI) Reference Model, message formats are specified using Abstract Syntax
Notation One (ASN.1) and serialised for transmission over the OSI transport

layer using Basic Encoding Rules (BER) [3]. The Transmission Control Protocol
(TCP) is typically used for this.

Accessing and retrieving heterogeneous data through a protocol in a way that
promotes interoperability is a challenging problem. To address the broad spec-
trum of different domains where it might be used—such as bibliographic data,
museum collection information, and geospatial metadata—Z39.50 includes a set
of classes, called “registries,” that provide each domain with an agreed-upon
structure and attributes. Registries cover query syntax, attribute fields, content
retrieval formats, and diagnostic messages. For example, content retrieval for-
mats include Simple Unstructured Text Record Syntax (SUTRS) and the various
MARC formats.

The Z39.50 protocol is divided into eleven logical sections (called “facilities”)
that each provide a broad set of services. The protocol is predominantly client
driven; that is to say, a client initiates requests, and the server responds. Only in
a few places does the server demand information from the client—for example,
the Access Control Facility might require the client to authenticate itself before
a particular operation is performed. Any server that implements the protocol
must retain information about the client’s state, and apportion resources so
it can respond sensibly to clients using the Initialization Facility. Mandatory
search capabilities include fielded Boolean queries, which yields a result set that
can be further processed by the Sort and Browse Facilities or cancelled by the
Result-set-delete Facility. Results themselves are returned through the Retrieval
Facility. At any stage, the response to a request might be an error diagnostic.

Establishing which of the many Z39.50 options, registries, and domain-specific
attributes are supported by a particular server is accomplished through the Ex-
plain Facility. The Extended Services Facility is a mechanism to access server
functionality that persists beyond the duration of a given client-server session—
for example, periodic search schedules and updating the database. The client-
server session can be canceled immediately by either side through the Termina-
tion Facility.

2.2 Dienst

Dienst is one of the longest-running DL projects in the research community: its
origins stretch back to 1992 [4]. It has three facets: a conceptual architecture for
distributed digital libraries, an open protocol for service communication, and a
software system that implements the protocol.

The protocol supports search and retrieval of documents, browsing docu-
ments, adding new documents, and user registration. Each of these is an individ-
ual service (with version control), borne over HTTP. A digital library collection
involves a combination of these services. There are six categories of service: repos-
itory services store digital documents and associated metadata; index services

accept queries and returns lists of document identifiers; query mediator services

dispatch queries to the relevant index servers; info services return information
about the state of a server; collection services provide information on how a set
of services interact; and registry services store user information.

2.3 Stanford Infobus

Interoperation between distributed objects has been central to Stanford Uni-
versity’s digital library project, the “Infobus,” where many Infobus objects are
in fact proxies to established information sources and services [6]. The orig-
inal CORBA-based Digital Library Interoperation Protocol (DLIOP) has re-
cently been superseded by the Simple Digital Library Interoperability Protocol
(SDLIP), designed in collaboration with other North American research projects
[7].

Emphasis has been placed in SDLIP on a design that is scalable, permit-
ting the development of digital library applications that run on hand-held de-
vices such as PalmPilots, in addition to workstation- and mainframe-based sys-
tems. There are two transport options: one CORBA-based, the other borne over
HTTP; applications can mix these freely.

The protocol supports both state-keeping and stateless exchanges on the
server side, as well as synchronous and asynchronous interactions between client
and server. However, servers need not implement all these parts. It is up to a
client to establish—using the protocol—what functionality is supported.

There are four parts (called “interfaces”) to the protocol: searching, result
access, metadata, and delivery. The search interface initiates a search. In a syn-
chronous, stateless exchange the client waits until all results are returned, but
in a synchronous, state-keeping one only some of the results need be returned as
part of the search—the rest can be accessed through the result access interface.
A server that supports asynchronous searches must by nature also be state-
keeping. When results to an asynchronous query become available, the server
uses the delivery interface to notify the client. Finally, the source metadata in-
terface provides a mechanism for clients to discover the functional capabilities
of a server (including version number control), the collections stored there, and
the metadata fields present in a particular collection.

3 THE GREENSTONE PROTOCOL

The Greenstone protocol is closely integrated with the digital library architec-
ture, which supports full access to multimedia data: a text query to retrieve
a book; a sung fragment of tune to retrieve a music score. Like the previous
approaches the protocol adopts a client-server model, although the term “re-
ceptionist” is used instead of “client” to emphasise the role that this component
plays in the architecture. The protocol is divided into three areas: General, Filter-
ing and Documents. Since last reported [5], we have migrated from a Perl-based
remote procedure call mechanism to the more general CORBA framework; the
underlying functionality, however, remains essentially the same.

General operations available to a client include obtaining a list of collections
offered by a server, testing to see whether a particular collection is running, and
obtaining information specific to a collection—such as how many documents it
contains, and when it was last updated. The filtering mechanism supports both

Fig. 1. Greenstone interface to the Library of Congress using protocol Z39.50.

searching and browsing. Filters provide an element of dynamic configurability
to the protocol through an enumerated list of types that package together spe-
cific options. Finally, the Document support provides access to the content of
individual documents.

The protocol is stateless, or—to be more accurate—designed for a stateless
server. While this simplifies some matters, and meshes well with our digital
library architecture, it imposes overheads elsewhere. We return to these in the
final section, which compares the various protocols.

4 APPLICATIONS

We now describe four applications that demonstrate the use of distributed digital
library protocols in Greenstone.

4.1 Z39.50 receptionist

Figure 1 shows the result of searching the Library of Congress’s publicly available
catalogue of bibliographic records for titles that include the word “Waikato” (the
name of our university and geographical district). The interaction style follows
the standard Greenstone interface. After selecting the field to search—from the

Greenstone serverTranslator serverSDLIP Client

Filter
Search interface

Document

General

Source metadata
interface

Result access
interface

Delivery interface Default service

Default service

CORBA/HTTP CORBA

Fig. 2. How SDLIP protocol calls are mapped to the Greenstone protocol.

choices any fields , title, and author—and whether some or all of the words must
be included, a search is initiated by pressing the “Begin Search” button. This
loads a new page (shown) that repeats the query settings for the given query at
the top and includes matching entries below. Clicking on the “book” icon beside
a matching entry produces a new page giving the full catalogue entry.

Due to the complexity of the Z39.50 bibliography registry, “title” metadata
covers various different fields. However, for brevity, this system shows only one
of these fields for each matching entry. Thus the display may not include the
words in the query. For example, the second entry in Figure 1, “Be ye separate,”
does not specifically mention “Waikato” (although it is clearly related to New
Zealand). However, the term does appear in the full citation, as will be revealed
by clicking on the book icon.

The interaction between Greenstone and a Z39.50 server is a follows: using
the freely available YAZ package, calls to the General part of the Greenstone
protocol are translated into Initialization and Explain Facility calls; Filtering

maps to the Search, Sort and Browse facilities (although presently we only use
Search); and Greenstone Document requests use the Retrieval facility.

4.2 SDLIP protocol translator

The protocol translator maps Stanford’s SDLIP protocol calls pertaining to
stateless synchronous interaction to Greenstone protocol calls. The translator
runs as a server in its own right, and Figure 2 shows it acts as an intermediary,
accepting SDLIP requests transmitted either through CORBA or HTTP, and
passing them on to Greenstone’s CORBA-based protocol. Written in Java, the
translator server implements the intersection of the Greenstone protocol and
SDLIP’s search and source metadata interfaces.

The search interface maps to Greenstone’s Filter and Document operations,
while source metadata maps to various calls from the General part of the Green-
stone protocol. The remaining interfaces and services, such as the result access
interface and the delivery interface, are set up to return trivial, default behavior,
because they have no counterpart in a direct mapping to a synchronous stateless
service.

weka% java SimpleClient http://kiwi.cs.waikato.ac.nz:8282 "music style"
DOCUMENT: 1
 http://purl.org/metadata/dublin_core#Title
 = "Computer Graphic Aided Music Composition"
DOCUMENT: 2
 http://purl.org/metadata/dublin_core#Title
 = "Schenker s Theory of Tonal Music -- Its Explication ..."
DOCUMENT: 3
 http://purl.org/metadata/dublin_core#Title
 = "Andre Tchaikovsky Meets the Computer: A Concert ..."
DOCUMENT: 4
...

kiwi% java SdlipToGsdl http://www.nzdl.org hcibib 8282
GreenstoneCorba Init on www.nzdl.org OK
hcibib OK
hcibib is public? ... yes
Starting DASL/HTTP server transport on port: 8282

[SDLIP/DASL Server Transport] request from: weka.cs.waikato.ac.nz
Query is:
<a:basicsearch xmlns:a="DAV:">
 <a:select>
 <a:allprop/>
 </a:select>
 <a:where>
 <a:contains>music style</a:contains>
 </a:where>
 <a:limit>
 <a:nresults>10</a:nresults>
 </a:limit>
</a:basicsearch>

Query string = music style
Title: Computer Graphic Aided Music Composition
Title: Schenker s Theory of Tonal Music -- Its Explication ...
Title: Andre Tchaikovsky Meets the Computer: A Concert ...
Title: ...

Client:

Server:

Fig. 3. Example use of the SDLIP to Greenstone translator.

Figure 3 shows the result of running the sample command-line driven SDLIP
client available for download from the Infobus Web site. At the top we see di-
agnostic output from the SDLIP client; at the bottom is the diagnostic output
from the SDLIP to Greenstone translator. We assume the existence of a Green-
stone server (output not shown) whose location is specified when the translator
server is started.

When the client program is run, it first connects to the SDLIP server speci-
fied on the command line (the translator, in our case) and then calls the search

interface with the remaining command line arguments stored as the query. The
translator server accepts these arguments and sets up a Filter call to emulate
the call to SDLIP search. If the property list supplied by the SDLIP call spec-
ifies document text, a second call to Greenstone is made, this time using the
Document part of the protocol, to access the necessary information. The data
obtained from these calls is then collated, and returned encoded as XML.

The translator example is intended for demonstration purposes only. A more
sophisticated—and ultimately more desirable—approach is to enhance the trans-
lator with state keeping capabilities. Just because the Greenstone server does
not keep state does not mean that state-based SDLIP interactions cannot be

Fig. 4. The Middlesex University’s Kids Digital Library environment.

supported. For instance, when query results are returned from the CORBA call
to Greenstone, the translator server can store the result locally and assign it
a result set identifier. It can use this to support subsequent calls to the result
access interface—including query refinement.

4.3 A digital library for children

Figure 4 shows the home page of the Kids Digital Library, part of Middlesex
University’s digital library project. The vertical column in the center gives the
collections available to the user. On the left are support services: a workspace
for creative writing; a submission process for completed stories and poems; a
bulletin board where selected works are discussed and annotated; and on-line
training packages to help users learn about the digital library environment.

The receptionist asks the user to log in before reaching this page; in this case
the user is Jamie, shown at the top of the page. There is also a special account
for the class teacher, with extra functionality provided by the receptionist for
updating collections with new stories and so forth. Authentication is not part of
the protocol; instead it is built into the receptionist’s software architecture.

From the home page a pupil can view the various collections on offer or access
the support services mentioned above. Poems and Short Stories are collections of
finished works by the pupils, vetted by the teacher. The collections are searchable

Receptionist (Middlesex)

Greenstone server (Middlesex) Greenstone server (Waikato)

Short Stories Pictures & Images Audio Sounds

Bookmarks:

Poems Submitted Ideas

Alison Peter Jamie ...

Receptionist:

Server:

Collections:

Personal Personal Personal ...

Fig. 5. How the Greenstone protocol is used to provide Middlesex University’s Kids
Digital Library environment.

by full text, author, and title; browsable by author and title. Pictures & Images,
Audio Sounds , and Ideas are collections pulled together from various sources to
provide resources and ideas for the pupils; they too have searchable and brows-
able structures. Finally, the Personal Bookmarks collection, which is specific to
the particular user, is formed from the user’s bookmarks file and includes the
downloaded content of each Web page mentioned. The collection is fully indexed,
and browsable by title and subject folder.

The idea behind the Personal Bookmarks collection is this. Pupils browse the
Web using a variety of strategies for finding information pertinent to their work,
bookmarking relevant pages. Upon activating “rebuild this collection” through
a hyperlink on the Greenstone page for the Personal Bookmarks collection, new
pages are downloaded and any existing pages that have changed are updated to
form the latest version of their Personal Bookmarks collection.

Figure 5 shows the underlying structure of the Kids Digital Library environ-
ment. Unbeknownst to the user, collections are accessed from two servers: one
local, the other remote. Small collections that are rebuilt frequently, such as per-
sonal bookmarks, short stories and the bulletin board, are served from the main
site in Middlesex. The larger collections—intended as a source of inspiration—
do not change so rapidly and are served remotely from the Waikato Greenstone
site, which has more resources dedicated to supporting digital library collections.
For example, in Figure 5 Jamie is accessing the Sounds and Ideas collections in
Waikato as a basis for creative writing, and submitting the composition for the
teacher’s perusal.

4.4 A Java application

We now turn to an interactive application written in Java. Figure 6 shows a
bibliographic search tool that uses a citation’s year and matching relevance score
to graphically lay out the query result set. The result set is further enhanced

Fig. 6. A bibliographic search tool based on the Greenstone protocol.

through the use of colour: each word in the query is assigned a colour, and
matching citations that include that word are displayed using that colour. In
the case of a document containing more than one of the query terms, the box
is divided into vertical coloured strips. The scroll bars adjacent to the graphics
display area allow the user to zoom and pan around the search set; clicking on
a particular document box pops up a new window that includes its full citation.

When the bibliographic tool is started, a Greenstone server is specified, along
with the particular collection to use. The bibliographic tool requests year meta-
data, relevance score, and term frequency in addition to document identifier
(which is included as standard) when a search is invoked through the protocol’s
Filter operation. This is sufficient information to generate the graphical display
of the result set. When a user clicks on a document box, a new call over the
protocol is made to request all metadata for the given document identifier. State
information is kept client side.

5 DISCUSSION

We have summarised the main features of four digital library protocols: Z39.50,
Dienst, SDLIP, and Greenstone. Demonstrated by four examples, we have also
discussed the distributed nature of the Greenstone digital library system, as
supported by its protocol. Here we compare and comment on the similarities
and differences of the protocols.

All support searching, browsing, and document retrieval. Text searching
is relatively well understood—all four protocols support ranked and Boolean
queries, with a rich array of options: fielded search, stemming, case matching,
and so forth. The main detail for choice is the query syntax used; here Z39.50
and SDLIP are notable in their use of existing and/or emerging standards.

The role of browsing (normally closely associated with metadata) in a digital
library is less clear, and support for this varies. Here, Greenstone’s commu-
nication appears more general than the others, supporting, through its Filter
mechanism, hierarchical browsing—it is not clear from the literature if the other
protocols support this.

The final core service—document retrieval—is also well supported in the
four protocols. Here we see protocols defining models of document structure,
and enumerating document formats and types. Arguably, Dienst provides the
richest functionality, with its ability to export logical structure in a variety of
MIME types.

While not a core requirement of a digital library implementation (as de-
fined, for example, in [1]) all four protocols include functionality to establish
the services offered and options supported by a server. This enables more gen-
eral clients to be written that configure themselves dynamically in response to
different situations and, we believe, reflects a level of maturity in DL protocol
design.

Other important elements are version control and authentication. Version
control is handled externally in Z39.50 by ratified standards. In SDLIP and
Dienst it is built into the protocol: a more ambitious aim, with the onus on
clients to resolve versioning conflicts. Time will tell how successful this approach
is; however, current signs are encouraging. In Greenstone there is no explicit
version control. With the protocol tied so closely to the software architecture,
this is not as limiting as might first appear. Within the application program
interface there is a certain latitude for backwards compatible extensions and the
filtering mechanism—the main part of the protocol that is likely to change—
has purposely been designed to be extensible. This is backed up by the Filter
mechanism that includes calls to list the filter types supported and the options
they take.

Although a framework for authentication is part of the Dienst protocol, how
it is implemented is a detail left up to the service provider. In Z39.50, authenti-
cation is more rigorously defined by its Access Control Facility, which is in stark
contrast to Greenstone, that has none. Here authentication is enforced through
the receptionist, as seen in the Kids Digital Library example. In SDLIP, there
is no mention of authentication [7]. Presumably a client end implementation,
similar to Greenstone’s, is feasible. Alternatively, a more encompassing security
check might be imposed by the transport layer when a client connects to a server.

5.1 Considerations for DL Systems

As we have demonstrated, one digital library system is capable of supporting
more than one protocol; at present, in the case of Greenstone, three different
protocols are supported. Using the distributed protocols, we have also shown that
they can be utilised not only to support remote services through one interface,
but novel interfaces as well, in the form of graphical environments. The Kids’
Digital Library shows the high degree of sophistication which can be achieved
by utilising both benefits.

Greenstone is internally separated into two components; the “collection server”
which provides services on one side, and a “receptionist” which accesses the ser-
vices through an interface on the other. This has made it particularly adaptable
to supporting both distributed traditional web-based access and more heavy-
weight and richer graphical environments from one server program. Thus the
component architecture already reported in [5] is further validated.

6 CONCLUSIONS

Digital library protocol design is at an interesting stage. While several alterna-
tive designs have emerged with varying degrees of complexity, from the elaborate
Z39.50 to the simple but tightly prescribed Greenstone protocol, the different
designs are not incompatible. As the SDLIP to Dienst proxy [7] and the SDLIP
to Greenstone translator presented here both demonstrate, interoperability is
alive and well. Furthermore, seemingly irreconcilable differences in protocol de-
sign, such as state-keeping and stateless, can often be overcome by appropriate
programming support.

References

1. R. M. Akscyn and I. H. Witten. Report on the First Summit on International Co-
operaton on Digital Libraries. 1998. Available on-line at <ks.com/idla-wp-oct98>.

2. ANSI/NISO. Information Retrieval (Z39.50 version 3): Application Service Defini-
tion and Protocol Specification (ANSI/NISO Z39.50-1995). NISO Press, Bethesda,
MD, 1995. Available on-line at <lcweb.loc.gov/z3950/agency/document.html>.

3. J. Larmouth. ASN.1 Complete. Morgan Kaufmann, 1999.
4. C. Logoze and D. Fielding. Defining collections in distributed digi-

tal libraries. D-Lib Magazine, 4(11), Nov. 1998. Available on-line at
<www.dlib.org/dlib/november98/lagoze/11lagoze.html>.

5. R. McNab, I. Witten, and S. Boddie. A distributed digital library architecture incor-
porating different index styles. In Proc. IEEE International Forum on Research and
Technology Advances in Digital Libraries, pages 36–45, Santa Barbara, California,
1998. IEEE Computer Society Press.

6. A. Paepcke, M. Baldonado, C.-C. K. Chang, S. Cousins, and H. Garcia-Molina.
Using distributed objects to build the stanford digital library infobus. Computer,
32(2):80–87, Feb. 1999.

7. A. Paepcke, R. Brandriff, G. Janee, R. Larson, B. Ludaescher, S. Melnik,
and S. Raghavan. Search middleware and the simple digital library interop-
erability protocol. D-Lib Magazine, 6(3), Mar. 2000. Available on-line at
<www.dlib.org/dlib/march00/paepcke/03paepcke.html>.

8. D. Slama, J. Garbis, and P. Russell. Enterprise CORBA. Prentice Hall, 1999.

