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An Adaptive Optimal Controller for
Discrete-Time Markov Environments

Iaxn H. WITTEN

Department of Electrical Engineering Science, University of Essex,
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This paper describes an adaptive controller for discrete-time stochastic
environments. The controller receives the environment’s current state and a
reward signal which indicates the desirability of that state. In response, it
selects an appropriate control action and notes its effect. The cycle repeats
indefinitely. The control environments to be tackled include the well-known
n-armed bandit problem, and the adaptive controller comprises an ensemble of
n-armed bandit controllers, suitably interconnected. The design of these
constituent elements is not discussed. It is shown that, under certain conditions,
the controller’s actions eventually become optimal for the particular control
task with which it is faced, in the sense that they maximize the expected reward
obtained in the future.

INTRODUCTION

Two broadly different, and complementary, approaches to the design of
adaptive controllers exist: On the one hand, are highly task-specific special-
purpose controllers which—although adaptive—are designed with a particular
type of plant in mind, while on the other, one finds general-purpose controllers
embodying a minimum of assumptions about the task environment. The
general-purpose controllers which have been proposed divide roughly into two
types: those which employ a ‘“‘teacher” to provide intelligent reinforcement
signals, and those which rely solely on an (often noisy) indication of whether
the environment is currently in a desirable state.

The first type of general-purpose controller can be subsumed under the
heading of ‘“‘pattern recognition.” The controller has to associate actions con-
doned by the teacher with particular states of the environment. It need not
attempt to evaluate the influence of its actions on the future behavior of the
environment, since the reinforcement signals allow for these effects. By far
the vast majority of the literature on adaptive or ‘“learning” control systems
deals with this type of controller.

In contrast, the problem faced by the second type of controller, though more
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general, has received little attention. (The only comprehensive published
account of a controller of this type is that by Widrow et al., 1973.) Here, the
controller cannot just optimize its control strategy directly on the basis of the
reinforcement received, for in doing so it would ignore the future repercussions
of its actions. Instead, it must monitor and evaluate the effects of its actions and
adjust its strategy indirectly, on the basis of this evaluation.

A novel general-purpose controller of the second type is described here.
Although it has been used in simulated practical control situations, its major
significance is theoretical rather than practical, and lies in the way in which it
evaluates the worth of its actions and uses this evaluation to direct future
adaptation. It is modular in structure and comprises an ensemble of controlling
elements which interact both with each other and with the control task.

The controller operates in a task environment which provides instantaneous
reward information and an indication of the state of the environment. The
controller’s task is to maximize the total expected reward over a long period
of time. T'o accomplish this, it constructs a separate control policy for each state
of the environment, amounting to a local optimization of the control action for
that state. Because the aim is global optimization over a sequence of state
transitions, interactions must be introduced between the local optimization
problems to encourage the controller to traverse a valley in the reward space if
this leads to a sufficiently high peak, and so it is not clear whether optimality
of the local control is sufficient to guarantee global optimality.

In Section 3 it is shown that once the controller reaches a state of global
optimality, it will never leave it (provided the variance of certain probability
estimators is kept sufficiently low). Hence such a state will inevitably be reached,
since one can easily show that no other nontrivial trapping states exist. Theo-
rem 2, however, guarantees a more positive sort of ‘‘learning’’: each improvement
in the performance of a local optimizer constitutes an improvement in the
expected overall performance of the controller. So if the local optimizers behave
well, the expected overall performance will climb monotonically toward its
limit.

Included in the controller are probability estimators which provide interaction
between the local optimization tasks. Because the probabilities being estimated
depend on the state of the controller, and this is constantly fluctuating (at least
in the initial stages of adaptation), the estimators must have nonzero terminal
variance to accommodate these changing conditions. The effects of nonzero
variance in the controller, and in particular the likelihood of an optimal control
policy being corrupted, is examined qualitatively in Section 5.

1. Tue ENVIRONMENT

The environment is modeled as a stochastic automaton with z states, num-
bered 1, 2,..., n. At discrete instants of time, it emits (i) a reward g€ [0, 1],
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(i1) a state-output j, which indicates which state the environment is in; and
accepts one of m control actions numbered 1, 2,..., m, causing its state to change.
The reward output is a random variable whose mean value indicates how well
the controller is doing. We assume for convenience that this mean value is a
function only of the current state of the environment: Rewards which depend
on the last state as well are easily accommodated. Thus the environment is
characterized by the # X # X m matrix p, where

piir = Pr[environment goes from state 7 to state j under control action £]
and the reward expectation vector g, where
g; = E[reward value when the environment is in state z].

Successive reward outputs are assumed to be statistically independent.
A control policy for the environment is a n X m stochastic matrix 7, where

m; = Pr[when the environment is in state 7, control action k% is taken].

Note that the choice of control action need not depend on anything other than
the current state, since the environment obeys the Markov property. It is
assumed that the controller knows the environment’s state at all times.

The controller’s aim is to find a control policy which maximizes the total
expected reward over a long sequence of transitions. A discount factor y € (0, 1)
1s introduced in order to weight the immediate future more heavily than the
distant future. If a sequence of rewards A, &, , A, ,..., h, is obtained, the dis-
counted reward is defined to be

(1—y) Z vhs .

s=0

By manipulating y, we can make the controller’s goal short-term or long-term
optimization.

Let d,(w, r) denote the expected discounted reward after r transitions, starting
at state 7 of the environment, under policy 7. A control policy = is said to be
optimal if, for any other control policy =,

Ir,_l)gl di(m, 1) > I;igl di(=', r) for all 7e{l,2,..., n}.
That these limits exist is shown in Section 3.

Clearly, a policy can only be optimal if 7r;;, is either O or 1 for each 7 and k—
unless there is a state 7 and two actions % and &', each of which leads to exactly
the same expected discounted reward.
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2. THE CONTROLLER

The controller to be discussed is synthesized out of # ‘‘elementary controllers,”
which I call learning automata (LAs), one for each state of the environment.
To provide motivation for the introduction of LAs, consider the special m-state,
m-control-action environment with transition matrix

Pisr = Sjx (6 1s the Kronecker delta).

Here, action % always takes the environment to state &, regardless of the previous
state. The optimal control policy consists of exclusively selecting actions k*
for which

8xx = Mkax {g1}-

This is the m-armed bandit problem, an obvious generalization of the familier
two-armed bandit problem which has been discussed extensively in the literature
(Cover and Hellman, 1970; Shapiro and Narendra, 1969; Witten, 1973, 1974).
Rather than tackling the design of a suitable ‘“‘m-armed bandit controller,” or
learning automaton, let us assume that we are given the design, and investigate
the possibility of connecting such LAs together to make an optimal controller
for a general Markov environment. This should at least ensure that our con-
troller performs satisfactorily on the restricted type of environment given by (1).

Specifically, the controller will comprise, for each state 7 of the environment:

(i) an LA, denoted LA, , which will be called upon to select the controller’s
action when the environment’s state-output is z, and which will be rewarded
after this selection according to its success;

(i1) an estimate e; of the expected discounted reward obtainable when the
environment is in state z.

Suppose the environment is in state 7, and LA, selects control action %, which
causes the environment to change its state to j and produce reward output g.
Then e; will be updated by

e; < (1 — B)e; + B¢’ (B € (0, 1) is a constant),

where g’ is a weighted average of the environment’s reward g and the controller’s
new estimate of future reward:

g =0 —v)g+ ve (y €(0, 1) is the discount factor). 3
g’ is also used as a ““computed reward” to reinforce LA, for its choice of control

action k. When the controller has completed these updating operations, it will
call upon LA; to select the new control action, and the cycle will begin again.
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Each of the » LAs is characterized, at any one time, by the m-vector of
probabilities with which it will choose the control actions. When these vectors
are put together as rows of an # X m matrix, they form the instantaneous control
policy = for the controller. Thus, the state of the controller comprises its policy
matrix 7 together with the vector e of current estimator values. We denote this
state by (7, ).

3. EQUILIBRIUM STATES

Suppose the controller’s policy is #. This induces a transition matrix 7 on
the environment:

7;; = Pr[environment goes from state 7 to state j]

4
= 2 PiirTix - @
%
Now we can compute the mean value é; of the estimator ¢; , given 7.
& = E[(1 — g + veil, 5)

where the expectation is taken over all states of the environment which can
follow state 7z under policy 7.

& =) 7il(l —y)g + v Elel],

. (6)
=Y [l — ¥)g; + ¥4l

Therefore,
ém) = (1 —yN1 —yr) g (7

Note that (1 — y7)~! exists, since 7 is a stochastic matrix and so all eigenvalues
of yr must be strictly less than 1 in absolute value.

Equation (6) shows that é; is exactly the Lim,._,, d;(7, r) mentioned earlier,
where d,(m, r) is the expected discounted reward obtained after r transitions,
starting at state 7, under policy #. Hence the limit exists, and the d,’s can be
calculated from the control policy and the parameters of the environment, using
Egs. (4) and (7).

The ith LA is in an equilibrium state if its expected reward cannot be improved
immediately by a change in its policy alone. This definition is motivated by the
similar concept of an equilibrium state of a game (Nash, 1951). Indeed, it seems
at first sight that some of the results concerning equilibria of games are im-
mediately applicable to our controller, since the ensemble of 1.As can be con-
sidered to be an n-person game with outcomes determined by the control
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environment. Unfortunately, this is not the case: A fundamental assumption
in game theory is that the outcomes—our ¢’s—are linear functions of the mixed
strategies of the players, but (4) and (7) show clearly that e is not a linear function
of =.

The state of the controller, (=, e), can alter in two ways. First, its control
policy 7 can change. This corresponds to a change in the state of one or more
of the constituent LAs. Second, the estimates ¢; can change. However, if =
remains constant the expected values of these estimates will approach é(m)
exponentially at a speed which depends on B. Thus we call states {r, €> with

e = é(m)

the mean states of the controller. If the system is started in a mean state, it will
fluctuate about that state in a random manner, but the expected values of the
estimates will not change.

The remainder of this section, and the next, treat the behavior of the con-
troller in mean states. Effects of fluctuations about the mean states are examined
in Section 5.

‘THEOREM 1. Suppose the controller is in a mean state {m, é(m)y, and each of
its constituent LAs is in equilibrium. Then if {w’', &(7')) is any other mean state,

éfn’) < éfn)  for alli.

Proof. Let
Ay, m) = én") — é(m)
= ; mul(1 — ¥)g; + yéi(n")]
— ; Til(1 — y)g; + yé(m)]
= I(=’, m) + ; yrislé(m’) — &(m)],
where

Iy#', m) = Z Tul(1 — v)g; + vé(m)]

J

— ¥ ol — 9)gs + e, (8)

Ty = Z PiixTiz »
%
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and
Ty = Z DiinTix -
%
Then
4 =T + yr'4,
SO
4 = (1 —yr) I 9)

Now I'y(#’, 7) is not affected by any but the ith row of #, and so would be
unchanged if 7' were replaced by a new matrix, =", equal to = except in the ith
row where it is equal to 7. Hence I'(#’, ) cannot be positive, since, as (8) shows,
it represents the immediate improvement in the expected reward of LA, if
policy 7" were adopted, and 7 is an equilibrium state for LA, .

I, <0 for each 1.
Also,

(A =yy* = 3 G

a convergent series since all eigenvalues of y7’ are strictly less than 1 in absolute
value. Hence every component of (1 — y7')~! is positive, and so

4, <0 for each 7.

4. GoAL-DIRECTEDNESS

Let us consider the changes in policy as each of the LAs adapts to its local
environment, under the assumption that this adaptation takes place much more
slowly than that of the estimates e, .

THEOREM 2. Suppose the controller is in a mean state {m, &(w)). If one or more
of the LAs changes its policy in the direction of increasing immediate computed
reward, giving a new policy matrix =', then

é(n') = é(m)  for alli.

Proof. From the assumptions of the theorem,

I'#',7m) >0 for each 7,
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where I' is given by (8). So, from (9), and since all components of (I — y7')-1
are positive,

d(7',m) = é(n') — é(n) = 0 for all 4.

5. EFFECTS OF STATISTICAL VARIANCE

So far we have assumed that the controller is in a mean state, and have
neglected fluctuations about mean states. We now examine the effects of variance
in the controller and, in particular, whether it is likely that the inevitable random
perturbations of the estimates will cause corruption of an optimal control
policy.

Denote by o,® the variance of e; when the controller has reached an optimal
policy. Here, as well as distinguishing between the expected value ¢; of the ith
estimator and the random variable e; representing the estimator’s value at any
given time, we make a similar distinction between g, , the reward received on
a particular occasion when the environment is in state 7, and the mean reward g,
from that state. The updating rule for e, is

e; < (1 — Ble; + B¢/, (10)

and so, when the distribution of e; has reached a stationary hyperstate,

o = (1 — B o + B2 [¢];

2 __ B 2o
03 _2_[_}0 [g]‘

The random variable g’ is selected from a set
{81503 815002 &'}
with probability

{Til yesey Tij yesey Tin}r

where
g =1 — v)& + ve; .

If the reward signal g; is confined to the range [0, 1], then g, and hence g’ must
also fall in this range, and so

gl <%.
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Therefore,
o < B/(42 — B))- (11)

When updating rules like (10) are used for averaging, 1/8 acts as a time-
constant for the estimator (see, e.g., Minsky and Papert, 1969). Let ¢ be an
approximate time-constant for the particular design of LA under consideration.
Then the condition for the ‘“‘goal-directedness’ property to hold is that

t>>1/B.

Since it is clearly advantageous to keep the o,’s small, (11) requires that 1/8 be
large, and hence ¢ must be very large.

Let us turn attention to the role of the discount factor y. Denote by G, the
computed reward obtained on a single choice of action £ in state 7, so that G;; is
selected from the set {g,',..., g',---, 2o} With probability { P15 ,-+s Pijic s+++> Din}-
e; estimates Gy,’s instantaneous mean, averaged over the possible control
actions k. Now

G = (1 — )Y pinn&i + v Y, Pises -
i i
This mean itself fluctuates with a variance
y?o? [Z Pz‘jkej]> (12)
j

and, assuming that the variation of the e;’s is uncorrelated, this can be rewritten as
2
2 2 2 VB
Y z i [e] < . (13)
j 4(2 - B)

Actually, some correlation between the e;’s will certainly exist, since if one were
to change, the others would follow suit via the averaging procedure (2) and (3).
However, since these changes take place slowly, the bulk of the variance in e;
will stem directly from the environment’s rewards, and hence the correlations
will be low. Expression (13) shows that the values which are being estimated
fluctuate with a standard deviation proportional to the discount factor 7.

6. CONCLUSIONS

While the adaptive controller has been shown to achieve an optimal control
policy when the variance of the estimators is neglected and the estimators are
assumed to converge rapidly compared to the LAs, in practice the effects of
nonzero variance and slow convergence may cause the control policy to



ADAPTIVE OPTIMAL CONTROLLER 295

deteriorate. The variance of the estimators can be kept low if: (i) y is small
(short-term optimization); (ii) B is small (slow estimating). The latter condition
conflicts with the requirement that the estimators converge rapidly compared
with the LAs, and so for reliable operation the time-constant of the LAs must
be extremely large. Thus, the controller takes a long time to adapt to a new
environment.

The performance of a controller constructed along the lines of the one
described here has been studied experimentally (Witten and Corbin, 1973).
Near-optimal control of a noisy third-order analog plant was achieved con-
sistently, but, as predicted here, the time taken by the controller to discover
a near-optimal policy was rather long. (In fact, it was typically 10,000 sampling
periods, corresponding to about 30 minutes of real time.) However, using a
general adaptive controller such as the system of LAs described here naturally
incurs a penalty in convergence time. In general, control performance for
particular tasks can (and usually should) be increased by building special-
purpose constraints into the controller.

Receivep: May 31, 1974; rReviseDp: December 20, 1974
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