REDUCING KEYSTROKE COUNTS WITH A PREDICTIVE COMPUTER INTERFACE

Ian H, Witten, John G. Cleary, John J. Darragh, and David R. Hill

Man-Machine Systems Laboratory, University of Calgary, Canada

Abstract

It has recently been demonstrated how
techniques of non-deterministic structural
modelling can be applied to reduce the number of
keystrokes typed by a user in typical interactive
computer sessions. The sequence of keystrokes is
observed by the machine, modelled, and where
possible used to form predictions of the
characters about to be typed.

This paper discusses the application of such
an interface to the physically handicapped.
Particular attention is paid to reducing the
number of keystrokes needed to enter different
kinds of text, such as source programs,
interactive commands, and plain English,
cases up to 50% of a users keystrokes are
correctly predicted, resulting in significant
keystroke count reductions.

In some

Introduction

Typical dialogues with interactive computer
systems contain a great deal of redundancy. This
redundancy arises from a number of sources. For
example, minor errors by the user cause repetition
of earlier sequences when the correction is made.
If the dialogue is with a command interpreter
there will be redundancy due to frequent use of a
small subset of the possible commands and file
names. ~ If English text is being entered there
will be the statistical redundancy of the language
itself. Program text is usually even more
redundant because of the restricted set of
keywords and identifier names.

An earlier paper-1 described the operation and
sketched the design and construction of a terminal
interface to an operating system (Unix“) which is
intended to aid the interactive user by reducing
the amount he has to type. The system, which is
called predict, works by predicting the entries
that the user is about to make. To do this it
treats the user dialogue as a sequential behaviour
S¢quence which is presented as input to the
system. Predictions are displayed in reverse
video on the VDU terminal, and the user has the
option of accepting correct predictions as though
he had typed them himself, Incorrect predictions
can be eradicated by simply typing over them; thus
the user may ignore the predictions and continue
typing normally if he does not wish to disturb his
keying rhythm. In all cases the display looks as
though he had typed the whole entry himself.

CH1807~7/82/0000/0003500.75 © 1982 IEEE

The present paper considers the appliecation
of such a software interface to the physically
handicapped. After an introductory section which
reviews typing aids for handicapped people, we
describe the existing terminal interface.

There dre some ways predict could be improved
for use by the handicapped. For example, the
current system selects a unique prediction (or
none at all) which represents its "best guess" of
the following characters. 1In the following
section we review the possibility of using menu-
based display techniques to allow several
predictions to be shown simultaneously, the user
selecting between them. This effectively trades
the burden of key selection against cognitive
load. Because of the higher cost of keystrokes
which is associated with many forms of physical
handicap, it is appropriate to pay more attention

~ to the prediction algorithm so that the number of

keystrokes needed to enter text can be reduced as
much as possible. In the next section, we
describe a new prediction method which has
recently begn proposed for use in text
compression”. Although this has not yet been
incorporated into the terminal interface, we have
evaluated its performance off-line and show here
what improvement can be expected. Finally we
report on an evaluation experiment of the existing
system, using able-bodied subjects.

The technique introduces a "meta-dialogue®,
above the normal dialogue level, in which the user
accepts predictions or parts of them. The
possibility of multi-modal input using simple
isolated word recognizers for the meta-dialogue is
explored, to achieve further keystroke reduction.
The system performance is quite sensitive to the
type of text being entered. In some cases, a
large context is necessary to ensure that most
predictions are correct: in others it is not. 1In
some cases the predictor should be prepared to
display a character when the model predicts it
only weakly, while in others considerable
confirmation of the prediction should be awaited
first. These parameters of the prediction process
are alsc suitable for voice control.

Iyping aids for the handicapped

There has Yeen a great deal of previous
research on typing aids for the handicapped. This
falls into two categories: work on input devices,
including scanning techniques, much of which pre-
dates the use of computers; and acceleration and

DEF0001221

information amplification methods which increase
the rate of user selections and the productivity
of each selection.

The three input methods of scanning,
encoding, and dirﬁct selection are ably reviewed
by Raitzer et al. , who also cover physical
implementations of the technigues. Basically, in
scanning, the system steps through a series of
options and the user responds when the appropriate
item is reached. With encoding, the user keys a
memorized code on a limited keypad to recall
predefined text. Direct selection implies the use
of pointing to pick a complete item from a screen
menu or keyboard. The number of keys required
thus increases as we proceed through the methods,
and the dependence on software dgcreases
correspondingly. Staisey et al.” give a further
review of these technigues, specifically in the
context of videotext. Any of the methods can be
used with the prediction technique described in
the present paper.

Acceleration can speed scanner input by
increasing the dimensions of the scanning matrix ,
putting words, whole phrases,,and even ideas in
iconic form into the matrix''", and gorting the
scan into decreasing frequency order”,

Information amplification goes further by
inereasing the productivity of selections, and the
bredict system is essentially a sophisticated form
of such amplification. Previous authors have
concentrated primarily on abbreviation expansion.
Abbreviations are encoded beforehand and
explicitly recalled by the user. Thus he must be
familiar with the implemented abbreviation set. A
simple example is the automatic insertion of two
spaces following all periods, aqa automatic
capitalization of the next word User=-definable
abbreviation§1have been implemented by Kelso and
Vanderheiden ', who allowed one to distinguish
between several abbreviations beginning with the
same stem using a unique terminating digit. The
abbreviation expansion is displayed for checking
before being entered into the text.

An extremely interesting scheme for
information amplification uses pre-stored English
tetragrams, based on representative text, which
allow a character to b?zpredicted according to the
three which prqgede it 7. In one
implementation °, the system displays the most
likely next character and the user may accept it
with a single switch closure. If he does not, the
next most likely character is displayed. 1If this
also is unacceptabls, the machine resumes
scanning. Goodencugh-Trepagnier and Rosen have
further developed the technique. This scheme has
many resemblances to predict. The key difference
is that predict takes its n-grams from the text
itself rather than from a representative sample of
English, making it suitab}g fqg input ‘of all kinds
of text. Several authors ~’ have commented on
the necessity for this, Furthermore, predict
looks ahead, in that more than one -- often many
more - predicted characters are displayed, and
can be accepted, at once. Also, we have
investigated the use of partial-string matching

rather than a fixed trigram context for I
prediction.

An interface in operation -

This section will try to give a feel for the
use of the terminal interface, although it is
always difficult to describe the operation of a
highly interactive system on paper. The user
invokes it when he logs on by typing prediet. (It
can be arranged to commence automatically on
login.) Instructions are displayed which remind
him how to use the system. From then on, all
characters he types are intercepted by predict
before being passed to the system -- whether they
be destined for the command interpreter or for any
other subsystem.

Predict makes predictions about what inputs
will come next, based upon previous inputs.
Although it can be run off-line to analyse pre-
recorded terminal sessions, it is normally used
interactively. In this mode it displays
predictions in reverse video on the VDU screen.
Because of obvious display limitations,
alternative predictions are not shown: in effect
Dbredict guesses the most likely next entry and
ignores other possibilities. For experimental
purposes, we have made the predictor rather
incautious in its operation. (This can be changed
by altering parameters in the program.)

The predictor accepts characters one by one,
If the first prediction, when accepted, would lead
to others, a chain of predictions is made and
displayed. This is normally the case, and so one
usually sees several characters displayed in
reverse video in front of the cursor position.
However, no attempt is made to predict past a
newline character. Up to a full line of
predictions can be shown, but they are generally
shorter than this -~ either because predigt's
model indicates that a newline character will
follow or because it reaches a point where there
is no prediction.

When a prediction is displayed, the cursor is
moved back to the position preceding it. The user
can accept it in its entirety, or character by
character, by pressing function keys. He can type
over it if it is incorrect, and the prediction a

will disappear immediately (possibly being b
roplaced by a new one). He can type over it even (
if it is correct, perhaps tc avoid interrupting 1
bis keying rhythm. ¢

Hence the system can be used in a completely e
transparent manner, although when typing quickly w
one finds the screen flashing with predictions in w
a diverting and distracting manner. The B
predictions do of course occupy bandwidth on the c
line connecting terminal to computer. Even at a T
high burst typing rate of 12 char/s, and in tke p
worst case with 80 characters of prediction for
each one typed, a 9600 bit/s connection ean just
about accomodate the traffic. In practice the
scheme works well on a 1200 bit/s line.

[~ e B i

DEF0001222

the

(1t

nd

h
[any

ta

) Tct
hged

ne,
1 ead

pne

F 1s
fser

-Ype
en

1y
in

ed ..

is

od modelling
1s -1

rm *,0 y.tab.c
ls -1 test2
cat test2

pr test2)opr
echo test*

rm test®

ls -1

rm tty tty.out
man compact

newgrp bin
ed ..

man compact
du

ed ../bin
cd bin

1s

cat bib.make

cd ../modelling

ep ../bib.make test3

cp ../bin/bib.make test3
compact test3

is -1

od -c¢ testl.c

od -c test3.C

pr test3.C ../bin/bib.make]opr
pr ../bin/bib.make}opr

od -c test3.Clpriopr

rm test3.C

ls -1 ../bin

cat ../bin/bib.indiv

cp ../bin/bib. indiv testly
pr testilopr

compact testl

od -c testl.C

od -c testd.C|priopr

ed ../predictor

Instructions are displayed when predict
starts-up that deseribe the function keys used to
accept predictions. These function keys,
identified by stick-on lables, include: ghar
(accept one character), word (accept one word),
ding (accept the entire prediction), and help
(print the start-up menu again). The most
commonly used functions are ghar to accept one
character of a prediction, and yord to accept one
word of a prediction., The program currently copes
with four terminal types, the Ann Arbor
Ambassador, Lanparscope#00, General Terminal
Corp*s GT-400, and Digital Equipment's VT100.
There are some restrictions in the use of the
predictor which will be discussed later,

Table 1 shows a sample input sequence
recorded by predigt. It was produced in a live
terminal session, and is all directed to the Unix
comeand interpreter. It is not necessary to
understand the meanings of the commands, but it is

important to note the high degree of redundancy
present. For example, "man compact" failed the
first time and had to be retried after the
environment had been altered. %od -o test3.c®
failed because the file name should have been
"test3.C". Considerable redundancy is also
contributed by the frequent use of a small
selection of commands and filenames. We will
consider the performance of prediet on this input
sequence shortly.

It is worth emphasizing that although the
example shows only an interaction with the
operating system command interpreter, predict
models the complete dialogue with the computer
system, including subsystems such as editors and
language interpreters. For example, when editing
text one frequently repeats file names that have
been mentioned in preceding dialogue with the
command interpreter; either by reading the files,
or temporarily escaping from the editor to perform
some operation on them, or by editing a command
file which is intended for interpretation at
command level. In effect, a thread of context may
run through the entire dialogue. If it does,
brediet will discern it.

Alternative modes of gperation

There are several possibilities for reducing
the number of keystrokes needed to enter a plece
of text even further than does the current predict
systen.

One is to increase the options which face the
user when a prediction is displayed. In the
version just described he can ignore the
prediction, accept a single character of it, or
accept the complete line. We have recently
included the ability to accept the next word of
the prediction, having found in practice that it
is often correct in cases where the entire
prediction is not completely correct. A "word" in
this context is defined as a space-separated
string. But often in computer dialogues one
thinks in terms of strings of alphanumeric
characters separated by special characters like
/M, MW op "R Hence it may be profitable to
allow the user to accept the next alphanumeric
string of the prediction. Such additions can
substantially reduce the number of keystrokes that
the user has to type.

A further possibility is for redict to
display a menu of predictions at each stage
instead of just one. This was not done in the
present system because one aim was to keep use of
the computer system with oredict as elose as
possible to that without it. To display a menu,
one would have to accept that the predictions will
occupy a substantial part of the VDU screen
instead of just the remainder of the current line
as at present. Nevertheless, it would provide the
user with much more powerful selection facilities,
It is likely that if a handful of predictions were
displayed, one of them would be applicable in most
situations. Of course, the price paid is that
more keys must be reserved for menu-selection
purposes, and the user must spend more time

DEF0001223

learning how to use the system.

Tt is natural to consider the use of an
isolated word reccgnizer for controlling the
generation and acceptance of predictions. Limited
machines such as Threshold Technology's "Auricle”,
available on the market for some $3000, have the
capability of identifying some B30 words, spoken in
1solation, if tralned appropriately by the user.
These would be ample for controlling predict. For
example, suppose that up to ten predictions were
displayed, and that the user could select one and
accept a character, ward, string, whole line, or
whole line completed by a newline character.
Commands could be, for example,

"three charactepr”
to accept the first character of prediction 3, or
leight complete"

to accept the whole line of prediction 8, complete
with newline character. The entire vocabulary
needed is only 15 words.

One could argue that the user may prefer to
dictate his whole message, character by character,
instead of using a voice-controlled prediction
technigue. The predictions, however, will
considerably reduce the number of volce entries.
Furthermore, we feel that they achieve a useful
separation between voice and keyboard entry which
is likely to be faster than either would be alone,
for many people. We have recently taken delivery
of an isolated word recognizer and plan to test
this hypothesis,

sSome prediction technigues

The prediction technique used in the current
bredict program is a simple lexieal one, based on
the previous occurrenc?7 of short sequences of
consecutive characters '. All novel sequences of
k characters (where k is a parameter of the
predictor, typically L) are stored as they are
encountered in the input. Predictions are made at
each stage by extracting every sequence that
matches the last k-1 characters seen. If there
are none, there is no prediction. If there is a
unique one, its k'th element is the predicted
character. Otherwise, predict must make a choice.
We have experimented with three strategies: a
conservative one which chooses not to predict in
this circumstance, another which predicts the most
recently encountered sequence unless another
sequence has been seen a significantly greater
number of times, and finally, a strategy which
simply selects the most recently encountered
sequence,

A hash-table storage and retrieval scheme
makes the operation very fast, even on a multiuser
systen. Tquniques which are more economical in
space exist ~, but these take longer to update,
and speedy interaction was deemed to be the most
important requirement. Some care must be taken to
cope properly with rubout and other line editing
characters.

Although the method may seem simple almost to
the point of naivety, it does have considerable
predictive power in practice. ({In fact it ean
only cope with input sequences which are "non- -
countiqg" in the sense of McNaughton and
Papert “,) It has been used for an earlier system
which implsﬂented a "self-programming" electronic
calculator

However, recent research has shown that
better predictive power can be obtained by using a
partial-string matching method. This forms a
model in exactly the same way as deseribed ahove.
When the model is to be used for prediction, the
current context is sought in a previously-stored
k~tuple in the same way. Only when it is not
found deoes the new method differ from the o01d.
Then, the current context is shortened by one
character and previous occurrences of this new
context are sought. If one is found, prediection
proceeds as above; otherwise the context is
further shortened and the process repeats, A
prediction will fall to be made only in the case
when the last character typed has not been
encountered before.

One should draw a distinction between a
prediction being made and one being displayved. &
predietion which is unique is automatically
displayed. However, a decision procedure must be
used for non-unique predictions, and unless one of
them overwhelms the others (in terms of frequency
of ocecurrence in the recent past), no prediction
is displayed. The decision procedure should
depend to some extent on the taste of the user:
he may be pleased to see even unlikely predictions
displayed, or he may be put off by the bad advice
which he perceives predict to offer! We plan to
experiment with different deeision algorithms; but
the problem of setting up a sufficiently
controlled experiment, and the opportunity of
"personalization" for different degrees of
handicap, makes evaluation difficult.

It should be noted that for satisfactory
performance with the hashing scheme and for the -
more complex techniques necessary for partial-
string matching it is necessary to have the
adaptive data present in primary memory. To
alleviate some of the problems this can cause on
time-shared systems we envisage a personal
terminal which contains the predictive interface,
and is capable of being coupled to larger computer
systens.

Evaluation of prediction algorithms

Consider again the behaviour sequence of
Table 1. With default values (length-k
predictions) predigt makes predictions as shown in
Table 2. Here, """ represents a correctly-
predicted character, while "I" flags the next
character as having been incorrectly predicted.
The large number of good predictions is obvious.
Although there are also many bad ones, notice that
the user need take no action on these other than
typing what he would have entered anyway.

DEF0001224

: st to
le

ystem
onic

ing a

jove.
fthe
red

pe

£ be
he of
ney
on

ions

ice

to
but

on

e,
it.er

h in

‘that

‘P;;i&xma

IABLE 2 - Sample input sequence with
length-Y predictionsg

ed ..

ls

ed” lmodelling
ls -1

rm *,0 y.tab.c
1877~ test2
cat te™™~

pr te”""lopr
echo te™~ %
rm” tte ™
187"~ 1

rm™ Ity tt"i.out
man compact
newgrp bin

ed™ ..

ed™~~/bin

ed™ tbi~

1s!

ca”" {bitb.make

eom™""" T
1877~
od -c te

.C

1™ 1..7""int

ea™™!,. """/~ 1bl, tindiv
ep~TT T INTN DT be ™)
proitT"~{op”

ed™ "~ Ipredictor

Predict has no tacit knowledge of the lexical
or syntactic structure of the behaviour sequence.
It s k-tuple model is initially empty and it must
incorporate part of the behaviour sequence before
predictions can be make.

The use of partial-string matching can
increase the number of predictions substantially.
For example, with certain parameters for the
decision procedure we can produce predictions as
shown in Table 3. There are many more correct
predictions than before, as well as some
additional incorrect ones., In fact, in the
length-k case, newline is treated as a delimiter
in the behaviour sequence, so it and the following
k-2 characters are never predicted by the length-k
model (notice how the first two characters of each
line of Table 2 are never predicted). This
deficiency has been rectified in the partial-
string algorithm, which preserves the context from
one line to the next. Table 3 shows that this

IABLE 3 - Sample input seguence with

Rartial-string mateh predictions
ed ..
1s
1e™"imodlel!lling
17 -1

rm! *. 10! y.tab.c
17777 tlelstt2
clatt ===~

pr! t~~"~~lop~
echo 1t™~~#
rrTgTeR
e

rTtity! ttTl lolut
man! complact
newgrp bli~

ed™t,”

L ——

du

cd™.~/bi~

ed™b~"~

1~

ca” " Ib" ib, Imalke

ep 1.77pT b te™"3

od! ~ts te™"3.c

oTTTITE T 3~IC

pTTTITTRNC LTy e
[Wated ‘Tl tdeindetended it
07T"*"=="3~C{ | 1pri}o™~
r'te~"3~C

) it t.”"b"n

ea™" . " b ™n™ """~ lindiv

o m—— R R

cd”.""predilcttor

alone increases substantially the number of
predictions.

As we have hinted above, different parameter
values in the prediction process can have radical
effects on the number of correct and incorrect
predictions. With length-k modelling, the value
of k can be varied, as can the decision algorithm
which determines when a prediction is displayed, _
Partial-string matching is insensitive to the
value of the "k" parameter but again the decision
procedure can be adjusted. The parameters affect
the total number of predictions, and the trade-off
between the number of predictions which are
correct and the number that are incorrect. The
techniques described here can be used to produce a
whole spectrum of prediction algorithms; the
choice of which particular one is best for any
glven user will depend on his typing skills and
also on his personal preferences.

DEF0001225

FIGURE 1 - Performance remions for
brediction algorithms

VARIABLE-LENGTH +
LENGTH-k »
50 -

.|
//\U
7z

[}
-
=
R ATTAINABLE
/ \ \ I"
N PRACTICE 4,
N
. ¥4
¥
’
I 3 l’
A% /'4”’
Vet a T : PERFECT
s 2 |

0 50 100
’ %ZGOOD

Figure 1 shows a good way td visualize this
spectrum. Along the horizontal axis is plotted
the percentage of characters which are predicted
correctly. The vertical axis shows the percentage
of incorrect predictions. The graph is bounded to
the right for obvious reasons (for example, if
67% of the characters are predicted correctly, no
more than 33% of them could be predicted
incorrectly). Points in the upper left part of
the graph correspond to large proportions of
incorrect predictions; in particular, those above
the diagonal have more wrong than right
predictions. Points near the left side have
hardly any correct predictions. The ideal
operating point 1s the lower right-hand one, where
all characters are predicted corréctly (and none
incorreotly). 1In practice, we have found that,
with suitable decision procedures, our algorithms
can reach the points shown in the shaded region.
The precise location of this region depends to
some extent on the kind of text being entered; but
its general shape and position remain the same.

The two example lines shown in Figure 1
represent results with the data of Table 1. One
is for the length-k method, with a particular
decision procedure, and the points on it represent
values of k from k=3 at the top right end of the
line to k=6 at the bottom left. The other is for
partial-string matching, with k fixed at 6 but

TABLE 3 - Sugcess of lengih-X prediction

for the behaviour of Table 1
k correct incorrect unpredicted
3 50% 4% 36%
4 By 8% 48¢
5 36% 5% 59%
6 30% ug 66%
JIABLE 3 - Sucgess of partial-string
for the behaviour of Table 1
decision correct incorrect unpredicted
parameter
0.2 57% 29% 145
0.3 57% 27% 16%
0.4 55% 21% 24%
0.5 54% 19% 2T%
0.6 52% IL}) 3ug
0.7 50% 1% 39%
0.8 49¢ 9% 42%
0.9 47% 9% ihg

varying a threshold probability. This threshold
determines a decision procedure in which only
predictions whose probability of ocecurring is
estimated to be above the threshold will be
displayed. Data for both of these lines, in terms
of the percentage of correct and incorrect
predictions, are given in Tables 4 and 5. The
first and second values in each entry show the
percentage of correctly and incorrectly-predicted
characters, respectively; while the third gives
the percentage of characters that were not
predicted at all, Thus, for example, with
length-k operation, WUE of characters were
correctly predicted and 8% were incorrectly
predicted (corresponding to 232 and 40 characters,
respectively, in the 530-character test sequence).
From Table 5, with k at 6 and the threshold set to
0.9, 47% of characters were correctly predicted
and 9% were incorreetly predicted (corresponding
to 251 and 46 characters respectively).

We have considered the Table 1 example in
detail because, unlike most techniques of
adaptation by statistical induction, prediet works
well even over a short behaviour sequence. It
does not rely on ergodic sources or require
accurate statistics from a large training sample.
In fact there is a danger that long sequences may
cause the predictions to deteriorate because of
excessive richness in the k~tuples encountered.
To test this effect, we have run our prediction
algorithms on samples of data much larger than

DEF0001226

w et H MY O0R Y SO0 S £ O ¢

i v ™ MmO

A T A o

e me e A e AL e e te o e oat .

e

predicted

36%
48%
59%
66%

fuion

kredicted

—

14%
16%
244
273
348
393
429
44g

e

shold
1y
ig

m terms

The
the
Hicted
ives

heters,
hence) .
set to
bted
hding

in

. works
It

fmple.
s may

‘Ted,
1on

’,,,,~-=~,-,v-...-w» e it et e e i ae . L B U S-S S I

that of Table 1. The results are too extensive to
be reported here in detail, but they all fit well
within the framework shown in Figure 1.

One sample ¥3s a 4 Kbyte source program in
the "C" language™ ., This language has an
unusually large vocabulary of tersely-coded
operators, which makes prediction difficult.
Using a value of ksl, 50% of characters were
predicted correctly by the length-k method, while
13% were predicted incorrectly. Partial-string
matching was able to predict 53% of characters
correctly, with 12% being predicted incorrectly.
Other parameter settings for the decision
procedure cbtained different results, of course,
The results quoted represent favourable choices;
more correct predictions could only be obtained at
the expense of a considerable increase in
incorrect ones, and fewer incorrect ones caused
significantly fewer correct ones,

Results are not so good for ordinary English
rather than program text. On a largish (45 Kchar)
scientific paper, the partial-string algorithm
could only predict 504 of characters at the
expense of 30% being predicted incorrectly. To
reduce the number of incorrectly-predicted ones
to, say, 7.5% produced a concomitant drop to 30%
in the number of correct predictions.

Eyaluation of the svstem

The use of predict has not yet been evaluated
with handicapped subjects. Indeed, we have only
recently begun to investigate the more
sophisticated partial-string matching technique,
on the grounds that it may provide more accurate
predictions. However, evaluation experiments have
been conducted using able-bodied subjects with the
older, fixed-length matching, version, and it may
be of interest to report briefly on the results.

Predict does not provide much help to good
typists. For them, the time taken to decide
whether a prediction is correct is often less than
the time it would have taken to type the
characters, Interestingly, subjects liked the
System, and generally thought it was speeding up
input even when it was slowing it down!
Furthermore, they found it extremely easy to use,
and almost never consulted the help menu that was
provided. Some difficulties were experienced
-during the experiments because a time-shared
computer was used and response times were
sometimes irritatingly slow -- predict requires a
fair amount of computation and shou be
implemented on a separate processor ",

However, we found that for some people,
particularly the slower typists, prediet did
increase the rate of input. One of our samples
was a Cobol program, vhich exhibited a high degree
of redundancy. This makes it favourable for
predictive modelling, and the number of keystrokes
was very significantly reduced using bredict.
Extrapolating from the data gathered in the
experiment, the character rate would be increased
for subjects who type at less than 0.56 char/s.
Although none of our subjects came into this

category (the slowest was 1.05 char/s), many
handicapped Q?ople will. For example, Kelso and
Vanderheiden ' guote rates of between 0.5 and 3
word?émin (0.05 to 0.3 char/s); and Clarkson and
Poon = report 3.4 to 5.7 selections/min (.06 to .1
char/s) using unenhanced scanning techniques with
single~ and two-switch scanning systems.

RPiscussion

Predict is a completely transparent system in
the sense that its predictions can be overridden
effortlessly. It has considerable advantages over
other methods of reducing redundancy by explicit
abbreviation or by explicit invoking of a
history-list search. The user need not specify
anything either to make an abbreviation or to
invoke it. The operation is completely automatie
up to the point where he decides whether or not to
accept an already-displayed prediction. This, we
feel, removes the burden of constantly bearing in
mind and reviewing abbreviation possibilities.
Admittedly the user still has to learn how to
accept predictions, but he will be strongly
motivated to do so if the predictor is seen to
make sensible suggestions.

The interface is only useable if the
prediction can be reviewed before it takes effect.
Reverse video highlighting of predicted characters
provides a natural display when lines are buffered
by the device driver before being executed. The
technique cannot be used when keystrokes are acted
upon immediately without being echoed (as in
modern display editors). The harm done by
accepting an incorrect prediction could be anulled
by a comprehensive “undo” command, ‘but the system
would probﬂgly confuse a user much more than 1t2u
helped him . A different medium such as voice
may be suitable for announcing predictions for
review in such circumstances.

The utility of a predictive interface such as
the ones described here to a handicapped person
will depend strongly upon the degree and nature of
his handicap. Essentially, the method trades off
physical keyboard activity against mental
decision-making as do all such amplification
techniques. Good typists find it no help because
they can key faster than they can think; common
keying patterns become assimilated into chunks and
are evoked with negligible mental or physical
effort. Those people for whom the cost of a
keystroke is much higher than the cost of
reviewing a prediction and making a decision will
obviously appreciate the help that predict
provides. It often allows a sequence of several
characters to be entered as one. Some able-bodied
people who are not good typists come into this
category.

With a severe physical handicap, the cost of
a keystroke can become quite large in relationship
to the cost of reviewing predictions and making a
decision. In this case a menu of alternative
predictions could be displayed. The significant
mental effort of scanning a menu of several
alternative predictions only makes this worthwhile
if the keylng cost is high. There are interesting

DEF0001227

trade-offs between the menu size (number of
alternative predictions displayed) and the
selection count.

The prediction technique permits a great
variety of different system configurations to be
built using multimodal input devices (voice or
mouse, and keyboard). It raises the attractive
possibility of tailoring the system to a user's
particular disability, One needs to quantify the
relative cost of scanning a menu (for various menu
sizes), making a voice entry (for various sizes of
vocabulary), and entering a keystroke {on
keyboards of various sizes). Physical constraints
such as screen size (for menu presentation), sizes
of available keyboards, and vocabulary size faor
voice input need to be known alsc. Other factors
such as the statistical character of the text
being entered can, if known, be taken into account
by priming predict in advance with a
representative sample. With such inputs, one can
imagine a procedure which optimizes the rate of
information entry from a handicapped person. We
need hardly say that a great deal of research
needs to be undertaken before this ideal is
approached.

ment

The idea of interactive prediction owes a
great deal to John Andreae and Brian Gaines; Linda
Barr and Michael Saya kindly provided us with an
entry into the recent literature on computing to
aid the handicapped. This research is supported
by the Natural Sciences and Engineering Research
Council of Canada. The third author gratefully
acknowledges support from the Alberta Heritage
Foundation for Medical Research.

References

1. Witten, I.H, (1982) "An interactive computer
terminal interface which predicts user
entries” Proc IEE Conference on Man-maghine
Interaction, 1-5, Manchester, England, July.

2. Ritehie, D.M. and Thompson, XK. {(1974) "The
Unix time-sharing system" Comm ACM, 17, 365-
375.

3. Cleary, J.G. and Witten, I.H. (1982) ™Data
compression using adaptive coding and partial
string matching” Research Report 82/103/22,
Department of Computer Sclence, University of
Calgary.

4. Raitzer, G.A., Vanderheiden, G.C. and Holt,
C.S. (1976) "Interfacing computers for the
physically handicapped - a review of
international approaches" Proc National
Computer Conference, 209-216,

5. Staisey, N.L., Tombaugh, J.W. and Dillon, R.F.
(in press) "Videotex and the disabled" Int J
Man-Machine Studies, 11.

6. Rosen, M.J. and Goodenough-Trepagnier, C.
(1982) "The influence of scan dimensionality
on- non-vocal communication rate® Proc Sth
Annual Conf on Rehabilitation Engineering, 1,
Houston, Texas, Aug 22-26.

7. Gaylord, A.S., Smith, S. and Beak, P. (1981)
"Text writing, speaking, and appliance control
for the severely physically handicapped® Proc

dohns Hopkins 1st National Search of Personal
Lomputing to Ald the Handicapped, 178-180, Cct
31.

8. Baker, B, (1982) "MINSPEAK" Byte, 7 (9) 186~
202, September.

9. Jones, R.L. (1981) "Row/column scanning with a
dynamie matrix" Prog Johns Hopkins 1st
National Search of Personal Computing to Aid
ihe Handicapped, 6-8, Oct 31.

10. Clarkson, T.G. and Poon, P.E. (1982)
"Jtilizing eye position sensing and user
defined vocabularies to enhance the
communication rate of non-vocal people with
severe physical impairment" Prog¢ IEE
Conferenge on Man-machine Interaction, 174-
177, Manchester, England, July.

11. Kelso, D.P. and Vanderheiden, G.C. (1982)
"Ten-branch abbreviation expansion for greater
efficiency in augmentative communication
systems" Proc Sth Annual Conf on
Rehabjlitation Engi ring, 3, Houston, Texas,
Aug 22-26.

12. Balesta, G.S3. (1977) An intelligent
gommunication device for the severelv
digab . MS Thesis, Engineering, Tufts
University.

13. Thomas, A. (1981) "Communication devices for
the non vocal disabled" IEEE Computer, 25-30,
January.

14. Goodenough-Trepagnier, C. and Rosen, M.J.
(1982) "Optimal language menu for a one-switch
non-vocal communication device" Proc 5ih
Annual Conf on Rehabjlitation Engineering, 2,
Houston, Texas, Aug 22-26,

15. Brady, M., Kelso, D.P., Vanderheiden, G.C. and
Buehman, D, (1982) "A data-based approach to
character/syllable/word sets® Prog 5th Annual
Lonf on Rehabilitation Engineering, 1,
Houston, Texas, Aug 22-26,

16. Brown, D.N., Grigg, P.J., Watts, P. (1982) wa
communication interface using a microcomputer
for severely handicapped children" Proc IEE
Conference on Man-machine Interaction, 201~
204, Manchester, England, July., 17. Andreae,
J.H. (1977) Ihinking with the teachable
machine. Academic Press, London.

18. Witten, I.H. (1979) "Approximate, non-
deterministic modelling of behaviour
sequences” Int J General Systems, 5, 1-12,

- January.

19. McNaughton, R. and Papert, S. (1971) Counter-
free automata. MIT Press.

20. Witten, I.H. (1981) "Programming by example

for the casual user" Proc Canadian Man-

Lomputer Communication Conference, 105-113,

Waterloo, Ontario, June.

Kernighan, B.W. and Ritchie, D.M. (1978) The C

Rrogramming language. Prentice-Hall,

Englewood Cliffs, New Jersey.

22. Vanderheiden, G.C. (1982) "Computers can play
a dual role for disabled individuals" Byte, 1
(9) 136-162; September.

23. Halbert, D.C. (1981) "An example of
programming by example®™ Technical Report,
Yerox Office Products Division, Palo Alto,
California,

24, Witten, I.H. (in press) Principles 9f computer
Speech. Academic Press, London.

21

.

cc
an
SE
ut
ef

fc
[
cC
ar

rAOOIe 0o Y

o~ T

DEF0001228

